
The Scalable Data Management, Analysis, and Visualization Institute http://sdav-scidac.org

VTK-m: Accelerating the Visualization Toolkit for
Multi-core and Many-core Architectures

Ken Moreland, Sandia National Laboratory
Robert Maynard and Berk Geveci, Kitware

Jeremy Meredith and Dave Pugmire, Oak Ridge National Laboratory

VTK-m Goals
• A single place for the visualization community to collaborate,

contribute, and leverage massively threaded algorithms
• Reduce the challenges of writing highly concurrent algorithms by

using data parallel algorithms
• Make it easier for simulation codes to take advantage these

parallel visualization and analysis tasks on a wide range of
current and next-generation hardware

• Unify efforts in this area from Sandia (Dax), Oak Ridge (EAVL),
and Los Alamos (PISTON)

Christopher Sewell, Li-ta Lo, and James Ahrens, Los Alamos National Laboratory
Hank Childs and Matt Larsen, University of Oregon

Kwan-Liu Ma and Hendrik Schroots, University of California at Davis

VTK-m Status
• Project infrastructure

• Code repository: https://gitlab.kitware.com/vtk/vtk-m
• Project webpage: http://m.vtk.org

• Features
• Core Types
• Statically Typed Arrays
• Dynamically Typed Arrays
• Device Interface (Serial, CUDA, TBB; OpenMP in

progress)
• Field and Topology Worklet and Dispatcher

• Data Model
• Allows clients to construct data sets from cell and point

arrangements that exactly match their original data
• In effect, this allows for hybrid and novel mesh types

• Filters
• Isosurface for structured grids
• Statistical filters (histograms, moments, etc.)
• In development: stream lines, stream surfaces,

tetrahedralization

Cosmology Applications
• Halo finding and halo center finding algorithms were written using

PISTON, one of VTK-m’s constituent projects
• On Titan, this enabled centers to be found on the GPU ~50x

faster than using the pre-existing algorithms on the CPU (with
one rank per node)

• This work allowed halo analysis to be completed on all time steps
of a very large 81923 particle data set across 16,384 nodes on
Titan for which analysis using the existing CPU algorithms was
not feasible

• The portability of VTK-m allowed us to run the same code on an
Intel Xeon Phi

• This is the first time that the c-M relation has been measured from
a single simulation volume over such an extended mass range

• To appear in the Astrophysical Journal: “The Q Continuum
Simulation: Harnessing the Power of GPU Accelerated
Supercomputers”.

Concentration-mass relation over the
full mass range covered by the Q
Continuum simulation at redshift z = 0
(points with error bars) and the
predictions from various groups. The
yellow shaded region shows the
intrinsic scatter. All predictions and
the simulation results are well within
that scatter.

VTK-m Data Model Functional programming paradigm

VTK-m Isosurface Performance (preliminary results)

In-situ Applications
• Tightly coupled in-situ with EAVL, one of VTK-m’s constituent

projects
• Efficient in-situ visualization and analysis

• Light weight, zero-dependency library
• Zero-copy references to host simulation
• Heterogeneous memory support for

accelerators
• Flexible data model supports non-physical

data types
• Example: scientific and performance visualization,

tightly coupled EAVL with SciDAC Xolotl plasma
surface simulation

• Loosely coupled in-situ with EAVL
• Application de-coupled from visualization using ADIOS

and Data Spaces
• EAVL plug-in reads data from staging nodes
• System nodes running EAVL perform visualization

operations and rendering
• Example: field and particle data, EAVL in-situ with XGC

SciDAC simulation via ADIOS and Data Spaces

EAVL in-situ with Xolotl
EAVL in-situ with XGC

Hardware-Agnostic Ray Tracing
• VTK-m's hardware-agnostic approach gives comparable

performance to hardware-specific approaches
• Since VTK-m is implemented in a hardware-agnostic way, we

wanted to understand the corresponding sacrifice in performance
• We implemented a ray-traced renderer, which is computationally

intensive and uses many unstructured memory accesses
• We then compared VTK-m's performance to NVIDIA's OptiX and

Intel's Embree, two "guaranteed not to exceed" ray-tracing
standards that are developed by teams of professionals

• Our study found that VTK-m performance was always within a
factor of two of industry standards, and even outperformed them
in some cases

• We concluded that VTK-m hardware-agnostic approach is viable -
our single implementation performed comparably to multiple
hardware-specific implementations

Advanced Visualization Usability Study
• Implementation of both ray-casting and cell projection volume

rendering algorithms using Dax, one of VTK-m’s constituent
projects

• Complied for CUDA, OpenMP, and Intel’s Thread Building Blocks
• Comparative performance study on NVIDIA Titan X GPU, Intel

Xeon, and Intel Xeon Phi
• VTK-m implementation in progress

Ray-traced rendering of
6.2M triangles
generated from
SPECFEM3D. The
data represents wave
speed perturbations
measured by
seismograms and was
provided by Oak Ridge
National Laboratory.

Acknowledgement
This material is based upon work supported by the U.S. Department
of Energy, Office of Science, Office of Advanced Scientific
Computing Research, Scientific Discovery through Advanced
Computing (SciDAC) program under the Institute of Scalable Data
Management, Analysis and Visualization (SDAV).

Volume rendering of type Ia
supernova simulation data set
using ray-casting. Cell projection
implementation using data parallel
primitives renders comparable
image in near sub-second times.

LA-UR-15-25242

VTK-m infrastructure and use cases, with contributions from Dax, EAVL, and
PISTON predecessor projects

https://gitlab.kitware.com/vtk/vtk-m
http://m.vtk.org/

	Slide Number 1

