
ParaView Catalyst: Enabling In Situ Data Analysis and
Visualization

Utkarsh Ayachit
Kitware, Inc.

Andrew Bauer
Kitware, Inc.

Berk Geveci
Kitware, Inc.

Patrick O’Leary
Kitware, Inc.

Kenneth Moreland
Sandia National Laboratories

Nathan Fabian
Sandia National Laboratories

Jeffrey Mauldin
Sandia National Laboratories

ABSTRACT
Computer simulations are growing in sophistication and pro-
ducing results of ever greater fidelity. This trend has been
enabled by advances in numerical methods and increasing
computing power. Yet these advances come with several
costs including massive increases in data size, difficulties ex-
amining output data, challenges in configuring simulation
runs, and difficulty debugging running codes. Interactive
visualization tools, like ParaView, have been used for post-
processing of simulation results. However, the increasing
data sizes, and limited storage and bandwidth make high
fidelity post-processing impractical. In situ analysis is rec-
ognized as one of the ways to address these challenges. In
situ analysis moves some of the post-processing tasks in line
with the simulation code thus short circuiting the need to
communicate the data between the simulation and analysis
via storage. ParaView Catalyst is a data processing and
visualization library that enables in situ analysis and visu-
alization. Built on and designed to interoperate with the
standard visualization toolkit VTK and the ParaView ap-
plication, Catalyst enables simulations to intelligently per-
form analysis, generate relevant output data, and visualize
results concurrent with a running simulation. In this paper,
we provide an overview of the Catalyst framework and some
of the success stories.

1. INTRODUCTION
The challenges for existing scientific workflows for exascale
are well documented[9, 16, 4, 1]. The main cause of the
challenges often boils down to the fact that while each suc-
cessive computing generation has seen improvement in all
the major components of the HPC infrastructure, the rate
of change of different components has been disproportion-

c©2015 Association for Computing Machinery. ACM acknowledges that this con-
tribution was authored or co-authored by an employee, contractor or affiliate of the
United States government. As such, the United States Government retains a nonexclu-
sive, royalty-free right to publish or reproduce this article, or to allow others to do so,
for Government purposes only.

ISAV2015 November 15-20, Austin, TX, USA
c© 2015 ACM. ISBN 978-1-4503-4003-8/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2828612.2828624

ate. As a result computing is getting cheaper while data
transfer, be it in memory or external storage, is getting com-
paratively expensive. That has necessitated an examination
of our existing workflows. Traditional scientific computing
workflows can be characterized by three main tasks: pre-
processing (preparing input), simulation (execution), and
post-processing (analyzing and visualizing the simulation re-
sults) with data flowing between each stage through the I/O
subsystem. With limited I/O bandwidth and capacity, it is
acknowledged that such workflows are not sustainable at
exascale. The main bottleneck is the data transfer between
simulation and post-processing state. One approach to min-
imize this bottleneck is through in situ analysis: instead of
performing the data analysis and visualization as a post-
processing step, all those tasks are performed in line with
the simulation thus minimizing, and potentially eliminating,
the data transfer bottlenecks between the two stages.
ParaView Catalyst (or simply Catalyst) [5, 8] was created as
a library to enable such integration between simulation and
post-processing stages. It leverages the analysis and visual-
ization capabilities of the familiar post-processing platforms,
VTK[19] and ParaView[2], while providing straight forward
mechanism to integrate with simulation codes. Researchers
can develop analysis pipelines using C++ or Python[18] that
are executed along side the simulation run, in the same ad-
dress space.
The first step to using Catalyst with a simulation code is
to integrate Catalyst into a simulation (Section 3). Once
integrated, Catalyst can be used to deploy various analy-
sis pipelines in situ with the simulation. To enable easy
analysis pipeline customization, Catalyst supports scripting
using Python. Users can write these scripts from scratch
or use the ParaView GUI to interactively setup prototype
visualization and then export the state as Catalyst scripts.
Such Catalyst scripts provide access to a wide range of co-
processing capabilities including executing pipelines for pro-
ducing images, computing statistical quantities, generating
plots, extracting derived information such as polygonal data
or iso-surfaces for further post-processing. Recent work is
adding support to export explorable data artifacts, or Cin-
ema[3] database, enabling post-processing using light weight
viewer applications. Other efforts are adding support to se-
rialize analysis results using high performance I/O libraries

such as ADIOS[11]. While Catalyst is designed to run in the
same process space as the simulation, it is possible to con-
nect to a separately running ParaView session for exploring
results as they are being produced. Such live co-processing
also facilitates analysis steering i.e. allows changing of the
analysis pipelines interactively, through user feedback.
Once a simulation code has been instrumented to use Cat-
alyst, accessing any of these features (or new ones that are
incorporated in the future) is simply a matter of updating
the customizable Catalyst pipeline, often described through
Python scripts. The Python scripting API makes it easy to
customize the pipeline without recompiling the code, how-
ever, for advanced users or for use-cases where a Python
dependency is not appropriate, a C/C++ API is also avail-
able.

2. UNDERSTANDING VTK, PARAVIEW, CAT-
ALYST AND CATALYST EDITIONS

The Visualization Toolkit (VTK) is an open-source, freely
available software system for 3D computer graphics, im-
age processing, and visualization. It consists of a C++
class library and several interpreted interface layers includ-
ing Tcl/Tk, Java, and Python. VTK provides abstractions
for representing data (data model) and rules that govern pro-
cessing and transformation of the data (execution model).
Using VTK, developers and users can develop applications
that handle specific visualization and analysis needs. Par-
aView is an open-source, multi-platform data analysis and
visualization application built on top of VTK. ParaView
was developed to analyze extremely large datasets using
distributed memory computing resources. ParaView builds
upon VTK’s data and execution model to add control logic
for managing distributed (and remote) data processing and
rendering. Also, ParaView is an end-user application. It
provides a graphical interface to enable users to build anal-
ysis and visualization pipelines interactively. Catalyst is a
library designed for in situ analysis. Catalyst itself depends
on the UI independent components of the ParaView appli-
cation, thus providing access to the data processing and ren-
dering capabilities of the ParaView application, minus the
UI. The Catalyst library also provides APIs that initialize,
execute, and finalize the co-processing pipelines for a simu-
lation run.
A standard SDK install of ParaView includes the Catalyst
library. Thus, when developing code to integrate a new sim-
ulation with Catalyst, one can work off a ParaView SDK
install. For production runs on systems with limited mem-
ory, one common concern is the size of code that Catalyst
(through ParaView and its dependencies) brings in. Since
ParaView is a general purpose tool, by default, it builds in
a wide array of readers, filters, writers etc. Not building
components that are not expected to be used during in situ
analysis not only saves on the code memory needed, but
also simplifies the build process. Such reduced-size versions
of Catalyst library are called Catalyst editions. Using a gen-
erator Python script included in the ParaView source code,
along with JSON files describing the classes to include in
the edition, one can produce custom Catalyst editions from
the ParaView source code.

3. PLUGGING IN TO CATALYST
In this section, we will give an overview of the steps involved

in instrumenting a simulation code with Catalyst. For de-
tailed developer documentation, the reader is referred to the
ParaView Catalyst User’s Guide[5].
A key step is developing the interface between the simulation
and Catalyst. This interface is called the adaptor. The
adaptor has two primary roles: map the simulation data
structures to Catalyst (the VTK data model) and provide
an API that the simulation uses to invoke Catalyst.

3.1 Anatomy of the Adaptor
Developing the Catalyst adaptor is typically the most im-
portant part in interfacing with Catalyst and may require
significant effort. In most situations, however, the impact
on the simulation codebase can be kept minimal by using a
well designed adaptor API. This API has three parts:
1. Initialize – Catalyst needs to be initialized in order to
be put in a proper state. This needs to be done once per
simulation run before the first invocation to the CoProcess

call. For codes using MPI, this must be called after the
MPI_Init() call. Adaptor implementations can customize
this call to allow the simulation to provide global informa-
tion about the simulation run that doesn’t change between
timesteps. This initialization step also sets up the analysis
pipelines to be run. Pipelines using the C++ API need to be
defined at compile time. For Python enabled co-processing,
Initialize loads the specified Catalyst script(s).
2. CoProcess – This routine is called for each time step
as the simulation progresses. The adaptor implementation
maps simulation data structures to the Catalyst/VTK data
model and passes that along to the Catalyst code for pro-
cessing. Catalyst provides API here to determine if any
analysis is required to be run for the current timestep; if
not, any work to map the data can be entirely skipped.
3. Finalize – On completion, the simulation code must call
this routine to clean up Catalyst state including releasing
any allocated memory. This is the counterpart of the Ini-
tialize call, and must only be called once for the entire run,
not per timestep, and is called before MPI Finalize() for
MPI enabled codes.
When implementing each of these routines, the adaptor may
use several API calls provided by the Catalyst library to as-
sist with each of these stages. The Catalyst library itself is a
C++ library. The adaptor, however, can be implemented to
provide a C/C++/Fortran or Python interface based on the
programming language used by the simulation code itself.

3.2 Implementing the Adaptor
Let’s take a closer look at an adaptor implementation using
a simple example. For this example, consider a simulation
written in C that computes time varying quantities such as
pressure, temperature, and density for a 3D volume defined
by global dimensions and local dimensions per rank, with
dimensions remaining fixed during the simulation run.
In this case, the adaptor (written in C++ with C interface)
provides a header that the simulation code can include to
use the API, defined as follows:

#ifdef __cplusplus
extern "C" {
#endif
void coprocessorinitialize(const char* py_scriptname);

void coprocess(int rank ,
int g_dx , int g_dy , int g_dz ,
int l_dx , int l_dy , int l_dz ,
int offset_x , int offset_y , int offset_z ,

Figure 1: PHASTA: Results from 256K MPI rank
simulation run instrumented with Catalyst for in
situ visualization.

double* pressure , double* temperature ,
double* density);

void coprocessorfinalize ();
#ifdef __cplusplus
} /* extern "C" */
#endif

In coprocessorinitialize, we initialize Catalyst and cre-
ate a Catalyst pipeline that executes the given Python script.
As mentioned earlier, such Python scripts can be exported
from the ParaView UI.

void coprocessorinitialize(const char* py_scriptname)
{

// Initialize catalyst
vtkCPAdaptorAPI :: CoProcessorInitialize ();

// Register the Python script with the co -processor .
// Multiple scripts can be added by creating multiple
// vtkCPPythonScriptPipeline objects.
vtkNew <vtkCPPythonScriptPipeline > pipeline;
pipeline ->Initialize(py_scriptname);
vtkCPAdaptorAPI :: GetCoProcessor()->AddPipeline(

pipeline.GetPointer ());
}

coprocess implements the crux of the code to map the
datastructures from our simulation to Catalyst that sim-
ply uses VTK’s data model. In this case, things are straight
forward. A 3D volume is represented as a vtkImageData

in VTK. The scalar arrays for pressure, temperature, etc.
can be directly passed to VTK (without deep copying) as
point-data arrays. Once the vtkImageData is prepared, it is
passed to the Catalyst pipeline as follows:

void coprocess (...)
{

// Create vtkImageData as a container for the scalars
vtkNew <vtkImageData > imageData;
...

// Pass the data to Catalyst.
vtkCPAdaptorAPI :: GetCoProcessorData ()

->GetInputDescriptionByName("input")
->SetGrid(imageData.GetPointer ());

// Now , execute the Catalyst pipelines.
vtkCPAdaptorAPI :: CoProcess ();

}

Catalyst provides API to check if any the processing pipelines
are indeed going to execute for the current timestep. Such
information can be used to avoid the data-mapping for timesteps
that are skipped by the co-processing stages. Of course, the

Figure 2: MPAS-O: Expected wind stress fields
(left), visualization of results from Catalyst (right)
used to diagnose simulation setup errors.

simulation can also skip processing on any timestep by sim-
ply not invoking the coprocess function.
Finally, coprocessorfinalize simply cleans up the Cata-
lyst state as follows:

void coprocessorfinalize ()
{

vtkCPAdaptorAPI :: CoProcessorFinalize ();
}

This example depends on Python for scripting the analy-
sis. For cases where Python support is not feasible, one can
develop Catalyst pipelines in C++, by subclassing vtkCP-

Pipeline. In that case, the coprocessorinitialize() call
should include creating and initializing custom pipelines.
The adaptor can get complicated, especially when dealing
with simulation codes with complex data structures and
meshes. The most challenging part often is mapping sim-
ulation data structures to VTK data model. But once an
adaptor is implemented, one can have access to the visual-
ization capabilities and the flexibility of the ParaView ap-
plication in situ. Besides traditional visualization and data
analysis, ongoing efforts will enable exporting to a Cinema
database that enables fast exploration at the post-processing
state through lightweight Cinema viewers[3].

4. CATALYST IN ACTION
Catalyst adapters have been implemented for several simu-
lation codes. In this section we look at some of the current
successes.
Helios: CREATE-AVTM Helios is a simulation framework
focused on rotorcraft analysis [20]. The Helios user base
utilizes a variety of post-processing packages and many of
them are unfamiliar with using ParaView. Because of this,
instrumenting Catalyst with Helios also involved customiza-
tion to support several “canned” co-processing outputs that
are specified in the simulation input file. These canned out-
puts currently include extracts for internal boundary sur-
faces, plane slices, contours, streamlines, sensors/taps and
particle paths. Although most of the co-processing output
from Helios is time-independent, there is a strong need to
include particle path tracking in the simulations to fully un-
derstand the flow. This is due to complex flow patterns from
rotorcraft having to fly in their own wake.
PHASTA: The largest scale run to date of a Catalyst in-
strumented simulation code was done with PHASTA. Short
for Parallel Hierarchic Adaptive Stabilized Transient Analy-
sis, PHASTA is a highly scalable CFD code led by Kenneth

Figure 3: CAM 5: Cinema database from CAM 5
being visualized in the Workbench for the Velocity
magnitude. The database was populated using a
Cinema-capable Catalyst pipeline embedded in the
simulation run.

Jansen at UC Boulder. In their scaling studies on Argonne
National Laboratory’s BlueGene/Q Mira machine [15], they
were simulating active flow control on a complex wing de-
sign. Part of the work included a Catalyst instrumented
run using 256K MPI processes. Catalyst was used to con-
tour two separate quantities, Q criterion and wall distance,
and generated 1920x1200 png images pseudo-coloring the Q
criterion iso-surfaces by velocity magnitude. Figure 1 shows
sample output from the simulation run along with an inset
zoomed view of the wing tip.
MPAS-O: MPAS-O is a code designed for the simulation
of the ocean system from time scales of months to millenia
and spatial scales from sub 1 km to global circulations [17].
Typical of many climate simulations, MPAS-O often is run
for many days. Due to the complexity of the required inputs,
bad simulation set ups can and do occur. By using Catalyst
in their runs they can now easily check for incorrect settings.
An example of this is shown in Figure 2 where incorrect
wind stresses were specified for the run. These were easily
diagnosed through visual inspection of the Catalyst output.
xRage: A significant concern when performing in situ anal-
ysis and visualization is that the desired result may not be
captured. This is of high importance when only images are
output from a Catalyst run, especially when the area of in-
terest is moving and/or just a fraction of the entire geom-
etry. For this, xRage [12] was instrumented to use Cata-
lyst. Catalyst was extended to provide automated decision
making on when and what to save. Based on statistical
analysis, appropriate time steps were chosen to sample the
data over. Histograms were used for computing appropriate
camera placements [14].
UH3D: Studies[10] using Catalyst for UH3D (a global 3D
code) concluded that the co-processing through Catalyst in-
troduced a constant memory overhead per core, and 20-30%
computation overhead. When looking from the perspective
of saving all the data and then post-processing using Par-
aView if not using Catalyst, the overheads are modest, thus
making in situ analysis a viable technique for such codes.
The memory overhead was approximately 400 MB for the
full ParaView/Catalyst code embedded in the simulation.
Catalyst Editions, described in Section 2, can be used to

Figure 4: Hydra-TH : Visualization of the grid-to-
rod frettiung (GTRF) problem – the single rod,
spacer and mixing vanes (in grey) with pressure iso-
surfaces and velocity streamlines.

reduce Catalyst footprint to 40 MB for an edition with ren-
dering support[7].
CTH: The main goal of in situ analysis and visualization is
reducing the time to insight for a given workflow. For many
simulations, the computational domain and time frame are
much larger than the actual domain of interest. This arises
for a variety of reasons including difficulty in applying proper
initial conditions, avoiding effects of boundary conditions
and not knowing a priori where the interesting phenomena
will occur. Thus, by using in situ tools, more appropriate
sampling of the data can be performed to reduce file IO and
post-processing. This was studied in [13] where a traditional
workflow was compared to both an in transit and an in situ
workflow, highlighting the need and benefits of all through
approaches for real world analysis.
CAM5: CAM 5.0 is a community resource for studying
the atmosphere with a focus on climate applications. There
are four dynamic cores: spectral element (default version
5.0), finite-volume (previous default), semi-Lagrangian, and
global spectral transformation (Eulerian dynamics). We
have demonstrated the current in situ visualization imple-
mentation can be used to preserve important elements of
the CAM 5.0 simulations, significantly reducing the data
needed to preserve those elements, and offer the possibility
for post-processing exploration. We have implemented the
ParaView Catalyst in situ analysis and visualization frame-
work in both CAM-FD where we created slice, isosurfaces,
and volume visualization pipelines for CAM 5.0. By pro-
ducing Cinema data products through Catalyst (Figure 3),
non-expert users are able to explore the results easily with-
out using complex visualization tools.
Hydra-TH: Hydra-TH[6] was developed as part of the Hy-
dra Toolkit (Hydra) for scalable scientific simulation, led by
Dr. Mark A. Christon at Los Alamos National Laboratory.
Hydra-TH has been developed for the Consortium for Ad-
vanced Simulation of Light-Water Reactors (CASL) to cre-
ate a computational capability that enables the simulation
of the thermal-hydraulics processes inside a nuclear reactor
at unprecedented fidelity. These simulations are done by nu-
clear energy engineers who are not typically computational
science experts. Using Catalyst with Hydra-TH has made
it simpler to create visualizations for analysis, as shown in
Figure 4, by these non-expert users.

5. CONCLUSION
In situ analysis and visualization is one of the ways of tack-

ling the exascale challenges. ParaView Catalyst is a data
processing and visualization library that enables in situ anal-
ysis and visualization. In this paper, we presented the steps
involved in instrumenting a simulation code with Catalyst
support along with some of our successes.

6. ACKNOWLEDGMENTS
The work with CAM5 was supported by the DOE Office
of Science, Advanced Scientific Computing Research, un-
der award number DE-SC0012387, program manager Lucy
Nowell.

7. REFERENCES
[1] S. Ahern, A. Shoshani, K.-L. Ma, A. Choudhary,

T. Critchlow, S. Klasky, V. Pascucci, J. Ahrens,
E. Bethel, H. Childs, et al. Scientific discovery at the
exascale. report from the doe ascr 2011 workshop on
exascale data management. Analysis, and
Visualization, 2, 2011.

[2] J. Ahrens, B. Geveci, and C. Law. ParaView: An
End-User Tool for Large-Data Visualization. The
Visualization Handbook, page 717, 2005.

[3] J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D. H.
Rogers, and M. Petersen. An image-based approach to
extreme scale in situ visualization and analysis. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’14, pages 424–434, Piscataway, NJ,
USA, 2014. IEEE Press.

[4] S. Ashby et al. The opportunities and challenges of
exascale computing. Summary Report of the
Advanced Scientific Computing Advisory Committee
(ASCAC) Subcommittee, Fall 2010.

[5] A. C. Bauer, B. Geveci, and W. Schroeder. The
ParaView Catalyst User’s Guide v1.0. Kitware, Inc.,
2013.

[6] M. A. Christon. Hydra-th theory manual. Technical
report, 2011.

[7] N. Fabian, J. Moreland, Kenneth Mauldin, B. Boeckel,
U. Ayachit, A. C. Bauer, and B. Geveci. Instruction
memory overhead of in situ visualization libraries on
hpc machines. In Ultrascale Visualization Workshop,
Nov 2014.

[8] N. Fabian, K. Moreland, D. Thompson, A. Bauer,
P. Marion, B. Geveci, M. Rasquin, and K. Jansen.
The paraview coprocessing library: A scalable, general
purpose in situ visualization library. In Large Data
Analysis and Visualization (LDAV), 2011 IEEE
Symposium on, pages 89–96, Oct 2011.

[9] C. Johnson and R. Ross. Visualization and knowledge
discovery: Report from the DOE/ASCR workshop on
visual analysis and data exploration at extreme scale.
Technical report, October 2007.

[10] H. Karimabadi, B. Loring, P. O’Leary, A. Majumdar,
M. Tatineni, and B. Geveci. In-situ visualization for
global hybrid simulations. In Proceedings of the
Conference on Extreme Science and Engineering
Discovery Environment: Gateway to Discovery,
XSEDE ’13, pages 57:1–57:8, New York, NY, USA,
2013. ACM.

[11] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan.
Adaptable, metadata rich io methods for portable

high performance io. In Parallel Distributed
Processing, 2009. IPDPS 2009. IEEE International
Symposium on, pages 1–10, May 2009.

[12] R. Menikoff and C. A. Scovel. xRage: HE initiation
models. Jun 2012.

[13] R. A. Oldfield, K. Moreland, N. Fabian, and
D. Rogers. Evaluation of methods to integrate analysis
into a large-scale shock shock physics code. In
Proceedings of the 28th ACM International
Conference on Supercomputing, ICS ’14, pages 83–92,
New York, NY, USA, 2014. ACM.

[14] J. M. Patchett, J. P. Ahrens, B. Nouanesengsy, P. K.
Fasel, P. W. Oleary, C. M. Sewell, J. L. Woodring,
C. J. Mitchell, L.-T. Lo, K. L. Myers, J. R.
Wendelberger, C. V. Canada, M. G. Daniels, H. M.
Abhold, and G. M. Rockfeller. LANL CSSE L2: Case
Study of In Situ Data Analysis in ASC Integrated
Codes. Aug 2013.

[15] M. Rasquin, C. Smith, K. Chitale, E. S. Seol, B. A.
Matthews, J. L. Martin, O. Sahni, R. M. Loy, M. S.
Shephard, and K. E. Jansen. Scalable implicit flow
solver for realistic wing simulations with flow control.
Computing in Science and Engineering, 16(6):13–21,
Nov.-Dec. 2014.

[16] M. Richards et al. Exascale software study: Software
challenges in extreme scale systems. Technical report,
DARPA Information Processing Techniques Office
(IPTO), September 2009.

[17] T. Ringler, M. Petersen, R. L. Higdon, D. Jacobsen,
P. W. Jones, and M. Maltrud. A multi-resolution
approach to global ocean modeling. Ocean Modelling,
69:211 – 232, 2013.

[18] G. Rossum. Python reference manual. Technical
report, Amsterdam, The Netherlands, The
Netherlands, 1995.

[19] W. Schroeder, K. Martin, and B. Lorensen. The
Visualization Toolkit: An Object Oriented Approach
to 3D Graphics. Kitware Inc., fourth edition, 2004.
ISBN 1-930934-19-X.

[20] A. Wissink, V. Sankaran, B. Jayaraman, A. Datta,
J. Sitaraman, M. Potsdam, S. Kamkar, D. Mavriplis,
Z. Yang, R. Jain, J. Lim, and R. Strawn. Capability
enhancements in version 3 of the helios high-fidelity
rotorcraft simulation code. In AIAA-2012-0713, AIAA
50th Aerospace Sciences Meeting. American Institute
of Aeronautics and Astronautics, January 2012.

