
The Scalable Data Management, Analysis, and Visualization Institute http://sdav-scidac.org

Progress readying VisIt for VTK-m
Eric Brugger, Cameron Christensen, Jeremy Meredith, Kathleen Biagas, Kevin Griffin, Cyrus Harrison, Mark Miller

What is our approach?

Benefits of an incremental approach

Current statusSoftware engineering details

• We completed all the changes to support multiple toolkits within the filter
infrastructure.

• We have completed the EAVL toolkit integration into the filter
infrastructure and implemented a filter. This was released in VisIt 2.8.1.

• We have prototyped the Dax toolkit integration into the filter infrastructure
and implemented a filter. This will be released in a VisIt 2.9.1.

• The user can select at runtime which toolkit to use.

We will change VisIt to base its processing and rendering
infrastructure on VTK-m. We will take an incremental approach using
the existing multicore and manycore toolkits to gain experience with
such toolkits and prepare ourselves for a quick transition once VTK-m
is ready.

Software infrastructure changes

• We enhanced our avtDataRepresentation class to handle other dataset
types

• We modified all our filters to operate on avtDataRepresentations
• We added into avtDataRepresentation the ability to convert between VTK

datasets and toolkit datasets automatically
• These are zero-copy in most situations

• We started to modify the filters to use the existing toolkits

An example mixed filter pipeline using EAVL

Software infrastructure changes completed

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC LLNL-POST-667660

avtMapper
avtDatabase avtIsosurface

Filter

vtkDataSet

avtSlice
Filter

eavlDataSet eavlDataSet

EAVL Filter EAVL/VTK Filter

GetDataEAVL();*
// Perform operation
// using EAVL

if (DType() == VTK)
GetDataVTK();
DoSliceVTK();

else if (DType() == EAVL)
GetDataEAVL();
DoSliceEAVL();

*Converts VTK to EAVL

*Converts EAVL to VTK

GetDataVTK();*

• It will give us experience with these toolkits so that we are ready to make
a quick transition once VTK-m is ready

• It will serve as a real world test bed for these toolkits
• We can provide feedback to the VTK-m developers based on our

experiences with these toolkits
• We can make sure that VTK-m will meet the needs of VisIt when it is

delivered
• It will allow us to deliver incremental functionality to the users over time

Integration overview

Phase 1: Form abstractions layers for the portions of VisIt that will be
impacted by the transition to operate independently of any toolkit. These
include the data processing filters and the rendering infrastructure.
• Enhance our data set representation to internally support an arbitrary

number of other data set abstractions
• Enhance all of our filters so that they can be implemented using one or

more toolkits
• Enhance our execution pipeline to support pipelines consisting of filters

that are implemented using different toolkits
• Enhance our rendering infrastructure to support multiple underlying

rendering infrastructures.
Phase 2: Prototype a set of filters that are representative of all the filters
with multiple toolkits. We will prototype the filters with the following toolkits.
• Dax Toolkit – The Data Analysis at Extreme toolkit
• EAVL – The Extreme-scale Analysis and Visualization Library
• PISTON – A Portable Cross-Platform Framework for Data-Parallel

Visualization
• Kokkos – Enabling performance portability across manycore architectures
• RAJA – A lightweight mechanism for parallelizing loops across manycore

architectures
Phase 3: Prototype using the EAVL ray caster in our rendering
infrastructure
Phase 4: Provide feedback to the VTK-m developers from our prototyping
efforts
Phase 5: Incrementally convert the VisIt filters to VTK-m as functionality
becomes available

An example pipeline using Dax

avtDatabase avtIsosurfaceFilter

vtkDataSet daxDataSet

avtMapper

Dax Filter

GetDataDax();*
// Perform operation
// using Dax

*Converts VTK to Dax

*Converts Dax to VTK

GetDataVTK();*

The VisIt Preferences window
for selecting the toolkit

A contour surface generated by Dax and EAVL

Prototype an in situ library using EAVL

Finish implementing the contour filter using all of the toolkits and
frameworks and provide feedback to the VTK-m developers on our
experiences.

Future plans

Data description
• C++

Control
• C++
• Python
• Lua

Analysis
And

Visualization
Pipeline
w/EAVL

• Graphics
windows

• Image files
• Data files

	Slide Number 1

