
Taming Parallel I/O Complexity with Auto-Tuning

Babak Behzad
University of Illinois at
Urbana-Champaign

Huong Vu Thanh Luu
University of Illinois at
Urbana-Champaign

Joseph Huchette
Rice University

Surendra Byna
Lawrence Berkeley National

Laboratory

Prabhat
Lawrence Berkeley National

Laboratory

Ruth Aydt
The HDF Group

Quincey Koziol
The HDF Group

Marc Snir
Argonne National Laboratory,

University of Illinois at
Urbana-Champaign

1. ABSTRACT
We present an auto-tuning system for optimizing I/O per-

formance of HDF5 applications and demonstrate its value
across platforms, applications, and at scale. The system
uses a genetic algorithm to search a large space of tunable
parameters and to identify effective settings at all layers of
the parallel I/O stack. The parameter settings are applied
transparently by the auto-tuning system via dynamically in-
tercepted HDF5 calls.

To validate our auto-tuning system, we applied it to three
I/O benchmarks (VPIC, VORPAL, and GCRM) that repli-
cate the I/O activity of their respective applications. We
tested the system with different weak-scaling configurations
(128, 2048, and 4096 CPU cores) that generate 30 GB to
1 TB of data, and executed these configurations on diverse
HPC platforms (Cray XE6, IBM BG/P, and Dell Cluster).
In all cases, the auto-tuning framework identified tunable
parameters that substantially improved write performance
over default system settings. We consistently demonstrate
I/O write speedups between 2x and 100x for test configura-
tions.

General Terms
Parallel I/O, Auto-Tuning, Performance Optimization, Par-
allel file systems

2. INTRODUCTION
Parallel I/O is an essential component of modern high-

performance computing (HPC). Obtaining good I/O per-
formance for a broad range of applications on diverse HPC
platforms is a major challenge, in part because of complex
inter-dependencies between I/O middleware and hardware.
The parallel file system and I/O middleware layers all offer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SC13 November 17-21, 2013, Denver, CO, USA
Copyright 2013 ACM 978-1-4503-2378-9/13/11 ...$15.00.

optimization parameters that can, in theory, result in bet-
ter I/O performance. Unfortunately, the right combination
of parameters is highly dependent on the application, HPC
platform, and problem size/concurrency. Scientific applica-
tion developers do not have the time or expertise to take on
the substantial burden of identifying good parameters for
each problem configuration. They resort to using system
defaults, a choice that frequently results in poor I/O per-
formance. We expect this problem to be compounded on
exascale class machines, which will likely have a deeper soft-
ware stack with hierarchically arranged hardware resources.

Application developers should be able to achieve good I/O
performance without becoming experts on the tunable pa-
rameters for every file system and I/O middleware layer they
encounter. Scientists want to write their application once
and obtain reasonable performance across multiple systems–
they want I/O performance portability across platforms. Fr–
om an I/O research-centric viewpoint, a considerable amount
of effort is spent optimizing individual applications for spe-
cific platforms. While the benefits are definitely worthwhile
for specific application codes, and some optimizations carry
over to other applications and middleware layers, it would
be ideal if a single optimization framework was capable of
generalizing across multiple applications.

In order to use HPC machines and human resources effec-
tively, it is imperative that we design systems that can hide
the complexity of the I/O stack from scientific application
developers without penalizing performance. Our vision is to
develop a system that will allow application developers to is-
sue I/O calls without modification and rely on an intelligent
runtime system to transparently determine and execute an
I/O strategy that takes all the levels of the I/O stack into
account.

In this paper, we present our first step towards accom-
plishing this ambitious goal. We develop an auto-tuning
system that searches a large space of configurable parame-
ters for multiple layers and transparently sets I/O parame-
ters at runtime via intercepted HDF5 calls of the I/O stack
to identify parameter settings that perform well. We ap-
ply the auto-tuning system to three I/O kernels extracted
from real scientific applications and identify tuned parame-
ters on three HPC systems that have different architectures
and parallel file systems.

In brief, our paper makes the following research contribu-

HDF5
(Alignment, Chunking, etc.)

MPI I/O
(Enabling collective buffering, Sieving buffer size,
collective buffer size, collective buffer nodes, etc.)

Application

Parallel File System
(Number of I/O nodes, stripe size, enabling prefetching

buffer, etc.)

Storage HardwareStorage Hardware

Figure 1: Parallel I/O Stack and various tunable
parameters

tions:

• We design and implement an auto-tuning system that
hides the complexity of tuning the Parallel I/O stack.

• We demonstrate performance portability across diverse
HPC platforms.

• We demonstrate the applicability of the system to mul-
tiple scientific application benchmarks.

• We demonstrate I/O performance tuning at different
scales (both concurrency and dataset size).

The remainder of the paper is structured as follows: Sec-
tion 3 presents our I/O auto-tuning system; Section 4 dis-
cusses the experimental setup used to evaluate benefits of
the auto-tuning system across platforms, applications, and
at scale. Section 5 presents performance results from our
tests and discusses the insights gained from the auto-tuning
effort. Section 6 presents our work in context of existing re-
search literature. Finally, Section 7 presents the limitations
of current work and future research directions, and Section
8 offers concluding thoughts.

3. AUTO-TUNING FRAMEWORK
Figure 1 shows a contemporary parallel I/O software stack

with HDF5 [27] as the high-level I/O library, MPI-IO as the
middleware layer, and a parallel file system (Lustre, GPFS,
etc.). While each layer of the stack exposes tunable pa-
rameters for improving performance, there is little guidance
for application developers on how these parameters interact
with each other and affect overall I/O performance. Ideally,
an auto-tuning system should provide a unified approach
that targets the entire stack and discovers I/O tuning pa-
rameters at each layer that result in good I/O rates.

The main challenges in designing and implementing an
I/O auto-tuning system are (1) selecting an effective set of
tunable parameters at all layers of the stack, and (2) ap-
plying the parameters to applications or I/O benchmarks
without modifying the source code. We tackle these chal-
lenges with the development of two components: H5Evolve
and H5Tuner.

For selecting tunable parameters, a näıve strategy is to
execute an application or a representative I/O kernel of the

Figure 2: Overall Architecture of the Auto-Tuning
Framework

application using all possible combinations of tunable pa-
rameters for all layers of the I/O stack. This is an extremely
time and resource consuming approach, as there are many
thousands of combinations in a typical parameter space. A
reasonable approach is to search the parameter space with
a small number of tests. Towards this goal, we developed
H5Evolve to search the I/O parameter space using a genetic
algorithm (GA). H5Evolve samples the parameter space by
testing a set of parameter combinations and then, based on
I/O performance, adjusts the combination of tunable param-
eters for further testing. As H5Evolve passes through mul-
tiple generations, better parameter combinations (i.e., sets
of tuned parameters with high I/O performance) emerge.

An application can control tuning parameters for each
layer of the I/O stack using hints set via API calls. For
instance, HDF5 alignment parameters can be set using the
H5Pset_alignment() function. MPI-IO hints can be set in a
similar fashion for the collective I/O and file system striping
parameters. While changing the application source code is
possible if the code is available, it is impractical when test-
ing a sizable number of parameter combinations. H5Tuner
solves this problem by dynamically intercepting HDF5 calls
and injecting optimization parameters into parallel I/O calls
at multiple layers of the stack without the need for source
code modifications. H5Tuner is a transparent shared library
that can be preloaded before the HDF5 library, prioritizing
it over the original HDF5 function calls.

Figure 2 shows our auto-tuning system that uses both
H5Tuner and H5Evolve for searching a parallel I/O parame-
ter space. H5Evolve takes the I/O parameter space as input
and for each experiment generates a configuration file in
XML format. The parameter space contains possible values
for I/O tuning parameters at each layer of the I/O stack
and the configuration file contains the the parameter set-
tings that will be used for a given run. H5Tuner reads the
configuration file and dynamically links to HDF5 calls of
an application or I/O benchmark. After running the exe-
cutable, the parameter settings and I/O performance results
are fed back to H5Evolve and influence the contents of the

Figure 3: A pictorial depiction of the genetic algo-
rithm used in the auto-tuning framework.

next configuration file. As H5Evolve tests various combina-
tions of parameter settings, the auto-tuning system selects
the best performing configuration for a specific I/O kernel
or application.

3.1 H5Evolve: Sampling the Search Space
As mentioned previously, due to large size of the param-

eter space and possibly long execution time of a trial run,
finding optimal parameter sets for writing data of a given
size is a nontrivial task. Depending on the granularity with
which the parameter values are set, the size of the parameter
space can grow exponentially and unmanageably large for a
brute force and enumerative optimization approach.

Exact optimization techniques are not appropriate for sam-
pling the search space given the nondeterministic nature of
the objective function, which is the runtime of a particular
configuration. Instead of relying on the simplest approach,
manual tweaking, adaptive heuristic search approaches such
as genetic evolution algorithms, simulated annealing, etc.,
can traverse the search space in a reasonable amount of time.
In H5Evolve, we explore genetic algorithms for sampling the
search space.

A genetic algorithm (GA) is a meta-heuristic for approach-
ing an optimization problem, particularly one that is ill-
suited for traditional exact or approximation methods. A
GA is meant to emulate the natural process of evolution,
working with a “population” of potential solutions through
successive “generations” (iterations) as they “reproduce” (in-
termingle portions between two members of the population)
and are subject to “mutations” (random changes to portions
of the solution). A GA is expected, although it cannot nec-
essarily be shown, to converge to an optimal or near-optimal
solution, as strong solutions beget stronger children, while
the random mutations offer a sampling of the remainder of
the space.

Our implementation, dubbed H5Evolve, is shown in Fig-
ure 3. It was built in Python using the Pyevolve [20] mod-
ule, which provides an intuitive framework for performing
genetic algorithm experiments in Python.

The workflow of H5Evolve is as follows. For a given bench-

mark at a specific concurrency and problem size, H5Evolve
runs the genetic algorithm (GA). H5Evolve takes a prede-
fined parameter space which contains possible values for the
I/O tuning parameters at each layer of the I/O stack. The
evolution process starts with a randomly selected initial pop-
ulation. H5Evolve generates an XML file containing the se-
lected I/O parameters (an I/O configuration) that H5Tuner
injects into the benchmark. In all of our experiments, the
H5Evolve GA uses a population size of 15; this size is a con-
figurable option. Starting with an initial group of configu-
ration sets, the genetic algorithm passes through successive
generations. H5Evolve uses the runtime as the fitness eval-
uation for a given I/O configuration. After each generation
has completed, H5Evolve evaluates the fitness of the popu-
lation and considers the fastest I/O configurations (i.e., the
“elite members”) for inclusion in the next generation. Ad-
ditionally, the entire current population undergoes a series
of mutations and crossovers to populate the other member
sets in the population of the next generation. This pro-
cess repeats for each generation. In our experiments, we set
the number of generations to be 40, meaning that H5Evolve
runs a maximum of 600 executions of a given benchmark.
We used a mutation rate of 15%, meaning that 15% of the
population undergoes mutation at each generation. After
H5Evolve finishes sampling the search space, the best per-
forming I/O configuration is stored as the tuned parameter
set.

3.2 H5Tuner: Setting I/O Parameters at Run-
time

The goal of the H5Tuner component is to develop an au-
tonomous parallel I/O parameter injector for scientific appli-
cations with minimal user involvement, allowing parameters
to be altered without requiring source code modifications
and a recompilation of the application. The H5Tuner dy-
namic library is able to set the parameters of different levels
of the I/O stack—namely, the HDF5, MPI-IO, and parallel
file system levels in our implementation. Assuming all the
I/O optimization parameters for different levels of the stack
are in a configuration file, H5Tuner first reads the values of
the I/O configuration. When the HDF5 calls appear in the
code during the execution of a benchmark or application,
the H5Tuner library intercepts the HDF5 function calls via
dynamic linking. The library reroutes the intercepted HDF5
calls to a new implementation, where the parameters from
the configuration are set and then the original HDF5 func-
tion is called using the dynamic library package functions.
This approach has the added benefit of being completely
transparent to the user; the function calls remain exactly
the same and all alterations are made without change to
the source code. We show an example in Figure 4, where
H5Tuner intercepts an H5FCreate() function call that cre-
ates an HDF5 file, applies various I/O parameters, and calls
the original H5FCreate() function call.

H5Tuner uses MiniXML [25], a small XML library to read
the XML configuration files. In our implementation, we are
reading the configuration file from user’s home directory,
giving the user the ability to change the configuration file.
Figure 5 shows a sample configuration file with HDF5, MPI-
IO, and Lustre parallel file system tunable parameters.

4. EXPERIMENTAL SETUP
We have evaluated the effectiveness of our auto-tuning

HPC System Architecture Node Hardware Filesystem Storage Hardware Peak I/O BW

NERSC/Hopper Cray XE6
AMD Opteron processors,
24 cores per node,
32 GB memory

Lustre 156 OSTs, 26 OSSs 35 GB/s [7]

ALCF/Intrepid IBM BG/P
PowerPC 450 processors,
4 cores per node,
2 GB memory

GPFS 640 IO Nodes, 128 file servers 47 GB/s (write) [18]

TACC/Stampede Dell PowerEdge C8220
Xeon E5-2680 processors,
16 cores per node,
32GB memory

Lustre 160 OSTs, 58 OSSs 159 GB/s [22]

Table 1: Details of various HPC systems used in this study

H5Tuner Design

hid_t H5Fcreate(const char *name, unsigned flags,
hid_t create_id, hid_t access_id)

HDF5 Library (Unmodified)

Application,
I/O benchmark,
Appl. I/O kernel

H5Fcreate()

H5Tuner

1. Obtain the address of H5Fcreate using dlsym()
2. Read I/O parameters from the XML control file
3. Set the I/O parameters(e.g. for MPI we use
MPI_Info_set())
4. Setup the new access_id using new MPI_Info
5. Call real_H5Fcreate(name, flags,
create_id, new_access_id)

H5Fcreate()

6. Return the result of call to real_H5Fcreate()

Figure 4: Design of H5Tuner component as a dy-
namic library which intercepts HDF5 functions to
tune I/O parameters

framework on three HPC platforms using three I/O bench-
marks at three different scales. The HPC platforms in-
clude Hopper, a Cray XE6 system at National Energy Re-
search Scientific Computing Center (NERSC); Intrepid, an
IBM BlueGene/P (BG/P) system at Argonne Leadership
Computing Facility (ALCF); and Stampede, a Dell Pow-
erEdge C8220 cluster at Texas Advanced Computing Cen-
ter (TACC). The I/O benchmarks are derived from the I/O
traces of the VPIC, VORPAL, and GCRM applications. We
ran these benchmarks using 128, 2048, and 4096 cores. In
the following subsections, we briefly explain the I/O subsys-
tem of the machines, the benchmarks, and the data sizes at
different concurrencies.

4.1 Platforms
To demonstrate the portability of our framework, we chose

three diverse HPC platforms for our tests. Table 1 lists
details of these HPC systems; note that the number and type
of I/O resources vary across these platforms. We also note
that the I/O middleware stack is different on Intrepid from
that on Hopper and Stampede. On Intrepid, the parallel file
system is GPFS, while Hopper and Stampede use the Lustre
file system.

4.2 Application I/O Kernels
We chose three parallel I/O kernels to evaluate our auto-

tuning framework: VPIC-IO, VORPAL-IO, and GCRM-IO.
These kernels are derived from the I/O calls of three appli-
cations, Vector Particle-In-Cell (VPIC) [6], VORPAL [19],
and Global Cloud Resolving Model (GCRM) [21], respec-

<Parameters>
 <High_Level_IO_Library>
 <alignment> 0, 65536 </alignment>
 </High_Level_IO_Library>

 <Middleware_Layer>
 <cb_buffer_size> 1048576 </cb_buffer_size>
 <cb_nodes> 32 </cb_nodes>
 </Middleware_Layer>

 <Parallel_File_System>
 <striping_factor FileName="sample_dataset.h5part"> 4 </striping_factor>
 <striping_factor> 16 </striping_factor>
 <striping_unit> 65536 </striping_unit>
 </Parallel_File_System>
</Parameters>

Figure 5: An XML file showing a sample configura-
tion with optimization parameters at different levels
of the parallel I/O stack. The tuning can be applied
to all files an application writes or to a specific file.

tively. These I/O kernels represent three distinct I/O write
motifs with different data sizes.

VPIC-IO—plasma physics (1D array): VPIC is
a highly optimized and scalable particle physics simulation
developed by Los Alamos National Lab [6]. VPIC-IO uses
the H5Part [5] API to create a file, write eight variables,
and close the file. H5Part provides a simple veneer API for
issuing HDF5 calls corresponding to a time-varying, multi-
variate particle data model. We extracted all the H5Part
function calls of the VPIC code to form the VPIC-IO kernel.
The particle data written in the kernel is random data of
float data type. The I/O motif of VPIC-IO is a 1D particle
array of a given number of particles and each particle has
eight variables. The kernel writes 8M particles per MPI
process for all experiments reported in this paper.

VORPAL-IO—accelerator modeling (3D block str–
uctured grid): This I/O kernel is extracted from VOR-
PAL, a computational plasma framework application sim-
ulating the dynamics of electromagnetic systems, plasmas,
and rarefied as well as dense gases, developed by TechX [19].
This benchmark uses H5Block to write non-uniform chunks
of 3D data per processor. The kernel takes 3D block dimen-
sions (x, y, and z) and the number of components as input.
In our experiments, we used 3D blocks of 100x100x60 with
different number of processors and the data is written for 20
time steps.

GCRM-IO—global atmospheric model (semi struc-
tured mesh): This I/O kernel simulates I/O for GCRM,
a global atmospheric circulation model, simulating the cir-
culations associated with large convective clouds. This I/O
benchmark also uses H5Part to perform I/O operations. The
kernel performs all the GCRM I/O operations with random
data. I/O pattern of GCRM-IO corresponds to a semi-

structured geodesic mesh, where the grid resolution and sub-
domain resolution are specified as input. In our tests we used
varying grid resolutions at different concurrencies. By de-
fault, this benchmark uses 25 vertical levels and 1 iteration.

4.3 Concurrency and Dataset Sizes
We designed a weak-scaling configuration to test the per-

formance of the auto-tuning framework at three concurren-
cies, i.e., 128, 2048, and 4096 cores. The amount of data
each core writes is constant for a given I/O kernel, i.e., the
amount of data an I/O kernel writes increases proportional
to the number of cores used. Table 2 shows the sizes of the
datasets generated by the I/O benchmarks. The amount of
data written by a kernel ranges from 32 GB (with 128 cores)
to 1.1 TB (with 4096 cores).

I/O Benchmark 128 Cores 2048 Cores 4096 Cores
VPIC-IO 32 GB 512 GB 1.1 TB
VORPAL-IO 34 GB 549 GB 1.1 TB
GCRM-IO 40 GB 650 GB 1.3 TB

Table 2: Weak scaling configuration for the three
I/O benchmarks

4.4 Parameter Space
H5Evolve can take arbitrary values as input for a param-

eter space. However, evolution of the GA will require more
generations to search a parameter space with arbitrary val-
ues. To shorten the search time, we selected a few mean-
ingful parallel I/O parameters for all the layers of the I/O
stack based on previous research efforts [15] and our experi-
ence [7]. We have chosen most of the parameter values to be
powers-of-two except some parallel file system parameters.
We set the largest parameter value of Lustre stripe count to
be equal to the maximum number of available OSTs, which
is 156 on Hopper and 160 on Stampede. The GPFS param-
eters that we tuned are boolean. The process of curtailing
parameter values to reasonable ranges based on knowledge
of page sizes, min/max striping ranges and powers-of-two
values can be done by one who is modestly familiar with the
system. And this task needs to be performed only once on
a per-system basis. Table 3 shows ranges of various param-
eter values. A user of our auto-tuning system can set the
parameter space by simply modifying the parameter list in
H5Evolve. Adding new parameters to search needs simple
modifications to H5Tuner. The following is a list of parame-
ters we used as part of the parameter space and their target
platforms.

• Lustre (on Hopper and Stampede):

– Stripe count (strp_fac) sets the number of OSTs
over which a file is distributed.

– Stripe size (strp_unt) sets the number of bytes
written to an OST before cycling to the next OST.

• GPFS (on BG/P Intrepid):

– Locking: Intrepid has a ROMIO (an MPI-IO im-
plementation [26]) driver to avoid NFS-type file
locking. This option is enabled by prefixing a file
name with bglockless:.

Parameter Min Max # Values
strp_fac 4 156/160 10
strp_unt / cb_buf_siz 1 MB 128 MB 8
cb_nds 1 256 12
align(thresh, bndry) (0,1) (16KB, 32MB) 14
bglockless True False 2
IBM_largeblock_io True False 2
chunk_size 10 MB 2 GB 25

Table 3: A list of the tunable parameters and their
ranges used for experiments in this study. We show
the minimum and maximum values for each param-
eter, with powers-of-two values in between. The last
column shows the number of distinct values used for
each parameter.

– Large blocks: ROMIO has a hint for GPFS named
IBM_largeblock_io which optimizes I/O with op-
erations on large blocks.

• MPI-IO (on all three platforms):

– Number of collective buffering nodes (cb_nds) sets
the number of aggregators for collective buffering.
On Intrepid, the parameter to set the number of
aggregators is bgl_nodes_pset.

– Collective buffer size (cb_buf_size) is the size of
the intermediate buffer on an aggregator for col-
lective I/O. We set this value to be equal to the
stripe size on Hopper and Stampede.

• HDF5 (on all three platforms):

– Alignment (align(thresh, bndry)): HDF5 file
access is faster if certain data elements are aligned
in a specific manner. Alignment sets any file ob-
ject with size more than a threshold value to an
address that is a multiple of a boundary value.

– Chunk size (chunk_size): In addition to contigu-
ous datasets, where datasets are stored in single
blocks in files, HDF5 supports chunked layout in
which the data are stored in separate chunks. We
used this parameter specifically for the GCRM-IO
kernel.

5. RESULTS
Out of the 27 experiments (3 I/O benchmarks x 3 con-

currencies x 3 HPC platforms), we successfully completed
24 experiments in time for this paper. Due to computer
resource allocation limitations on Stampede, we could not
finish the three 4096-core experiments on that system. How-
ever, we expect the performance improvement trends in the
remaining runs to be the same as the completed experiments.

In the following subsections, we first compare the I/O
rates that our auto-tuning system achieved with those ob-
tained using system default settings. We then analyze the
achieved speedup with respect to different platforms, I/O
benchmarks, and concurrency/scale in Sections 5.2, 5.3, and
5.4, respectively.

5.1 Auto-Tuning Framework

VPIC VORPAL GCRM

0

1000

2000

3000

Hopper Intrepid Stampede Hopper Intrepid Stampede Hopper Intrepid Stampede

I/O
 B

an
dw

id
th

 (M
B/

s)
Default
Tuned

(a) 128 cores

VPIC VORPAL GCRM

0

5000

10000

15000

Hopper Intrepid Stampede Hopper Intrepid Stampede Hopper Intrepid Stampede

I/O
 B

an
dw

id
th

 (M
B/

s)

Default
Tuned

(b) 2048 cores

VPIC VORPAL GCRM

0

5000

10000

15000

20000

Hopper Intrepid Hopper Intrepid Hopper Intrepid

I/O
 B

an
dw

id
th

 (M
B/

s)

Default
Tuned

(c) 4096 cores

Figure 6: Summary of performance improvement for each I/O benchmark running on (a) 128 cores, (b) 2048
cores, (c) 4096 cores. The I/O bandwidth axes’ scales are different in each of the plots.

Application/
Bandwidth (MB/s)

Cores
Platform VPIC-IO VORPAL-IO GCRM-IO

Default Tuned Speedup Default Tuned Speedup Default Tuned Speedup

128
Hopper 400 3034 7.57 378 2614 6.90 757 2348 3.10
Intrepid 659 1126 1.70 846 1102 1.30 255 1801 7.05

Stampede 394 2328 5.90 439 2130 4.85 331 2291 6.90

2048
Hopper 365 14900 40.80 370 12669 34.16 240 17816 74.12
Intrepid 2282 5964 2.61 2033 4842 2.38 414 870 2.10

Stampede 380 13047 34.28 436 12542 28.70 128 13825 107.73

4096
Hopper 348 17620 50.60 320 12192 38.00 413 20136 48.67
Intrepid 2841 7014 2.46 3131 7766 2.47 523 2177 4.16

Table 4: I/O rate and speedups of I/O Benchmarks with Tuned Parameters over Default Parameters

5.1.1 Tuned I/O Performance Results
The plots in Figure 6 present the I/O rate improvement

using tuned parameters that our auto-tuning system de-
tected for the three I/O benchmarks. H5Evolve ran for 10
hours, 12 hours, and 24 hours for the three concurrencies to
search through the parameter space of each experiment. In
most cases, the GA evolved through 15 to 40 generations.
We selected the tuned configuration that achieves the best
I/O performance through the course of the GA evolution.
Figure 6 compares the tuned I/O rate with the default I/O
rate for all applications on all HPC systems at 128, 2048,
and 4096 core concurrencies. We calculated I/O rate as the
ratio of the amount of data a benchmark writes into a HDF5
file at any given scale to the time taken to write the data.
The time taken includes the overhead of opening, writing,
and closing the HDF5 file. The overhead of HDF5 call in-
terception by H5Tuner, which is included in the time taken,
was negligibly small, even at high core count. The I/O rate
on the y-axis is expressed in MB/s. Readers should note
that the range of I/O rates shown in each of the three plots
is different. The measured default I/O rate for a benchmark
on a HPC platform is the average I/O rate we obtained
after running the benchmark three times. The default ex-
periments correspond to the system default settings that a
typical user of the HPC platform would encounter should
he/she not have access to an auto-tuning framework.

Table 4 shows the raw I/O rate numbers (in MB/s) of the
default and tuned experiments for all 24 experiments. We
also show the speedup that the auto-tuned settings achieved
over the default settings for each experiment. For all the
benchmarks, platforms, and concurrencies, the speedup num-
bers are generally between 1.3X and 38X, with 48X, 50X,

70X, and 100X speedups in four cases. We note that the
default I/O rates for the Intrepid platform are noticeably
higher than those on Hopper and Stampede. Hence, the
speedups on Hopper and Stampede with tuned parameters
are much larger than those on Intrepid.

5.1.2 Tuned Configurations
Table 5 shows the sets of tuned parameters for all bench-

marks on all systems for the 2048-core experiments. Due to
space constraints, we cannot present a detailed analysis for
all experimental configurations at the other two concurren-
cies; we generally observed similar trends for the 128-core
and 4096-core experiments. First, we note that the tuned
parameters are different for all benchmarks and platforms.
This highlights the strength of the auto-tuning framework:
while I/O experts and sysadmins can probably recommend
good settings for a few cases based on their experience, it is
hard to encapsulate that knowledge and generalize it across
multiple problem configurations.

VPIC-IO and VORPAL-IO on Hopper and Stampede have
similar tuned parameters, i.e., strp_fac, strp_unt, cb_nds,
cb_buf_size, and align. On Intrepid, these two bench-
marks include bgl_nodes_pset, cb_buf_size, bglockless,
IBM_largeblock_io, and align. On all platforms, GCRM-
IO achieved better performance with HDF5’s chunking and
alignment parameters, and Lustre parameters (stripe factor
and stripe size) without the MPI-IO collective buffering pa-
rameters. We chose this parameter space for GCRM-IO as
Howison et al. [15] demonstrated that the HDF5 chunk-
ing provides a significant performance improvement for this
I/O benchmark. Moreover, we show that the auto-tuning
system is capable of searching a parameter space with multi-

ple HDF5 tunable parameters. On Intrepid, GCRM-IO did
not use GPFS tunable parameters because going through
HDF5’s MPI-POSIX driver avoids the MPI-IO layer, which
is needed to set the GPFS parameters. Despite that, HDF5
tuning alone achieved 2X improvement.

I/O Kernel System Tuned Parameters

VPIC-IO Hopper

strp_fac=128, strp_unt=64MB,
cb_nds=1024,
cb_buf_size=64MB, align=(0,64K)

VPIC-IO Intrepid

bgl_nodes_pset=512,
cb_buf_size=128MB,
bglockless=true, large-
block_io=false, align=(8K, 1MB)

VPIC-IO Stampede

strp_fac=128, strp_unt=8MB,
cb_nds=512,
cb_buf_size=8MB, align=(8K, 2MB)

VORPAL-IO Hopper

strp_fac=128, strp_unt=16MB,
cb_nds=1024,
cb_buf_size=16MB, align=(1K,16K)

VORPAL-IO Intrepid

bgl_nodes_pset=128,
cb_buf_size=128MB,
bglockless=true, large-
block_io=true, align=(8K, 8MB)

VORPAL-IO Stampede

strp_fac=160, strp_unt=2MB,
cb_nds=512,
cb_buf_size=2MB, align=(8K, 8MB)

GCRM-IO Hopper

strp_fac=156, strp_unt=32MB,
chunk_size=(1,26,327680)=32MB,
align=(2K, 64KB)

GCRM-IO Intrepid
chunk_size=(1,26,1048760)=1GB,
align=(1MB, 4MB)

GCRM-IO Stampede

strp_fac=160, strp_unt=32MB,
chunk_size=(1,26,1048760)=1GB,
align=(1MB, 4MB)

Table 5: Tuned parameters of all benchmarks on all
the systems for 2048-core experiments

We note some higher-level trends from Table 5. For the
same concurrency and with the same benchmark, the tuned
parameters are different on various platforms, even with the
same parallel file system. For example, although the VPIC-
IO benchmark on Hopper and Stampede use the Lustre file
system, their stripe settings to achieve the highest perfor-
mance are different. The tuned parameters can be different
on the same platform and at the concurrency for different
benchmarks. For instance, the VPIC-IO and VORPAL-IO
benchmarks obtain the highest I/O rates with different MPI-
IO collective buffering settings and HDF5 alignment set-
tings, whereas their Lustre settings are the same. Similarly,
the same benchmark at different concurrencies on the same
platform have different tunable parameters. For example, at
128-cores (not shown in the table), VPIC-IO achieves tuned
performance with 48 Lustre stripes and 32 MB stripe size,
whereas at 2048-cores, VPIC-IO uses 128 stripes with 64
MB stripe size. We analyze these observations further in
the following sections.

5.1.3 Partial Tuning
The auto-tuning framework returns a set of tuned param-

eters across all layers of the I/O stack. In order to assess the
impact of each of these parameters (as opposed to the fully
tuned set), we devised a set of “Partial Tuning”experiments.
These experiments start with the default values for each pa-
rameter setting and then iteratively set each parameter to
the tuned value returned from the GA result. For example,
when we set the Lustre stripe settings (Lustre.Only case in
the Figure 7), we disable HDF5 settings. However, on Hop-

per and Stampede, when we set the Lustre stripe parameters
only, the implementation of MPI-IO on these machines also
set the MPI-IO collective buffering parameters by default.
In our measurements of Lustre.Only setting, we did not iso-
late the impact of these default MPI-IO collective buffering
parameters.

Figure 7 shows the results of these “Partial Tuning” runs
at 2048-core scale. There are some gaps between the bars
grouped under a particular benchmark. These gaps indicate
untested configurations. For example, in evaluating GCRM-
IO partial tuning performance, the tuned parameters are not
available for MPI-IO collective buffering.

From Figure 7, we can observe that on Hopper and Stam-
pede, Lustre striping (Lustre.Only) has the highest impact
on I/O tuning. Readers should note that this setting in-
cludes MPI-IO settings that the corresponding platforms set
by default. MPI-IO collective buffering (MPI-IO.Collective–
.Buffering.Only) also has more performance impact on Hop-
per and Intrepid than on Stampede for the VPIC-IO and
VORPAL-IO benchmarks. HDF5 alignment tuning also has
a noticeable impact on performance in most cases. We ap-
plied HDF5 chunk size setting only for the GCRM-IO bench-
mark and it has impact on Hopper, but little on Intrepid or
Stampede. Overall, a strategy involving tuning of all pa-
rameters outperforms partial tuning in all cases.

VPIC VORPAL GCRM

0

5000

10000

15000

Hopper Intrepid Stampede Hopper Intrepid Stampede Hopper Intrepid Stampede

I/O
 B

an
dw

id
th

 (
M

B
/s

)

Default

HDF5.Alignment.Only

HDF5.Chunking.Only

MPI.IO.BG.P.Only

MPI.IO.Collective.Buffering.Only

Lustre.Only

Tuned

Figure 7: Summary of performance with default,
partial runs, and tuned settings for all benchmarks
running on 2048 cores

5.2 Tuned I/O performance across platforms
Figure 8(a) shows the distribution of speedups with tuned

parameters across Hopper, Intrepid, and Stampede systems
representing three different architectures. The speedups are
color-coded by I/O benchmark. Overall, the auto-tuning
system achieved improved performance on all platforms for
all benchmarks. We can observe that the speedups on Hop-
per and Intrepid are lower than those on Stampede. The
speedups on Hopper range from 3.10 to 74.12, with an aver-
age of 28.55. Speedups on Intrepid range from 1.30 to 7.05
with an average of 2.76. Speedups on Stampede ranges from

4.85 to 107.73, with an average of 31.39. As mentioned ear-
lier, higher speedups on Stampede are due to poor default
performance. In contrast, lower speedups on Intrepid can
be attributed to higher default performance. The tuned raw
I/O rates on Stampede are similar to those on Hopper.

The aim of this section is to highlight how the auto-tuning
framework can deduce high performance configurations for
the same application at the same concurrency, but run-
ning on different platforms. We highlight this capability
by choosing the VPIC-IO benchmark running on 2048 cores
on Hopper and Intrepid, and provide some insights on the
configuration returned by the GA.

We consider the effect of choosing the collective buffer size
parameter for VPIC-IO as illustrated by Figures 9 and 10.
On Hopper (Figure 9), multiple buffer size values (equal to
the Lustre stripe sizes) obtain good I/O performance, and
on average the 32 MB buffer size achieves the best I/O rate
(although 64 MB has achieved the peak performance, but at
other concurrencies and in this concurrency 32 MB has con-
sistently shown high performance). In the VPIC-IO bench-
mark, each MPI process writes eight variables and the size
of each variable is equal to 32 MB. When the Lustre stripe
size is equal to 32 MB, it obtains the best performance on
Hopper. The powers-of-two fractions and multiples of 32
MB also obtain reasonably good performance. On Intrepid
(Figure 10), we obtain the best performance when the col-
lective buffer size is 128 MB. From Table 5, we can see that
the number of pset nodes from the tuned parameters is 512,
i.e., four MPI processes are being served by one collective
buffer. When VPIC-IO writes 32 MB per process, a total
of 128 MB data gets collected at the collective buffer node
(aggregator) and this node writes data to the file system as
one I/O request, which we believe aligns well with the GPFS
file system to achieve the best performance. We note that
the framework is able to derive these meaningful configura-
tions without detailed prior knowledge of platform specific
features.

●

2 4 8 16 32 64 128

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0

CB Buffer Size (MB)

I/O
 B

an
dw

id
th

 (
M

B
/s

)

Figure 9: The effect of Hopper’s CB Buffer Size on
performance of VPIC-IO at 2048 cores

5.3 Tuned I/O for different benchmarks
Figure 8(b) presents the speedup numbers with respect to

different I/O benchmarks. Speedups for VPIC range from

1 2 4 8 16 32 64 128

10
00

20
00

30
00

40
00

50
00

60
00

CB Buffer Size (MB)

I/O
 B

an
dw

id
th

 (
M

B
/s

)

Figure 10: The effect of Intrepid’s CB Buffer Size
on performance of VPIC-IO at 2048 cores

1.70 to 50.60, with an average of 16.04. Speedups for VOR-
PAL range from 1.30 to 38.00 with an average of 13.69.
Speedups for GCRM ranges from 2.10 to 107.73 with an
average of 33.50.

We now discuss the configurations returned by the auto-
tuning framework for different applications, while holding
the platform and concurrency constant. We highlight the
VORPAL-IO and GCRM-IO applications, running on 2048
cores of Stampede, and consider tuned the Lustre config-
urations returned by the GA. Figures 11 and 12 show the
impact of Lustre stripe size on the VORPAL-IO and GCRM-
IO benchmarks. Both of these benchmarks obtain the high-
est performance using Lustre stripe count of 160. How-
ever, VORPAL-IO obtains the best performance using 2
MB stripe size, whereas GCRM-IO works well using 32 MB
stripe size. We note that these different high performance
configurations likely result from the different I/O patterns
exercised by these benchmarks: VORPAL-IO uses MPI-
IO in collective mode whereas GCRM-IO uses MPI-POSIX
driver. We are conducting further analysis to better un-
derstand why these configurations in particular provide the
best I/O performance. This result highlights a strength and
a weakness of the auto-tuning approach: the auto-tuning
process can produce a good configuration which performs
well in practice, but is hard to reason about. On the other
hand, it would be very hard for a human expert to propose
this configuration in the first place since the interactions in
the software stack are very complicated to analyze.

2 4 8 16 32 64

70
00

80
00

90
00

10
00

0
12

00
0

Stripe Size (MB)

I/O
 B

an
dw

id
th

 (
M

B
/s

)

Figure 11: The effect of Lustre Stripe Size value on
performance of VORPAL on 2048 cores of Stampede

5.4 Tuned I/O at different scales

●

●

●

2
5

10
20

50
10

0

Platform

S
pe

ed
up

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

Hopper Intrepid Stampede

●

●

●

VPIC Runs
VORPAL Runs
GCRM Runs

(a) Speedups across platforms

●
●

●

2
5

10
20

50
10

0

Application

S
pe

ed
up

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

VPIC VORPAL GCRM

●

●

●

128−core Runs
2048−core Runs
4096−core Runs

(b) Speedups across benchmarks

●

●

●

2
5

10
20

50
10

0

of Cores

S
pe

ed
up

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

128 2048 4096

●

●

●

Hopper
Intrepid
Stampede

(c) Speedups across scale

Figure 8: Speedups with respect to platforms, benchmarks, and scale of the experiments.

2 4 8 16 32 64 128

20
00

40
00

60
00

80
00

12
00

0

Stripe Size (MB)

I/O
 B

an
dw

id
th

 (
M

B
/s

)

Figure 12: The effect of Lustre Stripe Size value on
performance of GCRM on 2048 cores of Stampede

Figure 8(c) demonstrates the weak scaling performance
obtained by our framework. We observe that the auto-
tuning system obtains higher speedups on 2048 and 4096-
core experiments. This shows that the default settings on
all platforms fare reasonably well at a smaller scale. But, as
the concurrency of the application increases, more resources
are at stake and that presents more opportunities to opti-
mize the stack.

Figure 13 shows another view of Figure 8(c) with raw I/O
rates of benchmarks at various concurrencies grouped based
on platform. Each box illustrates the range of I/O rates of
the benchmarks. This also illustrates our observation above
that auto-tuning is more beneficial at larger scale. This fig-
ure also shows that the Lustre-based platforms, i.e., Hopper
and Stampede, can achieve higher I/O rates than the GPFS-
based platform (Intrepid) with tuning at the concurrencies
we experimented. We also show that tuning helps improving
performance on BG/P based Intrepid.

6. RELATED WORK
Auto-tuning in computer science is a prevalent term for

improving performance of computational kernels. There has
been extensive research in developing optimized linear alge-
bra libraries and matrix operation kernels using auto-tuning
[30, 14, 16, 29, 32, 12, 31]. The search space in these efforts

50
00

10
00

0
15

00
0

20
00

0

of Cores

I/O
 B

an
dw

id
th

 (
M

B
/s

)

128 2048 4096

●

●

●

Hopper
Intrepid
Stampede

Figure 13: Raw Bandwidth plots and breakdown
across scale

involves optimization of CPU cache and DRAM parameters
along with code changes. All these auto-tuning techniques
search various data structure and code transformations us-
ing performance models of processor architectures, compu-
tation kernels, and compilers. Our study focuses on auto-
tuning the I/O subsystem for writing and reading data to
a parallel file system in contrast to tuning computational
kernels.

There are a few key challenges unique to the I/O auto-
tuning problem. Each function evaluation for the I/O case
takes on the order of minutes, as opposed to milli-seconds for
computational kernels. Thus, an exhaustive search through
the parameter space is infeasible and a heuristic based search
approach is needed. I/O runs also face dynamic variability
and system noise while linear algebra tuning assumes a clean
and isolated single node system. The interaction between
various I/O parameters and how they impact performance
are not very well studied, making interpreting tuned results
a complex task.

We use genetic algorithms as a parameter space searching
strategy. Heuristics and meta-heuristics have been studied

extensively for combinatorial optimization problems as well
as code optimization [23] and parameter optimization [8]
problems similar to the one we addressed. Of the heuristic
approaches, genetic algorithms seem to be particularly well
suited for real parameter optimization problems, and a vari-
ety of literature exists detailing the efficacy of the approach
[3, 13, 33]. A few recent studies have used genetic algo-
rithms [28] and a combination of approximation algorithm
with search space reduction techniques [17]. Both of these
are again targeted to auto-tune compiler options for linear
algebra kernels. We chose to implement a genetic algorithm
to attempt to intelligently traverse the sample space for each
test case; we found our approach produced well-performing
configurations after a suitably small number of test runs.

Various optimization strategies have been proposed to tune
parallel I/O performance for a specific application or an I/O
kernel. However, they are not designed for automatic tun-
ing of any given application and require manual selection of
optimization strategies. Our auto-tuning framework is de-
signed towards tuning an arbitrary parallel I/O application.
Hence, we do not discuss the exhaustive list of research ef-
forts. We focus on comparing our research with automatic
performance tuning efforts.

There are a few research efforts to auto-tune and optimize
resource provisioning and system design for storage system
[1, 2, 24]. In contrast, our study focuses on tuning the par-
allel I/O stack on top of a working storage system.

Auto-tuning of parallel I/O has not been studied at the
same level as the tuning for computation kernels. The Panda
project [11, 10] studied automatic performance optimization
for collective I/O operations where all the processes used by
an application to synchronize I/O operations such as read-
ing and writing an array. The Panda project searched for
disk layout and disk buffer size parameters using a combina-
tion of a rule-based strategy and randomized search-based
algorithms. The rule-based strategy is used when the opti-
mal settings are understood and simulated annealing is used
otherwise. The simulated annealing problem is solved as a
general minimization problem, where the I/O cost is mini-
mized. The Panda project also used genetic algorithms to
search for tuning parameters [9]. The optimization approach
proposed in this project were applicable to the Panda I/O
library, which existed before MPI-IO and HDF5. The Panda
I/O is not in use now and the Panda optimization strategy
was not designed for current parallel file systems.

Yu et al. [35] characterize, tune, and optimize parallel I/O
performance on the Lustre file system of Jaguar, a Cray XT
supercomputer at Oak Ridge National Laboratory (ORNL).
The authors tuned data sieving buffer size, I/O aggrega-
tor buffer size, and the number of I/O aggregator processes.
This study did not propose an auto-tuning framework but
manually ran a selected set of codes several times with dif-
ferent parameters. Howison et al. [15] also perform man-
ual tuning of various benchmarks that select parameters
for HDF5 (chunk size), MPI-IO (collective buffer size and
the number of aggregator nodes), and Lustre parameters
(stripe size and stripe count) on the Hopper supercomputer
at NERSC. These two studies prove that tuning parallel I/O
parameters can achieve better performance. In our study we
develop an auto-tuning framework that can select tuning pa-
rameters.

You et al. [34] proposed an auto-tuning framework for
the Lustre file system on the Cray XT5 systems at ORNL.

Figure 14: Proposed architecture for the Intelligent
Runtime System

They search for file system stripe count, stripe size, I/O
transfer size, and the number of I/O processes. This study
uses mathematical models based on queuing models. The
auto-tuning framework first develops a model in a training
phase that is close to the real system. The framework then
searches for optimal parameters using search heuristics such
as simulated annealing, genetic algorithms, etc. Developing
a mathematical model for different systems based on queuing
theory can be farther from the real system and may produce
inaccurate performance results. In contrast, our framework
searches for parameters on real system using search heuris-
tics. A preliminary version of our auto-tuning framework
appears in earlier work [4], where we primarily study the
performance of our system at a small scale. In this paper,
we do a more thorough analysis of the system on diverse
platforms, applications, and concurrencies, and conduct an
in-depth analysis of resulting configurations.

7. LIMITATIONS AND FUTURE WORK
In this paper, we have focused on developing and testing

the auto-tuning system on multiple platforms using different
I/O benchmarks. We have not addressed the issue of how one
can generalize the results from running benchmarks to arbi-
trary applications. We believe that I/O motifs or patterns
are the key to this generalization problem: in the future, we
will characterize and enumerate prototypical motifs and use
the current auto-tuning framework to populate a database
of good configurations for these motifs. We will then imple-
ment an intelligent runtime system, which will be capable of
extracting I/O motifs from arbitrary applications and con-
sulting the performance database to suggest an optimal I/O
strategy. Figure 14 illustrates our proposed architecture for
an intelligent runtime system that could address this chal-
lenge.

The long runtime of the GA is a potential concern, espe-
cially for individual application developers. We believe that
the GA runs (on a per-motif basis) can be incorporated into
a “health-check” suite run by sysadmins on a system-wide

basis. Thereby, we can both incrementally populate the
database of motifs and characterize the performance vari-
ability. Following results from our Partial Runs, we are con-
sidering designing a genetic algorithm with a custom muta-
tion rate that would initially favor the sensitive parameters
on each platform (Lustre or MPI-IO) and then focus on other
layers of the I/O stack. We are also looking into machine
learning based approaches (such as Gaussian Processes) to
intelligently sample the search space, and further reduce the
runtime.

Finally, runtime noise and dynamic interference from other
users is a fact of life in production HPC facilities. While our
auto-tuning framework has presented compelling results, we
are assuming that the user will encounter a runtime work-
load which is comparable to the one encountered during the
auto-tuning process. We believe that measuring noise and
interference during the tuning process and deriving models
for projecting their effect at runtime will be key in tackling
this hard problem.

8. CONCLUSIONS
We have presented an auto-tuning framework for optimiz-

ing I/O performance of scientific applications. The frame-
work is capable of transparently optimizing all levels of the
I/O stack, consisting of HDF5, MPI-IO, and Lustre/GPFS
parameters, without requiring any modification of user code.
We have successfully demonstrated the power of the frame-
work by obtaining a wide range of speedups across diverse
HPC platforms, benchmarks, and concurrencies. Perhaps
most importantly, we believe that the auto-tuning frame-
work can provide a route to hiding the complexity of the
I/O stack from application developers, thereby providing a
truly performance portable I/O solution for scientific appli-
cations.

9. ACKNOWLEDGMENTS
This work is supported by the Director, Office of Science,

Office of Advanced Scientific Computing Research, of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. This research used resources of the National
Energy Research Scientific Computing Center, the Texas
Advanced Computing Center and the Argonne Leadership
Computing Facility at Argonne National Laboratory, which
is supported by the Office of Science of the U.S. Department
of Energy under contract DE-AC02-06CH11357. B. Behzad
and H. Luu were supported by NSF grant 0938064. The
authors would like to acknowledge Wes Bethel, Mohamad
Chaarawi, Bill Gropp, John Shalf, and Venkat Vishwanath
for their support and guidance.

10. REFERENCES
[1] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer,

R. Becker-Szendy, R. Golding, A. Merchant,
M. Spasojevic, A. Veitch, and J. Wilkes. Minerva: An
Automated Resource Provisioning Tool for Large-scale
Storage Systems. ACM Trans. Comput. Syst.,
19(4):483–518, Nov. 2001.

[2] E. Anderson, M. Hobbs, K. Keeton, S. Spence,
M. Uysal, and A. Veitch. Hippodrome: Running
Circles Around Storage Administration. In Proceedings
of the 1st USENIX Conference on File and Storage

Technologies, FAST ’02, Berkeley, CA, USA, 2002.
USENIX Association.

[3] T. Bäck and H.-P. Schwefel. An overview of
evolutionary algorithms for parameter optimization.
Evol. Comput., 1(1):1–23, Mar. 1993.

[4] B. Behzad, J. Huchette, H. V. T. Luu, R. Aydt,
S. Byna, Y. Yao, Q. Koziol, and Prabhat. A
framework for auto-tuning HDF5 applications. In
Proceedings of the 22nd international symposium on
High-performance parallel and distributed computing,
HPDC ’13, pages 127–128, New York, NY, USA, 2013.
ACM.

[5] E. W. Bethel, J. M. Shalf, C. Siegerist, K. Stockinger,
A. Adelmann, A. Gsell, B. Oswald, and
T. Schietinger. Progress on H5Part: A Portable High
Performance Parallel Data Interface for
Electromagnetics Simulations. In Proceedings of the
2007 IEEE Particle Accelerator Conference (PAC 07).
25-29 Jun 2007, Albuquerque, New Mexico. 22nd
IEEE Particle Accelerator Conference, p.3396, 2007.

[6] K. J. Bowers, B. J. Albright, L. Yin, B. Bergen, and
T. J. T. Kwan. Ultrahigh performance
three-dimensional electromagnetic relativistic kinetic
plasma simulation. Physics of Plasmas, 15(5):7, 2008.

[7] S. Byna, J. Chou, O. Rübel, Prabhat, and et al.
Parallel I/O, analysis, and visualization of a trillion
particle simulation. In Proceedings of the International
Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’12, pages
59:1–59:12, 2012.

[8] H. Casanova, D. Zagorodnov, F. Berman, and
A. Legrand. Heuristics for Scheduling Parameter
Sweep Applications in Grid Environments. In
Proceedings of the 9th Heterogeneous Computing
Workshop, HCW ’00, pages 349–, Washington, DC,
USA, 2000. IEEE Computer Society.

[9] Y. Chen, M. Winslett, Y. Cho, and S. Kuo. Automatic
parallel I/O performance optimization using genetic
algorithms. In High Performance Distributed
Computing, 1998. Proceedings. The Seventh
International Symposium on, pages 155 –162, jul 1998.

[10] Y. Chen, M. Winslett, Y. Cho, S. Kuo, and C. Y.
Chen. Automatic Parallel I/O Performance
Optimization in Panda. In In Proceedings of the 10th
Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 108–118, 1998.

[11] Y. Chen, M. Winslett, S.-w. Kuo, Y. Cho,
M. Subramaniam, and K. Seamons. Performance
modeling for the panda array I/O library. In
Proceedings of the 1996 ACM/IEEE conference on
Supercomputing (CDROM), Supercomputing ’96,
1996.

[12] K. Datta, M. Murphy, V. Volkov, S. Williams,
J. Carter, L. Oliker, D. Patterson, J. Shalf, and
K. Yelick. Stencil Computation Optimization and
Auto-tuning on state-of-the-art Multicore
Architectures. In Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, SC ’08, pages 4:1–4:12,
2008.

[13] K. Deb, A. Anand, and D. Joshi. A computationally
efficient evolutionary algorithm for real-parameter
optimization. Evol. Comput., 10(4):371–395, Dec.

2002.

[14] Frigo, Matteo, Johnson, and S. G. FFTW: An
adaptive software architecture for the FFT. In Proc.
1998 IEEE Intl. Conf. Acoustics Speech and Signal
Processing, volume 3, pages 1381–1384. IEEE, 1998.

[15] M. Howison, Q. Koziol, D. Knaak, J. Mainzer, and
J. Shalf. Tuning HDF5 for Lustre File Systems. In
Proceedings of 2010 Workshop on Interfaces and
Abstractions for Scientific Data Storage (IASDS10),
Heraklion, Crete, Greece, Sept. 2010. LBNL-4803E.

[16] B. Jeff, A. Krste, C. Chee-Whye, and D. Jim.
Optimizing matrix multiply using PHiPAC: a
portable, high-performance, ANSI C coding
methodology. In Proceedings of the 11th international
conference on Supercomputing, ICS ’97, pages
340–347, 1997.

[17] H. Jordan, P. Thoman, J. J. Durillo, S. Pellegrini,
P. Gschwandtner, T. Fahringer, and H. Moritsch. A
Multi-Objective Auto-tuning Framework for Parallel
Codes. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage
and Analysis, SC ’12, pages 10:1–10:12, Los Alamitos,
CA, USA, 2012. IEEE Computer Society Press.

[18] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms,
and W. Allcock. I/O performance challenges at
leadership scale. In Proceedings of the Conference on
High Performance Computing Networking, Storage
and Analysis, SC ’09, pages 40:1–40:12, New York,
NY, USA, 2009. ACM.

[19] C. Nieter and J. R. Cary. VORPAL: a versatile
plasma simulation code. Journal of Computational
Physics, 196:448–472, 2004.

[20] C. S. Perone. Pyevolve: a Python open-source
framework for genetic algorithms. SIGEVOlution,
4(1):12–20, 2009.

[21] D. Randall, M. Khairoutdinov, A. Arakawa, and
W. Grabowski. Breaking the Cloud Parameterization
Deadlock. Bull. Amer. Meteor. Soc.,
84(11):1547–1564, Nov. 2003.

[22] K. Schulz. Experiences from the Deployment of
TACC’s Stampede System, March 2013 2013.

[23] K. Seymour, H. You, and J. Dongarra. A comparison
of search heuristics for empirical code optimization. In
Cluster Computing, 2008 IEEE International
Conference on, pages 421 –429, 29 2008-oct. 1 2008.

[24] J. Strunk, E. Thereska, C. Faloutsos, and G. R.
Ganger. Using utility to provision storage systems. In
Proceedings of the 6th USENIX Conference on File
and Storage Technologies, FAST’08, pages 21:1–21:16.
USENIX Association, 2008.

[25] M. Sweet. Mini-XML, a small XML parsing library,
2003-2011.

[26] R. Thakur, W. Gropp, and E. Lusk. Data Sieving and
Collective I/O in ROMIO. In Proceedings of the The
7th Symposium on the Frontiers of Massively Parallel
Computation, FRONTIERS ’99, pages 182–,
Washington, DC, USA, 1999. IEEE Computer Society.

[27] The HDF Group. Hierarchical data format version 5,
2000-2010.

[28] A. Tiwari and J. K. Hollingsworth. Online Adaptive
Code Generation and Tuning. In Proceedings of the
2011 IEEE International Parallel & Distributed

Processing Symposium, IPDPS ’11, pages 879–892,
Washington, DC, USA, 2011. IEEE Computer Society.

[29] R. Vuduc, J. Demmel, and K. Yelick. OSKI: A library
of automatically tuned sparse matrix kernels. In
Proceedings of SciDAC 2005, Journal of Physics:
Conference Series, 2005.

[30] R. C. Whaley, A. Petitet, and J. J. Dongarra.
Automated empirical optimization of software and the
ATLAS project. Parallel Computing, 27(1–2):3–35,
2001.

[31] S. Williams, K. Datta, J. Carter, L. Oliker, J. Shalf,
K. A. Yelick, and D. Bailey. PERI: Autotuning
memory intensive kernels for multicore. In Journal of
Physics, SciDAC PI Conference: Conference Series:
123012001, 2008.

[32] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick,
and J. Demmel. Optimization of sparse matrix-vector
multiplication on emerging multicore platforms. In
Proceedings of the 2007 ACM/IEEE conference on
Supercomputing, SC ’07, pages 38:1–38:12, 2007.

[33] A. H. Wright. Genetic Algorithms for Real Parameter
Optimization. In Foundations of Genetic Algorithms,
pages 205–218. Morgan Kaufmann, 1991.

[34] H. You, Q. Liu, Z. Li, and S. Moore. The Design of an
Auto-tuning I/O Framework on Cray XT5 System.

[35] W. Yu, J. Vetter, and H. Oral. Performance
characterization and optimization of parallel I/O on
the Cray XT. In Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Symposium
on, pages 1 –11, april 2008.

