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VTK-m Goals
• A single place for the visualization community to collaborate, 

contribute, and leverage massively threaded algorithms
• Reduce the challenges of writing highly concurrent algorithms by 

using data parallel algorithms
• Make it easier for simulation codes to take advantage these 

parallel visualization and analysis tasks on a wide range of 
current and next-generation hardware

• Unify efforts in this area from Sandia (Dax), Oak Ridge (EAVL), 
and Los Alamos (PISTON)
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VTK-m Status
• Project infrastructure

• Code repository: https://gitlab.kitware.com/vtk/vtk-m
• Project webpage: http://m.vtk.org

• Features
• Core Types
• Statically Typed Arrays
• Dynamically Typed Arrays
• Device Interface (Serial, CUDA, TBB; OpenMP in 

progress)
• Field and Topology Worklet and Dispatcher

• Data Model
• Allows clients to construct data sets from cell and point 

arrangements that exactly match their original data
• In effect, this allows for hybrid and novel mesh types

• Filters
• Isosurface for structured grids
• Statistical filters (histograms, moments, etc.)
• In development: stream lines, stream surfaces, 

tetrahedralization

Cosmology Applications
• Halo finding and halo center finding algorithms were written using 

PISTON, one of VTK-m’s constituent projects
• On Titan, this enabled centers to be found on the GPU ~50x 

faster than using the pre-existing algorithms on the CPU (with 
one rank per node)

• This work allowed halo analysis to be completed on all time steps 
of a very large 81923 particle data set across 16,384 nodes on 
Titan for which analysis using the existing CPU algorithms was 
not feasible

• The portability of VTK-m allowed us to run the same code on an 
Intel Xeon Phi

• This is the first time that the c-M relation has been measured from 
a single simulation volume over such an extended mass range

• To appear in the Astrophysical Journal: “The Q Continuum 
Simulation: Harnessing the Power of GPU Accelerated 
Supercomputers”.

Concentration-mass relation over the 
full mass range covered by the Q 
Continuum simulation at redshift z = 0 
(points with error bars) and the 
predictions from various groups. The 
yellow shaded region shows the 
intrinsic scatter. All predictions and 
the simulation results are well within 
that scatter.

VTK-m Data Model Functional programming paradigm

VTK-m Isosurface Performance (preliminary results)

In-situ Applications
• Tightly coupled in-situ with EAVL, one of VTK-m’s constituent 

projects
• Efficient in-situ visualization and analysis

• Light weight, zero-dependency library
• Zero-copy references to host simulation 
• Heterogeneous memory support for 

accelerators
• Flexible data model supports non-physical 

data types
• Example: scientific and performance visualization, 

tightly coupled EAVL with SciDAC Xolotl plasma 
surface simulation

• Loosely coupled in-situ with EAVL
• Application de-coupled from visualization using ADIOS 

and Data Spaces
• EAVL plug-in reads data from staging nodes
• System nodes running EAVL perform visualization 

operations and rendering
• Example: field and particle data, EAVL in-situ with XGC 

SciDAC simulation via ADIOS and Data Spaces

EAVL in-situ with Xolotl
EAVL in-situ with XGC

Hardware-Agnostic Ray Tracing
• VTK-m's hardware-agnostic approach gives comparable 

performance to hardware-specific approaches
• Since VTK-m is implemented in a hardware-agnostic way, we 

wanted to understand the corresponding sacrifice in performance
• We implemented a ray-traced renderer, which is computationally 

intensive and uses many unstructured memory accesses
• We then compared VTK-m's performance to NVIDIA's OptiX and 

Intel's Embree, two "guaranteed not to exceed" ray-tracing 
standards that are developed by teams of professionals

• Our study found that VTK-m performance was always within a 
factor of two of industry standards, and even outperformed them 
in some cases

• We concluded that VTK-m hardware-agnostic approach is viable -
our single implementation performed comparably to multiple 
hardware-specific implementations

Advanced Visualization Usability Study
• Implementation of both ray-casting and cell projection volume 

rendering algorithms using Dax, one of VTK-m’s constituent 
projects 

• Complied for CUDA, OpenMP, and Intel’s Thread Building Blocks 
• Comparative performance study on NVIDIA Titan X GPU, Intel 

Xeon, and Intel Xeon Phi
• VTK-m implementation in progress

Ray-traced rendering of 
6.2M triangles 
generated from 
SPECFEM3D.  The 
data represents wave 
speed perturbations 
measured by 
seismograms and was 
provided by Oak Ridge 
National Laboratory.
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Volume rendering of type Ia
supernova simulation data set 
using ray-casting. Cell projection 
implementation using data parallel 
primitives renders comparable 
image in near sub-second times.
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VTK-m infrastructure and use cases, with contributions from Dax, EAVL, and 
PISTON predecessor projects

https://gitlab.kitware.com/vtk/vtk-m
http://m.vtk.org/
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