The Scalable Data Management, Analysis, and Visualization Institute http://sdav-scidac.org

In situ Visualization and Analysis of Particle Accelerator Simulations using WarpVislt

Burlen Loring*, Jean-Luc Vay^{†‡}, David Grote^{†, §}, Remi Lehe[†], Stepan Bulanov[†], E. Wes Bethel^{*}, and Oliver Rübel^{*}

*Computational Research Division, LBNL | *Accelerator Technology and Applied Physics Division, LBNL | *Members of ComPASS Partnership

1) Science Problem

The available I/O bandwidth and data storage capabilities are decreasing relative to computation, limiting the amount of data that can be saved for post-process analysis. To enable particle-in-cell (PIC) simulations using Warp [1] to: i) efficiently utilize high-performance computing more resources, ii) perform analysis at high temporal resolution, and to iii) enable knowledge discovery from large-scale simulations, we are implementing a three-fold strategy:

1. Couple general-purpose, state-of-the-art in situ visualization technology using Vislt [2] with Warp to make new advanced analysis capabilities accessible to Warp and to enable in situ processing of the complete data in parallel, which is not possible using the current approach based on OpenDX (see Fig 1.1).

2. Integrate in situ query capabilities with Warp and the

visualization to enable identification of data features and

4) In situ Visualization and Analysis of Laser-driven Ion **Accelerator Simulations**

The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many radiography, deflectometry, applications: cancer therapy, injection into conventional accelerators, fast ignition, isochoric heating of matter, positron emission tomography, nuclear physics among others.

Warp libsim Warp libsim Warp Warp

Send commands Gather simulation data -----> Send metadata and images or geometry

b)

'islt

Fig. 1.1 In situ visualization using a) Warp+OpenDX and b) Warp+VisIt. VisIt processes the simulation data in parallel and in place, enabling large-scale visualization of the complete data while reducing communication cost.

data subsets of interest, reducing the amount of data that needs to be visualized and stored. 3. Integrate high-performance I/O libraries with Warp to improve parallel I/O performance.

2) WarpVislt: Overview

2.1) Controlling the Simulation and Visualization

Monitoring Mode

The simulation runs independently while the user connects periodically to the simulation via the visualization to check results and perform in situ analysis.

Batch Mode

The simulation and visualization are executed in concert without external user control.

High-resolution 3-D simulations are needed to resolve the short wavelength physics of a solid density plasma at scale. In situ visualization and data analysis provide key insight into the dynamics of the electrons and ions acceleration processes.

Fig. 4.1 Illustration of the basic ion-acceleration process at the Directed **Coulomb Explosion Regime**:

- The laser pulse accelerates the target by radiation pressure and
- Removes most electrons from the target and in turn the

• Moving charge separation field boosts the protons. Best designs use high-Z/low-Z layer foils of solid density.

> ← Fig. 4.2 Visualization of the kinetic energy for the three main particle species: a) carbon (top left), b) proton (top right), and electrons (bottom left) using a heat-map color scale (blue=low, green=medium, red=high).

The bottom right figure shows a comparative visualization of the kinetic energy of all three particle species illustrating the joint evolution of the different particle species.

√Fig. 4.3 Joint visualization of the carbon (green), proton (red), and electron (blue) particles highlighting

Interactive Mode The user controls the simulation from the visualization GUI or Python shell while exploring the simulation data as it is being generated.

Shell Mode The user controls the simulation and the visualization directly from the simulation shell.

Execute the simulation and *in situ* visualization

and analysis on remote HPC system

2.2) In Situ Remote Data Analysis and Visualization

Run the Vislt viewer locally to monitor and interact with the visualization and simulation

2.3) Other Advanced features

Multiple Field and Species Support: WarpVislt supports introspection of available particle species and fields to ease interaction with dynamic, solver- and model-depended collections of particle species, fields, and variables.

← Fig. 4.4 Visualization of the particle density for the three main particle species: a) carbon (purple, top left), b) (cyan, top right), and c) proton electrons (red, bottom left) using an intensity color scale.

right figure shows a of the comparative visualization density of all three particle particle species

The visualizations shown in Fig. 4.2 to 4.4 where generated in situ by WarpVisIt on the 2.39PF/s Cray XC30

supercomputer system Edison at

NERSC using 2400 cores.

In situ Filtering: WarpVislt supports filtered species, enabling users to dynamically expose derived particle species to the visualization, enabling i) flexible in situ analysis of particle feature, ii) analysis and collection of data subsets of interest at higher temporal frequency, and iii) reduced cost for subsequent visualization and I/O.

Yee-cell: WarpVislt supports accurate visualization of Yee-cell meshes used for simulation via dedicated re-interpolation methods.

Custom I/O: WarpVisIt adds support for VTK I/O and eases the integration of new I/O routines

3) Public Release

We released WarpVisIt to the public in June 2015: *https://bitbucket.org/berkeleylab/warpvisit*

[1] B. Whitlock, J. M. Favre, and J. S. Meredith. "Parallel in situ coupling of simulation with a fully featured visualization system." Proceedings of the 11th Eurographics conference on Parallel Graphics and Visualization, (2011) [2] J.-L. Vay, D. P. Grote, R. H. Cohen, and A. Friedman, "Novel methods in the Particle-In-Cell accelerator Code-Framework Warp," IOP Computational Science & Discovery, 5 014019 (2012) [3] S. S. Bulanov, D. W. Litzenberg, K. Krushelnick, A. Maksimchuk, "Directed Coulomb Explosion regime of ion acceleration from mass limited targets by linearly and circularly polarized laser pulses," arXiv:1007.3963, (2010)

