

Proactive Data Containers (PDC): An Object-centric Data Store for Large-scale Computing Systems

Suren Byna

Lawrence Berkeley National Lab (LBNL), Berkeley

Co-authors

Quincey Koziol (LBNL), Venkat Vishwanath (ANL), Jerome Soumagne (THG), Houjun Tang (LBNL), Kimmy Mu (THG), Bin Dong (LBNL), Richard Warren (THG), François Tessier (ANL, now @ CSCS), Teng Wang (LBNL), and Jialin Liu (LBNL)

Scalable data management – Three disrupting trends

Extreme parallelism

Massive Data

Hierarchical storage

Extreme parallelism

Summit, ORNL

Sierra, LLNL

Sunway Taihulight NSC Wuxi, China

Summit

- ~2.4M cores
- ~143 PFlops
- 9.7 MW

Sierra

- ~1.5M cores
- -~94 PFlops
- 7.4 MW

- ~10.6M cores
- -~93 PFlops
- 15 MW

Trinity, LANL

Cori, LBNL

Massive scientific data

- Simulations
 - Multi-physics (FLASH) 10 PB
 - Cosmology (NyX) 10 PB
 - Plasma physics (VPIC) 1 PB
- Experimental and observational data (EOD)
 - LHC (100 PB),
 - LSST (60 PB),
 - Genomics (100 TB to 1 PB)

Hierarchical and heterogeneous storage

Reading and writing data on scalable systems

- Types of parallel I/O
 - 1 writer/reader, 1 file
 - N writers/readers, N files (File-per-process)
 - N writers/readers, 1 file
 - M writers/readers, 1 file
 - Aggregators
 - Two-phase I/O
 - M aggregators, M files (file-per-aggregator)
 - Variations of this mode

Scalable Storage Systems: Challenges

Memory Node-local storage Shared burst buffer Disk-based storage Campaign storage Archival storage (HPSS)

tape)

Challenges

- POSIX-IO semantics hinder scalability and performance of file systems and IO software
- Multi-level hierarchy complicates data movement, especially if user has to be involved

Scalable data management requirements

Use case	Domain	Sim/EOD/ analysis	Data size	I/O Requirements
FLASH	High-energy density physics	Simulation	~1PB	Data transformations, scalable I/O interfaces, correlation among simulation
CMB / Planck	Easy interface Cosmology	Simulation, EOD/	uperioi	Performance Automatic data movement optimizations
DECam & LSST	Transpare	ent data m	nanag	ement ata transformations
E3SM	nformatio	n capture	and	management Data Organization and emicient data
TECA	Cililiate	Allalysis	~1000	שמום טוּשְמווּצְמְּהְטוֹן מווֹע פוווטוּפּוונ עמנמ movement
HipMer	Genomics	EOD/Analysis	~100TB	Scalable I/O interfaces, efficient and automatic data movement

Next Gen Storage – Proactive Data Containers (PDC)

PDC System – High-level Architecture

- Object-centric data access interface
 - Simple put, get interface
 - Array-based variable access
- Transparent data management
 - Data placement in storage hierarchy
 - Automatic data movement
- Information capture and management
 - Rich metadata
 - Connection of results and raw data with relationships

Object-centric PDC Interface

- Object-level interface
 - Create containers and objects
 - Add attributes
 - Put object
 - Get object
 - Delete object
- Array-specific interface
 - Create regions
 - Map regions in PDC objects
 - Lock
 - Release

J. Mu, J. Soumagne, et al., "A Transparent Server-managed Object Storage System for HPC", IEEE Cluster 2018

PDC Locus

Object-centric PDC Interface

- Object-level interface
 - Create containers and objects
 - Add attributes
 - Put object
 - Get object
 - Delete object
- Array-specific interface
 - Create regions
 - Map regions in PDC objects
 - Lock
 - Release

PDC Container

U.S. DEPARTMENT OF

Office of Science

Application

Transparent data movement in storage hierarchy

- Usage of compute resources for I/O
 - Shared mode Compute nodes are shared between applications and I/O services
 - Dedicated mode I/O services on separate nodes
- Transparent data movement by PDC servers
 - Apps map data buffers to objects and PDC servers place and manage data
 - Apps query for data objects using attributes
- Superior I/O performance

H. Tang, S. Byna, et al., "Toward Scalable and Asynchronous Object-centric Data Management for HPC", IEEE/ACM CCGrid 2018

Metadata management

- Flat name space
- Rich metadata
 - Pre-defined tags that includes provenance
 - User-defined tags for capturing relationships between data objects
- Distributed in memory metadata management
 - Distributed hash table and bloom filters used for faster access

H. Tang, S. Byna, et al., "SoMeta: Scalable Object-centric Metadata Management for High Performance Computing", to be presented at IEEE Cluster 2017

Conclusions

- Take home message
 - Scalable storage systems impacted by:
 - Extreme level of parallelism
 - Massive amounts of scientific data
 - Transforming storage architectures
 - Proactive data containers
 - Object-centric interfaces
 - Transparent data movement in storage hierarchies
 - Scalable management of extensive metadata

Thanks

https://sdm.lbl.gov/pdc

Contact: Suren Byna (SByna@lbl.gov)

