
Motivation Master Serialization

Features Results

struct Point { float x,y,z; };
struct Tet { int verts [4]; int tets [4]; };

struct Tessellation
{

std::vector <Point > points;
std::vector <Tet > tets;

};

template <>
struct Serialization <Tessellation >
{

void save(BinaryBuffer& bb , const Tessellation& t)
{ save(bb , t.points ); save(bb , t.tets); }

void load(BinaryBuffer& bb , Tessellation& t)
{ load(bb , t.points ); load(bb , t.tets); }

};

How serialization works:

•By default, copies the contents of the object;

• Specialize diy::Serialization<T> to create custom serialization for a class;

• Serializations provided for many STL containers, e.g., std::vector, std::map,
std::set, etc.

Serialization mechanism central to DIY2. Used both for

• enqueue/dequeue communication mechanism;

• serializing individual blocks to move in and out of core.

DIY2: data parallel out-of-core library
Dmitriy Morozov
dmorozov@lbl.gov

Tom Peterka
tpeterka@mcs.anl.gov

Separate domain decomposition and block-to-process assignment:

diy:: ContiguousAssigner assigner(world.size(), nblocks );

diy:: RegularDecomposer <Bounds >:: BoolVector share_face;
diy:: RegularDecomposer <Bounds >:: BoolVector wrap(3, true);
diy:: RegularDecomposer <Bounds >:: CoordinateVector ghosts(3, 1);
diy:: decompose(3, rank , domain , assigner , create ,

share_face , wrap , ghosts );

std:: string prefix = "./DIY.XXXXXX";
diy:: FileStorage storage(prefix );
diy:: Master master(world , // MPI communicator

&create_block ,
&destroy_block ,
mem_blocks , // blocks to keep in memory
num_threads , // number of threads to use
&storage , // external storage
&save_block , // block serialization
&load_block );

...

master.foreach (& delaunay );
master.exchange ();

void delaunay(void* b_, const diy:: Master :: ProxyWithLink& cp , void*)
{

for (size_t i = 0; i < in.size (); i++)
{

vector <Point > pts;
cp.dequeue(in[i], pts);
// insert points into the tessellation

}

// do work

for (size_t j = 0; j < out.size (); j++)
cp.enqueue(out[j], outgoing_points[j]);

}

Master is the core of the library. It owns blocks, moves them and the queues in and
out of core, calls back the user’s computation routines.

Decompositions and neighborhoods:

• regular decomposition

(Performance) portability:

• to use multiple threads per process;

• to vary the amount of memory usage.

• kd-tree decomposition

Global communication (+ partners):

change a runtime parameter}

• k-ary swap-reduce()

• k-ary merge-reduce()

Out-of-core processing:

• a lot of analysis is memory-bound, but simulations often need all the available
memory (problem for in situ analysis);

• great deal of similarity between parallel and IO-efficient algorithms
(both value locality and seek to minimize data movement);

• next generation supercomputers, e.g., Cori at NERSC, will have burst buffers
(already a testbed on Edison).

Abstractions matter: think blocks, not processes

• block is the unit of decomposition; flexible size, shape, and placement;

• block level addressing: user should worry about algorithmic logic, not
implementation details;

• decompose problem into blocks, both local and global operations at block level.

Simple things should be simple: examples include

• exchanging particles efficiently using swap-reduce;

• partitioning the data using a kd-tree;

• sorting the data.

Performance portability to emerging architectures:

• Intel Knights Landing (manycore) processor will be native on Cori;

•MPI+threading will be essential;

• threading should be effortless in the data parallel setting.

• no need to deal with MPI datatypes

• no built-in object tracking (making
serialization fast), but can easily
implement it manually
(e.g., to serialize a graph)

(can vary k between rounds)

(can vary k between rounds)

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

0 4 8 12round 2:

round 1:

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

round 2:

round 1:

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

in and out come from the proxy cp

Merge-reduce Swap-reduce

MPI Reduce and MPI Reduce scatter vs DIY2 merge- and swap-reductions, respectively.

Neighborhood exchange: DIY1 vs DIY2.
20 bytes per item.

Sorting using DIY1 vs DIY2.
Legend records the number of integers per processor.

Density of 5123 particles estimated onto a 10243 grid with different threading options.
interblock – completely automated threading by DIY2.
intrablock – manual OpenMP threading.

Tessellation Density

Out of core

Computation of a signed distance function to a material, scanned
at ALS, on a 25602×2160 grid, broken up into 1024 blocks, using
128 processors and different methods for block storage (all blocks
in memory; all but one block per process stored on NVRAM
(burst buffers) or on global scratch). After computing the local
distances within the block, the sources at boundaries are ex-
changed and distances are updated repeatedly, until no changes
occur. The similarity in the running times between memory
and flash is thanks to an optimization: blocks with no incoming
queues cannot update and so are skipped.

Computation of the Delaunay tessellation of 10243 points, di-
vided into 4096 blocks, using 32 processors. It takes 8.3 seconds
to compute the tessellation using 4096 processors.

(8.3 · 4096/32 = 1062)

352

41

90

10

serialized automatically
(binary copy)}


