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Abstract—For the last five years, computing power has grown
at an unprecedented rate and it is projected that High End
Computing systems reach exascale by 2018. These systems
enable application scientist to simulate their science with great
complexities and consequently, produce a large volume of data
with highly complex organizations. Such data imposes a grand
challenge to conventional storage systems for the need of efficient
I/O solutions during both the simulation runtime and data post-
processing phases. Current I/O techniques that have pushed the
write performance close to the system peak usually overlook the
read side of the problem. With the mounting needs of scientific
discovery, the read performance for the large-scale scientific
application actually has becomes a critical issue for the HPC
community, In this study, we propose SMART-IO, a system-
aware two-level data organization framework that can organize
data blocks of multidimensional scientific data efficiently through
three elastic strategies under the governance of an Optimized
Chunking model. This framework can dynamically adapt data
organization based on simulation output and underlying storage
systems, thereby enabling efficient scientific analytics. Our ex-
perimental results demonstrate that Smart-IO achieves up to 72
times speedup for mission critical combustion simulation S3D,
compared to the logically contiguous data layout.

I. INTRODUCTION

The increasing growth of leadership computing capabilities,
in terms of both system complexity and computational power,
has enabled scientific applications to solve complex scientific
problems at large scale. Domain scientists, such as high
energy physics, climate, chemistry, etc, are leveraging large-
scale systems for intensive scientific investigation, pushing
the progressing of the human society. Such phenomenon is
accompanied by a gigantic volume of complex scientific data
produced, driving the impetus for data intensive computing as
a very significant factor in scientific computing.

Many efforts, both past and present, have heavily focused
on improving the I/O performance by studying the output
side of the problem, but the read performance of scientific
applications on large-scale systems has not received the same
level of attention, despite its importance to drive scientific
insight through scientific simulation, analysis workflows and
visualization. Worse yet, current I/O techniques often overlook
the need of good read performance and, as a result, have
a substantial negative impact on the read performance. [8]
reported that nearly 90% of time was spent on I/O during
the visualization workflows. The major reason is the discrep-

ancy between the physical limitations of magnetic storage
and the common access patterns of scientific applications.
Physical disks in most HPC systems are optimized for one-
dimensional large sequential blocks of data while scientific
datasets are normally multidimensional. Data elements from a
multidimensional scientific dataset are usually stored to a one
dimensional physical disk space based on the order of one
primary dimension (fast dimension). This results in noncon-
tiguous placement of data elements on secondary and tertiary
dimensions (slow dimensions), as shown in Figure 1. When
reading the data elements in the order of higher dimensions,
the performance degrades significantly due to the expense of
coping with noncontiguity with extra disk seeks and retrieving
extra data between needed segments. In addition, the peak
aggregated bandwidth of parallel storage systems cannot be
effectively utilized when only a subset of the data is requested.
This occurs because the requested data is concentrated on a
very small number of storage targets with current data place-
ment strategies, causing a substantial performance degradation
and limited scalability. Without optimizing data organizations,
simply using new hardware such as SSDs cannot maximize
concurrency and therefore peak bandwidth.
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Fig. 1: Multidimensional Data and its Disk Organization

The complexity of the scientific data imposes another chal-
lenge on efficient I/O. One simulation output is normally a
collection of many multidimensional variables with distinct
characteristics. For example, one variable can be 100GB while
another variable is only 10MB. Such distinct variables pose
different I/O challenges. It is difficult to achieve the optimal
performance by applying a uniform data organization strategy.
Therefore, a technique that can dynamically organize each
variable to match with the storage system is desired.

To address the aforementioned issues, we propose a two-
level data organization scheme named Smart-IO. The first level
focuses on the construction of ideal sized data chunks. A
Space Filling Curve based data placement strategy is used to



ensure near-maximum data concurrency at the second level.
Smart-IO has been implemented and evaluated as part of the
ADaptive I/O System (ADIOS) framework [1] developed by
Oak Ridge National Laboratory (ORNL). We use ADIOS to
leverage its penetration amongst existing scientific applications
and to exploit the ADIOS file format (BP) as the format for
Smart-IO data. Our experimental evaluation was conducted
on the Jaguar Cray XT5 [2] supercomputer at ORNL to
demonstrate that Smart-IO is able to provide both good
balance and high performance for challenging access patterns
in scientific applications. In our test case for S3D we obtain
a 72x speedup to the planar read compared to the logically
contiguous data layout, while introducing negligible overhead
in data generation.

II. BACKGROUND AND RELATED WORK

A. Background

A scientific simulation typical consists of three major
components, namely computation, I/O (checkpoint-restart) and
data post-processing. One combination of computation and
I/O is called a time step. As shown in Figure 2, a sim-
ulation runtime normally includes multiple timesteps. After
the simulation finishes, data post-processing, such as data
analytics and visualization, is performed intensively on the
simulation outputs for scientific discoveries. As a major por-
tion of application turnaround time, I/O performance plays
a significant role in determining simulation productivity and
energy efficiency. This study focuses on data post-processing
and seeks for strategy to enable fast read.
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Fig. 2: Major Components of Scientific Computing
In order to improve the read performance, a thorough

understanding of application access patterns is crucial. Fig-
ure 3 shows a visualization result from a S3D [6] combustion
simulation output. Such output is normally organized as mul-
tidimensional variable, as shown in Figure 4(a). While the
checkpoint-restart usually reads entire variables, the majority
of the data analytics are performed on a subset of the data,
such as an arbitrary orthogonal full plane (Figure 4(c)), or an
arbitrary orthogonal subvolume (Figure 4(b)) More complex
reading patterns can be described through a composition of
these three patterns, or through minor variations.

Among these patterns, significant performance variations
are observed for the query on a subset of data, particularly
on an orthogonal plane. Such phenomenon is often referred
as dimension dependency [25], where the read performance
depends on the dimensions of the query, rather than the data
size of the query.

B. Related Work

Improving I/O performance on large scale systems has been
an active research topic in HPC. While much efforts have

Fig. 3: A S3D Combustion Simulation Result
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Fig. 4: Scientific Data Organization and Common Access
Patters (k: fastest dimension)

been focused on write side of issue. Read performance has
gained more attention lately. [19] and [14] evaluated and
discussed the performance of many of the reading patterns for
extreme scale science applications. A number of studies [12],
[7], [28], [27] have explored data staging and caching to either
bring data a priori, or buffer data temporarily, respectively,
in anticipation of performance savings of future data access.
To speed up read performance, many multidimensional array
declustering algorithms [18], [20], [4], [5] were proposed to
improve common access patterns of a multidimensional array.
Schlosser et al. [23] explored the chunk placement strategy at
the disk level. More efficient access was observed by putting
data chunks on the adjacent disk blocks. Deshpande et al. [9]
and Fan et al. [10] examined how read performance can be
further improved by chunking and proper caching. However,
the future access pattern for scientific application varies and
may not be known a priori. A data layout should accommodate
any access pattern. Chunking can be further combined with
partitioning, a.k.a subchunking, which further decomposes the
data chunk. In [21], Sarawagi and Stonebraker gave an initial
guidance of what is the proper way for chunking. Then Sawires
et al. [22] and Sorouch et al. [24] proposed different multilevel
chunking strategy to further improve the performance for
range queries on a multidimensional array. Otoo et al. [17]
mathematically calculated the optimal size of subchunks from
a combination of system parameters. However, the study was
based on very limited resource, and did not reflect the reality
on modern petascale systems.

III. OPTIMIZED CHUNKING MODEL AND SMART-IO
APPROACH

Smart-IO uses a combination of four techniques to speed
up scientific data analytics: Optimized Chunking model,
Hierarchical Spatial Aggregation (HSA), Dynamic Sub-
chunking (DYS) and Space Filling Curve (SFC) reordering.



Figure 5 shows software architecture of Smart-IO and its
components.
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Fig. 5: Two-Level Data Organization of Smart-IO
At the high level, Smart-IO sits between the application

layer and the storage system. It provides a two-level data
organization. The first level is the intra-chunk level. This level
focuses on building the data chunks into Optimized Size, which
is derived from our Optimized Chunking model. It strikes
for a good balance between the data transfer efficiency and
processing overhead through specific system parameters. For
data chunks that are not satisfying the Optimized Size, cor-
responding reconstruction is performed by using Hierarchical
Spatial Aggregation or Dynamic Subchunking. At the second
level, which is the chunk level, a default SFC (Space Filling
Curve)-based reordering is used to distribute data chunks
among storage devices to ensure the close-to-maximum data
concurrency from the storage system. Under such organization,
a data chunk has three paths moving towards the storage
system. The rest of this section describes the design of these
components in detail.

A. Optimized Chunking Model

The I/O performance on a large-scale system is influ-
enced by many factors, such as the communication cost, the
number of writers, the size of the chunks, the number of
storage targets, etc. As mentioned earlier, for a chunk based
data organization, the size of chunks plays a critical role
in determining the read performance. Optimized Chunking
model is to theoretically investigate the ideal chunk size for a
multidimensional data on a HPC system.

Intuitively there is a sweet spot for the chunk size where
the overhead on the seek operation (occurring when we
attempt to read too many small chunks) and redundant data
retrieval (occurring when we attempt to read a few large
chunks) achieves the best balance for the slow dimension.
Such a sweet spot is where the optimal read performance
can be expected. Significantly varying the chunk size towards
either direction results in performance degradation as the I/O
becomes burdened by overhead or dominated by disk seeks.
Given a 3-D variable as shown in Figure 4(a), we show the

performance for planar read over the chunk size in Figure 6,
where Nocs is the sweet spot.
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Fig. 6: The Read Time vs. the Chunk Size

Because dividing large chunks breaks the contiguity on the
fast dimension, the read performance degrades proportionally
with the decreasing chunk size. This results in two scenarios as
shown in Figure 6, represented by two orange straight lines.
In view of the general performance on all the dimensions,
the fastest total read time may not incur at the point OCS
but still within the Optimized Region of OCS’ and OCS”.
The performance difference inside such region is within a
small margin. As this study is aimed at finding an optimized
chunk size, we use our solution of OCS as the guidance for
data organization. Our experimental results in Section IV
demonstrate that this value provides satisfactory performance.

After a series mathematical derivation (the detail of the
derivation can be found in [26], we have the Optimized
Chunks Size:

OCS = BWio × (CC + Ts)× α (1)

where BWi/o is the I/O bandwidth, Ts is the time unit for
each seek operation, and CC is the communication cost unit.
α represents the interference factor on the large-scale system.
However, in order to determine this factor, a thorough study
of the system is needed, which is not the focus of this work.
For a simplified analytical model, the external and internal
interferences to the storage system are ignored. Such modeling
can help pinpoint a solution that enables near-optimal I/O
performance tuning in a timely fashion.

B. Hierarchical Spatial Aggregation

Even though scientific applications normally generate a
gigantic amount of data, it is not rare for an output dataset
contains one or few small variables. A small variable is
turned into even smaller pieces after domain decomposition.
A significant number of seeks and memory operations are
required for common access patterns, correspondingly leading
to limited read performance. Aggregation is a technique that
is widely used to converge small pieces of data. However,
simply concatenating small chunks does not solve the problem.
Because the number of disk and memory operations remains
the same for reading. Thus, we design a Hierarchical Spatial
Aggregation strategy which aggregates data chunks in a way



that their spatial localities are reserved. For every spatially
adjacent 2n processes, an Aggregation Group (AG) is formed.
Within each AG, one process is selected as the aggregator
for one variable. If there is more than one variable to be
aggregated, the aggregator process will be selected in a round-
robin fashion within the same group for load balancing.
Figure 7 shows an example of aggregating one variable from
16 processes in a 2-D space. For every spatially adjacent 4
processes, an AG is formed, where process 0 is selected as the
first aggregator. If aggregated chunk size still does not fall into
the decision window for output, a second level of aggregation
will be performed among the first level aggregators who have
hold all the data of its group members in their memories. In
our case, process 0 is chosen as the second level aggregator.
After aggregation, only the aggregators will be writing out
the data. Figure 8 gives an example of data movement and
file output for 3 variables where var2 and var3 qualify for the
HSA. After HSA, only process 0 needs to write out var2 and
process 1 needs to write out var3. With HSA, the amount of
read requests and seek operations are reduced by level × 2n

times, where level is the level of HSA performed.

Fig. 7: Hierarchical Spatial Aggregation
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Fig. 8: Data Movement and File Output

C. Dynamic Subchunking

To optimize the read performance for large data chunk, we
design Dynamic Subchunking to divide each large data chunk
into subchunks of the optimized size. Subchunking the large
data chunk is important for applications that access data with
a high degree of locality.

However, how to decompose a chunk needs to be investi-
gated. Assume a 2D chunk is divided into 9 subchunks, there
are three common options for such decomposition. Figure 9(b)
to Figure 9(d) provide examples of these options. The red
arrow represents seek operation. The shaded region represents
the amount of data needs to be read in for a request on slow
dimensions. The row major is the fast dimension and column
major is the slow dimension.

(a) Original
Chunk

(b) Option 1 (c) option 2 (d) option 3

Fig. 9: Dynamic Subchunking

Comparing Figure 9(b) to Figure 9(d), subchunking on the
slow dimension does not benefit reading on that dimension but
introduce more seek operations. The amount of data overhead
is determined by the amount of subchunking on the fast dimen-
sion, which also is proportional to the performance degradation
on the fast dimension. Moreover, reading on the fast dimension
is typically more efficient because data is laid out contiguously.
For example, reading 120MB data on Jaguar is expected to
cost less than half second with one process. Assume read
time is proportional to the number of seeks, which normally
can be optimized by using more readers, subchunking into
9 subchunks along the fast dimension will increase the read
time to 4.5 second. This is still within the tolerable margin,
comparing to more than 60 seconds for read time on the slow
dimension as measured. Therefore, subchunking is performed
on all the dimensions except the slowest dimension for an n-
dimensional data chunk. The number of subchunks on each
dimension is balanced as much as possible.

D. Data Organization based on Space Filling Curve

When the Optimized Chunks are constructed, a Hilbert
Space Filling Curve [11] ordering is used to rearrange the
placement of data chunks on storage. Such design is to address
the data concurrency issues when a subset of data is to be
retrieved from only a small number of storage targets with
traditional linear placement strategy. For example, Figure 10
shows that the read requests in the column major is limited to
the bandwidth of only one storage node by linear placement.
To ensure that close-to-optimal concurrency is extracted from
the storage system for a variety of data access scenarios, we
apply a Hilbert curve-based placement strategy which shuffles
the placement of each data chunk along the Hilbert curve
ordering. As we can see in Figure 10, data concurrency is
improved three times on the slow dimension with Hilbert curve
reordering compared to the original linear placement strategy.
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IV. EXPERIMENTAL RESULTS

We have implemented Smart-IO within ADIOS, an I/O
middleware from ORNL that has been used by a number of
scientific applications [3], [13], [15], [28], [19] for optimized
I/O performance. By default ADIOS applys chunking for
multidimensional arrays. We evaluated Smart-IO on the Jaguar
supercomputers , currently the third fastest supercomputer in
the world [16] located at ORNL. Jaguar is equipped with
Spider (an installation of Lustre) for the storage subsystem,
In our experiments, we used the Widow 2 partition of Spider
which contains 336 storage targets (OSTs).

S3D [6] combustion simulation code from Sandia National
Laboratories is used in our experiments. S3D is a high-
fidelity, massively parallel solver for turbulent reacting flows.
It employs a 3-D domain decomposition to parallelize the
simulation space. We set up the output file to contain 4
variables (Var1, Var2, Var3 and Var4) with dinstict sizes.
Table I shows the data chunk size after the original 3-D domain
decomposition Based on the system parameters and Equa-
tion (1), we calculated the Optimized Chunk Size as 2.5MB
on Jaguar. The correspondent Smart-IO data reorganizations
performed on each chunk are also listed.

TABLE I: Test Variables (Elements/Size)

Var1 Var2 Var3 Var4
Chunk 2563/128MB 1283/16MB 643/2MB 323/256KB
Operations DYS/SFC DYS/SFC SFC HSA/SFC

The performance evaluation of Smart-IO is mainly focused
on the I/O performance of planar read, which is the most
common yet very challenging access pattern. We measure
the read performance among three types of data organization
strategies: Logically Contiguous (LC), the chunking strategy
of the original ADIOS (ORG), and two-level data organization
of Smart-IO (Smart). A separate test program is created to
evaluate the performance of logically contiguous data layout.

We evaluate the performance of reading one plane from all
the variables within the test file, a common scenario in data
analytics and visualization. The original data was written by
4,096 processes. The total read time are shown in Figrure 11.

As we can see, LC shows advantage only when data is
contiguous and smaller amount of readers are used. Due to
limited data concurrency on fast dimension, the performance
of LC degrades with more readers, as shown in Figure 11(a).
As observed in Figure 9, Smart-IO showed small performance
degradation compared to the original ADIOS on fast dimen-
sion due to subchunking on Var1 and Var2. However, by using
an OCS-based two-level data organization, Smart-IO is able
to outperform the original ADIOS significantly on the slow
dimensions. Overall, a maximum of 8 times and 43 times
speedup of total read time is achieved compared to the original
ADIOS and LC, respectively.

V. CONTRIBUTION

Our work addresses the read performance issue of large-
scale scientific applications. It focuses on providing a system-
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Fig. 11: Planar Read Performance of Multiple 3-D Variables
(k is the fastest dimension)

aware data organization that can effectively utilize the under-
lying storage system. We have designed and implemented a
light-weighted I/O scheme named Smart-IO. Smart-IO pro-
vides two levels of data organization to address the challenges
from a single storage target and the overall parallel storage
system. By optimizing the units for data chunks and utilizing
the Hilbert curve placement strategy, a much more balanced
and consistently good read performance is ensured for sci-
entific post-processing. Our experimental results on Jaguar
Supercomputer at ORNL demonstrate that Smart-IO is able
to achieve a maximum of 72 times and 22 times speedup to
the planar reads of S3D compared to the Logically Contiguous
and chunking data layout, respectively.

Smart-IO also begins to show real-world impact in scientific
computing field. As a part of ADIOS I/O framework, Smart-
IO is scheduled in the next release of ADIOS in the summer
of 2012, so that scientific applications can benefit from the
smart data organization bought by Smart-IO.
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