~

fFrfrrr1fdrq o

Dmitriy Morozov
dmorozov@lbl.gov

BERKELEY LAB

Motivation Master

Abstractions matter: think blocks, not processes

* block is the unit of decomposition; flexible size, shape, and placement;:
std::string prefix = "./DIY.XXXXXX";
diy::FileStorage storage(prefix);
diy::Master master (world, //
&create_block,
&ddestroy_block,

* block level addressing: user should worry about algorithmic logic, not
implementation details;

* decompose problem into blocks, both local and global operations at block level.

Simple things should be simple: examples include mem_blocks, //
. h .] T | . . num_threads, //

exchanging particles efliciently using swap-reduce; &storage /)
* partitioning the data using a kd-tree; &save_block, //

&load_block);
* sorting the data. 03 ock)

Performance portability to emerging architectures: naster.foreach(&delaunay);

* Intel Knights Landing (manycore) processor will be native on Cori; master.exchange ();

* MPI+threading will be essential;

void delaunay(voidx* b_,

* threading should be effortless in the data parallel setting. {

for (size_t 1 = 0;

Out-of-core processing: {
o , , , vector<Point> pts;
*a lot of analysis is memory-bound, but simulations often need all the available cp.dequeue (in[i],

memory (problem for in situ analysis); // insert points

1 < in.size(); 1++)

pts);
into the tessellation

* oreat deal of similarity between parallel and 10-efficient algorithms

(both value locality and seek to minimize data movement); // do work

* next generation supercomputers, e.g.. Cori at NERSC, will have burst buffers

(already a testbed on Edison). J++)

outgoing_points[j]);

for (size_t j = 0; j < out.size();
cp.enqueue (out[j],

MPI communicator

blocks to keep in memory
number of threads to use
external storage

block serialization

A DIY2: data parallel out-of-core library

Tom Peterka

const diy::Master::ProxyWithLink& cp,

in and out come from the proxy cp

J

Decompositions and neighborhoods: Global communication (4 partners): 10! 100 f——————————— .

o . §] - A ——A—a— A & A

o reglﬂ&f decomp081t10n °]{j-ary Swap—r‘educe () (can vary k between rounds) i M : G " e
- > - > 0 W : 10-1 L ——— o ° |
0 1 4 5! 8 9 12 13 = - 1 SR o—— o o 0 o -
\ A / round 2: = = = = § i M . § - O/_O__O___OM :
< 1 NIE "6 || 7 0] 1 " || I | & Z ; - R
I - > - »5 - EM : 10—2 /o/o :
/ v \ M | = ° - ="
—2 L = -
8 9 12 13 0 - € o o o o -

round 1: g 16 32 64 128 256 512 8 16 32 64 128 256 512

10 11 14 15 Number of processors Number of processors

Merge-reduce

* kd-tree decomposition

(Performance) portability:

*to use multiple threads per process;

*to vary the amount of memory usage.

Separate domain decomposition and block-to-process assignment: .| - DIY2 —g— -

diy::ContiguousAssigner assigner (world.size(), nblocks); — - o3 =T TR T T T,
Number of processors Number of items

diy::RegularDecomposer <Bounds>::BoolVector share_face; DIVL: 64 —0 956 —o 1K —o

diy::RegularDecomposer <Bounds>::BoolVector wrap (3, true); DIY2: 64 —o— 256 —@— 1K —o— Neighborhood exchange: DIY1 vs DIY2.

diy::RegularDecomposer <Bounds>::CoordinateVector ghosts (3, 1); AU lyies e isen

diy::decompose(3, rank, domain, assigner, create,

share_face, wrap, ghosts);

* k-ary merge-reduce()

(can vary k between rounds)

} change a runtime parameter

10~1 k

Seconds

Swap-reduce

102 =
10t =

109 =

90

° o: * MPI: 512 KB —0— 2 MB —3— 8 MB —o— 32 MB —o— 128 MB —a—
° DIY2: 512 KB —e— 2 MB —— 8 MB —o— 32 MB —o— 128 MB —a—
* round 2: 0 |e 4 8 |le— 12
(]
. e ! ° MPI_Reduce and MPI_Reduce_scatter vs DIY2 merge- and swap-reductions, respectively.
o
o . ° 0 1 4 5 8 9 12 e+ 13
@
. ® t. round 1: ¥ E
2 3 6 7 10 11 14 15 . 359

DIY1 —e— -

41

Master is the core of the library. It owns blocks, moves them and the queues in and
out of core, calls back the user’s computation routines.

void=*)

Seconds

tpeterka@mcs.anl.gov

Arg

Serialization

* enqueue/dequeue communication mechanism;

Serialization mechanism central to DIY2. Used both for

* serializing individual blocks to move in and out of core.

How serialization works:

* By default, copies the contents of the object;

std: :set, etc.

struct Point { float x,y,z; };
struct Tet { int verts[4];

struct Tessellation

{

std::vector<Point>
std::vector<Tet>

points;
tets;
15

template<>

int tets[4];

struct Serialization<Tessellation>

1

onne

NATIONAL

LABORATORY

* Specialize diy: :Serialization<T> to create custom serialization for a class;

* Serializations provided for many STL containers, e.g., std: :vector, std::map,

j

serialized automatically
(binary copy)

* no need to deal with MPI datatypes

* no built-in object tracking (making
serialization fast), but can easily
implement it manually
(e.g., to serialize a graph)

{
vold save(BinaryBuffer& bb, const Tessellation& t)
{ save(bb, t.points); save(bb, t.tets); 3}
vold load(BinaryBuffer& bb, Tessellation& t)
{ load(bb, t.points); load(bb, t.tets); 3}
I
o Out of core
i 102
- 3,000 }
<
:
Ll o 2 2,000 |
10" | . E =
[none —@— (%%
none —@— | interblock —m—
: interblock —m— : intrablock —o— 1 1,O0O 658.5 792
2L'I')6 5i2 10I24 20I48 40I96 81I92 256 5i2 1OI24 20I48 4OI96 81I92 J I
Number of processors Number of processors 0
Memory Flash Global

Tessellation Density

Density of 512° particles estimated onto a 1024° grid with different threading options.
interblock — completely automated threading by DIY2.
intrablock — manual OpenMP threading.

103

Seconds

101 - 0O —0

8 32 128 512
Number of processors

DIY1l: 4M —o— 16M —0— 64M —o— 256M —o—
DIY2: 4M —e— 16M —8— 64M —o— 256 M —o—

Sorting using DIY1 vs DIY?2.
Legend records the number of integers per processor.

Computation of a signed distance function to a material, scanned
at ALS, on a 25602 x 2160 grid, broken up into 1024 blocks, using
128 processors and different methods for block storage (all blocks
in memory; all but one block per process stored on NVRAM
(burst buffers) or on global scratch). After computing the local
distances within the block, the sources at boundaries are ex-
changed and distances are updated repeatedly, until no changes
occur. The similarity in the running times between memory
and flash is thanks to an optimization: blocks with no incoming
queues cannot update and so are skipped.

104

1.5
12,793
wn
E
@) 1
(&}
()
N
0.5 | 4,007
O 1 I
Flash Global

Computation of the Delaunay tessellation of 1024° points, di-
vided into 4096 blocks, using 32 processors. It takes 8.3 seconds

to compute the tessellation using 4096 processors.
(8.3 - 4096/32 = 1062)

