
DART: Distributed Adaptive Radix Tree
for Eicient Aix-based Keyword Search on HPC Systems

Wei Zhang
Texas Tech University

Lubbock, Texas
X-Spirit.zhang@ttu.edu

Houjun Tang
Lawrence Berkeley National Laboratory

Berkeley, California
htang4@lbl.gov

Suren Byna
Lawrence Berkeley National Laboratory

Berkeley, California
sbyna@lbl.gov

Yong Chen
Texas Tech University

Lubbock, Texas
yong.chen@ttu.edu

ABSTRACT
Ax-based search is a fundamental functionality for storage systems.
It allows users to nd desired datasets, where attributes of a dataset
match an ax.While building inverted index to facilitate ecient ax-
based keyword search is a common practice for standalone databases
and for desktop le systems, building local indexes or adopting index-
ing techniques used in a standalone data store is insucient for high-
performance computing (HPC) systems due to the massive amount of
data and distributed nature of the storage devices within a system. In
this paper, we propose Distributed Adaptive Radix Tree (DART), to
address the challenge of distributed ax-based keyword search on
HPC systems. This trie-based approach is scalable in achieving e-
cient ax-based search and alleviating imbalanced keyword distribu-
tion and excessive requests on keywords at scale. Our evaluation at dif-
ferent scales shows that, comparing with the “full string hashing” use
case of the most popular distributed indexing technique - Distributed
Hash Table (DHT), DART achieves up to 55× better throughput with
prex search andwith sux search, while achieving comparable through-
put with exact and inx searches. Also, comparing to the “initial hash-
ing” use case of DHT, DART maintains a balanced keyword distri-
bution on distributed nodes and alleviates excessive query workload
against popular keywords.

CCS CONCEPTS
• Computing methodologies→ Parallel algorithms;

KEYWORDS
distributed search, distributed ax search, distributed inverted
index
ACM Reference Format:
Wei Zhang, Houjun Tang, Suren Byna, and Yong Chen. 2018. DART: Dis-
tributed Adaptive Radix Tree for Ecient Ax-based Keyword Search on
HPC Systems. In International conference on Parallel Architectures and Com-
pilation Techniques (PACT ’18), November 1–4, 2018, Limassol, Cyprus. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3243176.3243207

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or aliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
PACT ’18, November 1–4, 2018, Limassol, Cyprus
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5986-3/18/11. . . $15.00
https://doi.org/10.1145/3243176.3243207

1 INTRODUCTION
Ax-based keyword search is a typical search problem, where
resulting data records match a given prex, sux, or inx. For
contemporary parallel and distributed storage systems in HPC en-
vironments, searching string-based metadata is a frequent use case
for users and applications to nd desired information. For instance,
the ax-based keyword search on string-based identiers, such
as “name=chem*” and “date=*/2017”, is a common requirement in
searching through the metadata among terabytes to petabytes of
data generated by various HPC applications [1, 7, 22, 23, 27, 32].

It is a common practice to build trie-based inverted index to ac-
celerate ax-based keyword search. There are several standalone
trie-based indexing data structure, such as prex B-tree [8], Patricia
tree [19], or adaptive radix tree (ART) [21]. But none of these stan-
dalone data structures can address the metadata search problem of
an HPC system. The massive amount of data on HPC system will
cause leaf node expansion in these trie-based data structures and
hence exhausts limited memory resources while diminishing the
overall eciency. Thus, it is preferable to distribute such trie-based
inverted index onto multiple nodes to utilize the data parallelism
and to reduce tree traversal overhead.

However, it is challenging to build distributed inverted indexes
on HPC systems. One challenge comes from the distributed nature
of HPC storage systems which involves communication overhead.
Some recent research eorts (e.g. [40]) explored the practice of
indexing metadata by storing metadata into multiple distributed
instances of database management systems, such as SQLite[42],
MySQL [31], PostgreSQL [33] or MongoDB [30]. With such ap-
proach, queries have to be sent to all participating database in-
stances and the results have to be collected from all these instances.
Such broadcasting and reduction operations cause heavy commu-
nication overhead and hence reduce search eciency. The same
problem can also be found in some cloud computing solutions, such
as Apache SolrCloud [2] and ElasticSearch [11], in building and
using distributed inverted indexes. Moreover, these approaches do
not scale well in HPC environments and it is dicult to ensemble
them into a HPC storage system as a pluggable component. Also,
as a common practice for managing distributed index in many HPC
storage systems (such as SoMeta [43], IndexFS [35], FusionFS [49],
and DeltaFS [50]), distributed hash table (DHT) [47] has been used
to build inverted index for metadata [48]. However, when it comes

1

https://doi.org/10.1145/3243176.3243207
https://doi.org/10.1145/3243176.3243207

PACT ’18, November 1–4, 2018, Limassol, Cyprus Wei Zhang, Houjun Tang, Suren Byna, and Yong Chen

to ax-based keyword search, the application of DHT on each
entire keyword may still result in query broadcasting for prex or
sux searches.

Another challenge in building distributed inverted indexes comes
from the emerging trend of enabling user-dened tags in storage
systems (e.g., SoMeta [43] and TagIt [40]). As compared to tradi-
tional le systems where only a xed number of attributes are
available in the metadata, such practice can introduce unlimited
number of attributes and user-dened tags. As the number of key-
words to be indexed increases, the keyword distribution lead (or
ended) by dierent prexes (or suxes) and the keyword popularity
can be imbalanced. Such imbalance would cause query contention
and poor resource utilization in a distributed system, which may
discount the eciency of ax-based keyword search. Thus, it is
necessary to consider load balancing issue when creating such
distributed trie-based inverted index.

Given the challenges of distributed ax-based keyword search,
in this paper, we propose a distributed trie-based inverted index
for ecient ax-based keyword search. Our technique can be eas-
ily applied on HPC metadata management systems that facilitate
parallel client-server communication model. Inspired by Adaptive
Radix Tree (ART) [21], we name our proposed approach as DART -
Distributed Adaptive Radix Tree. We have designed DART to pro-
vide simplicity and eciency for distributed ax-based keyword
search.

The major contributions of this paper are:
• We designed the DART partition tree and its initializing
process in which the height of the DART partition tree and
the number of DART leaf nodes is determined by the number
of servers, which ensures the scalability of DART.

• We composed the index creation process with a series of
node selection procedures and replication mechanism on
top of DART partition tree so that the query workload on
dierent index node can be balanced.

• We devised the query routing procedure on DART to achieve
ecient query response. Our evaluation demonstrates that
DART outperforms DHT by up to 55× in executing prex
and sux keyword searches and performs similar to DHT
for exact and inx searches.

The rest of the paper is organized as follows: In Section 2, we
review existing solutions and challenges on distributed inverted
index. Then, we analyze the requirements of an ecient distributed
inverted index in Section 3. We propose our Distributed Adaptive
Radix Tree (DART) method in Section 4 and evaluate DART in
Section 5. We discuss related work in Section 6 and conclude in
Section 7.

2 BACKGROUND
There are two paradigms of distributed index construction: document-
partitioned approach and term-partitioned approach [24, 25].

The document-partitioned approach is considered to be “local
index organization”, where each server stores a subset of all docu-
ments or data items while maintaining index for the documents or
data items on that server locally. In this case, many data structures
can be used for local indexing, such as B+ Tree [8], Patricia tree
[19], ART [21], and many software libraries and tools including

SQLite [42], ElasticSearch [11], and Apache Lucene [13] can also
be used for such purpose. In addition, each server leverages locality
between the index and the actual documents or data items being
indexed (TagIt [40] is a typical example of such approach). How-
ever, a keyword query must be broadcasted to all servers in order
to retrieve all the related documents or data items, and requires all
servers to participate in the process of serving a query. Such query
broadcasting can lead to intense network trac and exhausts lim-
ited computing resources when query frequency rises. In addition,
load balance of inverted index on dierent servers highly relies on
the partitioning strategy of documents or data items. In this case, it
can be dicult to manage the distribution of indexed keywords on
each server, and hence may result in imbalanced workload. In this
study, we do not consider document-partitioned approach
nor compare our work with any document-partitioned ap-
proach like TagIt[40] because the load imbalance of this approach
prevents itself from supporting ecient ax-based keyword search.

The term-partitioned approach takes each indexed keyword as
the cue for index partitioning. The typical case of such approach
designed for HPC systems is the use of DHT, which can be found
in many recent distributed metadata and key value store solutions,
such as SoMeta [43], IndexFS [35], FusionFS [49], and DeltaFS [50].
However, the application of DHT still remains inappropriate for
ax-based keyword search in two-fold.

First, when applying hashing algorithm against each keyword,
it may result in a well balanced keyword distribution with careful
selection of hash function. However, this DHT approach only sup-
ports ecient exact keyword search.When it comes to prex search
or sux search, the query still has to be sent to all the servers and
hence the search performance is far from optimal. In this paper, we
call this approach as “full string hashing”, in the sense that the
hashing algorithm is applied on the entire keyword.

Second, to support ecient prex search, a common approach
to use DHT is the n-gram technique [14, 15, 37, 46]. This approach
iterates over all prexes of each keyword (including the keyword
itself), and creates index for each individual prex of the keyword.
However, since each keyword may have multiple prexes, and such
approach leads to signicant space consumption for storing the
index, which can be many times larger than only indexing the
keyword itself. To avoid this drawback, it is preferable to adopt
1-gram approach rather than the n-gram approach, by which only
the rst character of a keyword is considered in the partitioning,
and we call this approach “initial hashing”. However, due to the
natural imbalanced keyword distribution led by dierent leading
characters, such approach may fail to maintain balanced keyword
distribution and hence unable to achieve decent load balance.

Building distributed index may not be rewarding for all ax-
based keyword search. For inx search, since the presence and
the position of an inx may vary from keyword to keyword, it is
common to go through all index records to achieve inx search,
which can also lead to query broadcasting among all servers.

Other than DHT, several research eorts have explored the dis-
tributed keyword search problem [17], [39], [34], [36], [18], [6], [3],
[4]. However, all of them attempt to address the keyword search
problem in peer-to-peer systems, where performance requirements

2

DART: Distributed Adaptive Radix Tree
for Eicient Aix-based Keyword Search on HPC Systems PACT ’18, November 1–4, 2018, Limassol, Cyprus

are more relaxed than in HPC systems. Thus, it is necessary to de-
velop a distributed indexing methodology for ecient ax-based
keyword search on HPC system.

3 KEY REQUIREMENTS
We summarize and formally dene four requirements of distributed
keyword search in HPC systems: functionality, eciency, load bal-
ance, and scalability, in building ecient distributed inverted index.
We discuss them in details below.

3.1 Functionality
Ax-based keyword search is fundamental in data discovery in
many application scenarios. Typical examples can be seen in search
engines, le systems, database systems, etc. In such systems, the
total amount of data can be tremendous and hence the amount of
information which needs to be indexed in metadata is also huge.
Hence, it can be much more often to perform ax-based search in
order to ndmultiple data items instead of a particular dataset using
an exact search. While there could be other forms of the axes,
in this paper, we focus on four basic types of ax-based keyword
search: 1) exact search, 2) prex search, 3) sux search, and 4)
inx search. We consider them to be essential for the metadata
search and distributed key value store searches on HPC systems.

An exact search nds an indexed key that matches with the
given keyword in its entirety. A typical example of this can be
“name=experiment001.dat”. A prex search matches the rst few
characters in the key of an index record, i.e., “name=experiment*”.
Likewise, a sux search matches the last few characters in the key
of an index record, such as “name=*.dat”, and an inx search nds
the index record where the indexed key contains the characters in
the middle of the query string, like “name=*001*”.

It is noteworthy that an exact search can be transformed into a
prex search since the longest prex of a string is itself. Another
note is that a sux search can be accomplished by indexing the
inverse of each keyword and search through such inverted index.
In addition, an inx search can be performed by traversing through
each keyword in the index and collecting the result from the index
records where the indexed keyword contains the given inx. Thus,
it is possible to achieve four dierent types of ax-based keyword
search by designing one indexing methodology.

3.2 Eciency
The main goal of building distributed inverted index is to accel-
erate ax-based search. Thus, the eciency of ax-based key-
word search is crucial. For HPC environment which prefers on-core
computation but still holds distributed nature, the communication
overhead has a major impact on the overall eciency of ax-based
keyword search when the index is created across dierent cores.
Thus, we focus on minimizing the communication cost in ax-
based keyword search, especially prex search, sux search, exact
search. However, for inx search, since we cannot predict where
the given inx may appear in a keyword, our approach should not
degrade the inx search performance as compared to the existing
DHT approaches. Also, the procedure of index creation and index
deletion should also be ecient.

3.3 Load Balance
For a distributed index, imbalanced workload distribution may lead
to overloaded nodes, which in turn damage the overall eciency.
Thus, it is important to ensure a balanced index partition on each
server. However, in practice, keywords that need to be indexed
often follow an uneven distribution, which may lead to imbalanced
workload.

124k

124k

125k

125k

126k

126k

0 1 2 3 4 5 6 7 8 9 a b c d e f

(a) UUID

0

10k

20k

30k

40k

50k

60k

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

(b) DICT

0
500k
1000k
1500k
2000k
2500k
3000k
3500k

! # $% & ' () * + , - 0 1 2 3 4 5 6 7 8 9 : ; < > ? @ [\] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | }

(c) WIKI

Figure 1: Uneven keyword distribution under dierent lead-
ing characters in dierent datasets. The leading letters are
listed along the horizontal axis, and the number of key-
words led by dierent leading letters are shown vertically.

To demonstrate the presence of uneven keyword distribution,
we have done a preliminary study with three dierent datasets. We
provide the histogram of each dataset to demonstrate the number of
keywords led by dierent leading characters (see Figure 1). The rst
dataset is a set of 2 million UUIDs that are randomly generated by
Linux libuuid[5]. We consider the UUID dataset represents unique
identiers of some scientic datasets, for example, the identier
of datasets in the HDF5 le of BOSS data[38]. The second dataset
is a list of 479k English words [28], labeled as DICT in Figure 1.
We consider this dataset represents a more generalized keyword
set. The last dataset contains all the keywords extracted from the
Wikipedia access log during September, 2007 [45], along with the
number of requests on each keyword (labeled as WIKI). We con-
sider such dataset to be a representative of real-life keyword search
scenario, and the skewness in the number of requests on each key-
word also gives a close approximation on the request distribution
pattern of dierent keywords in real practice. From Figure 1, we can
observe that the distribution of keywords led by dierent leading
character is imbalanced, and similar observation is present in all
three datasets. Particularly, Figure 1(a) only shows the keyword
distribution of UUIDs that are randomly generated in one batch.
Although the keyword distribution of UUIDs may vary from batch
to batch, the randomness of the UUIDs can also suciently sup-
port the validity of our claim that uneven keyword distribution is
ubiquitous.

The imbalance of workload does not only come from the uneven
index distribution, but also comes from the skewness of requests
on dierent keywords. We plot the number of requests of dierent
keywords in dataset WIKI, and as it can be observed from Figure

3

PACT ’18, November 1–4, 2018, Limassol, Cyprus Wei Zhang, Houjun Tang, Suren Byna, and Yong Chen

100 101 102 103 104 105 106 107

Keyword ID

0k

10k

20k

30k

40k

50k

60k

70k

To
ta

l N
um

be
r

of
 R

eq
ue

st
s

Figure 2: Highly skewed requests for dierent keywords.

2, the number of requests on keywords during September, 2007
follows a skewed distribution. Such skewness also leads to uneven
workloads of all servers.

3.4 Scalability
For a distributed inverted index, especially when used on HPC
systems, scalability is an important requirement. User applications
are often running on hundreds to thousands of compute nodes. The
strategies and optimizations introduced and evaluated at smaller
scale need to be valid at larger scales as well. Thus, it is crucial
for an indexing and keyword-based querying to provide ecient
performance at scale. The querying strategy should also remain
ecient regardless of the dataset size and data type.

4 DISTRIBUTED ADAPTIVE RADIX TREE
To address the challenges of distributed ax-based keyword search,
we now present the design of DART - the Distributed Adaptive
Radix Tree.

4.1 Terminology
We rst dene the terminology and notations used throughout this
paper.

We denote the character set which DART has to work on asA,
thus, the number of all characters in A can be denoted as k = |A|,
which we call the size of the character set. For the sequences of
characters from A, we call them terms of A, or simply terms. A
term T = (t1t2...tl) of length l comprises l = |T | characters from
A. We dene a prex of terms T to be the rst n characters of T ,
denoted as p(n,T), where n ≤ l . A prex p(n,T) can also be a prex
of another prex p(m,T), as long as n ≤ m andm ≤ l . If n < m ≤ l ,
we call p(n,T) a shorter prex of T , as compared to the longer
prex p(m,T). If n =m ≤ l , we say both prex p(n,T) and p(m,T)
are identical. For the term for which we want to build index, we
call it an indexing term. For the term of which an index is built on,
we call it an indexed term. For the term a query is looking for, we
call it a search term. Also, in the discussion of distributed index,
we use “term” and “keyword” interchangeably. Note that, every
character in A can be encoded into a string of one or more binary
digits, hence all characters in A can be compared and sorted.

4.2 Overview of DART
DART is designed to meet the goals of functionality, eciency, load
balance, and scalability discussed above. DART is composed of two
major components:

• DART partition tree, which virtually exists on all clients
and divides the entire search space into several partitions
with all its leaf nodes. Note that when we project the entire
search space onto a polar coordinate system, all the nodes
of DART partition tree actually form a ring, which we call
DART hash ring.

• The server-side local inverted index on each physical
node. We do not limit the actual data structure on the server
side for local inverted index. In this paper, we select a trie-
based data structure - adaptive radix tree [21] - as our proto-
type of server-side local inverted index.

In the rest of this section, we discuss each component and ex-
plain how they are constructed and utilized in detail, as well as the
description of dierent operations on DART.

4.3 DART Initialization
During the initialization of DART, we follow the trie-based ap-
proach to initialize the DART partition tree, which divides the
entire search space into several partitions. The root node of the
DART partition tree is empty and it does not count towards the
height of the DART partition tree. For a partition tree of height d , at
each level i ∈ {1, 2, ...,d} of the partition tree, each node branches
out to its succeeding level (namely level i + 1) by iterating each
character in the character set A in order. Thus, at level d , the parti-
tion tree will have Nleaf = (k)d leaf nodes, where k = |A|, which
we call the radix of DART.

A={A, B, C}

{B,BB,BBB*}

{CBC*}

{AB, ABB*}

DART
Partition Tree

C B

A
C

B A

A

C
B

C

A

C
B

B

B

A
C

B

A

AC
B

C

A
C

B

A
B

A C B

A

A
C

B

C

ACB

0

1

2
3 4 5

6

7

8

9
10

11
12

13

14

15
16

171819
20

21

22
23

24
25

26

Figure 3: DART partition tree of height d = 3 on the basis of
character set A ={A, B, C}. The numbers on the outermost
ring are DART virtual leaf node IDs.

Figure 3 shows an example of a DART partition tree of height
d = 3 over an character set A = {A,B,C} such that k = 3, the total
number of leaf nodes in this partition tree is Nleaf = 33.

4

DART: Distributed Adaptive Radix Tree
for Eicient Aix-based Keyword Search on HPC Systems PACT ’18, November 1–4, 2018, Limassol, Cyprus

Each leaf node is regarded as a virtual node in the entire search
space. And such virtual node can be mapped to an actual phys-
ical node with a modulus function Iphysical = Ileaf %M , where
Iphysical denotes the ID of the physical node and Ileaf denotes the
sequence number of a virtual leaf node on DART partition tree.

To ensure that the entire search space, namelyM physical com-
pute nodes, can be fully covered by all the leaf nodes of the partition
tree, the number of virtual leaf nodes Nleaf should be larger than
the number of physical nodesM . To achieve this, we use the rela-
tionship between the height of the tree d , the number of all leaf
nodes in the partition tree Nleaf , and the radix of the tree k = |A|

to calculate a minimum value of d such that Nleaf > M , namely
(k)d > M . Thus, we have:

d = dloдkMe + 1 (1)

By initializing the height of DART partition tree using the above
equation, we can guarantee that the number of leaf nodes is larger
than the number of all physical nodes. And such computation is
lightweight with a computational complexity of O(1). In addition,
as the DART partition tree only virtually exists, this computation
does neither require much memory at the client side nor re-
quire any synchronization among all clients, which is ideal
for a fast initialization in a distributed system.

4.3.1 Root Regions and Subregions.
Having DART partition tree initialized, we now dene some impor-
tant terminologies about DART. Recall what we have introduced in
4.2 that all leaf nodes of the DART partition tree forms the DART
hash ring. It is evenly divided by the radix of DART into k = |A|

root regions. Because the total number of leaf nodes in the DART
partition tree is a multiple of the radix k , the number of virtual leaf
nodes in each root region must be equal to Droot = Nleaf /k , and
Droot is the number of virtual nodes in each root region, which
we call root region distance. For example, in Figure 3, the DART
hash ring virtually consists of 27 leaf nodes in the sample DART
partition tree, and these virtual leaf nodes are evenly divided into 3
root regions, and each root region contains 9 virtual nodes, namely,
the root region distance is 9.

Also, in DART partition tree, each root region is further divided
into k subregions, and each subregion contains Dsub = Nleaf /k

2

virtual nodes, which we call subregion distance. For example,
root region A in Figure 3 is further divided into 3 subregions, and
the distance of each subregion is 3.

4.4 Index Creation
In this section, we introduce the index creation process. In order
to know where to create the index for a given keyword, we must
select a virtual node. In DART, load balance issue is one of our key
concerns when performing virtual node selection.

As discussed in Section 3.3, the workload of a physical node
depends on two major factors. On the one hand, the uneven key-
word distribution over dierent physical nodes may lead to uneven
workload. Thus, in DART, one way of achieving load balance is
to make the number of indexed terms on each leaf node roughly
equal. For such purpose, we rst select both base virtual node and
alternative virtual node. Afterwards, we take one of them which

has fewer indexed keywords to be the eventual virtual node. Finally,
we create index on the eventual virtual node.

On the other hand, in Section 3.3, we also mentioned that the
workload of a physical node also depends on the popularity of the
keywords on it. In order to cope with such issue, in DART, we also
perform index replication to create a number of replicas for each
indexed keyword.

Note that we perform index creation on each keyword as well
as its inverse.

4.4.1 Base Virtual Node Selection.
We rst need to select a base virtual node. For a given term T =
(t1t2...tl) of A, let itn denote the index of character tn in character
set A. For example, in term “CAB” on character set A = {A,B,C},
t1=“C”, and hence it1 = iC = 2. Likewise, we have it2 = iA = 0 and
it3 = iB = 1.

We use the DART partition tree of height d to select the base
virtual node. When the length of term T is greater than or equals
to d , namely l ≥ d , we calculate the base virtual node location Iv
by the following equation:

Iv =
d∑
n=1

itn × kd−n (2)

When l < d , we rst pad the term with its ending character until
its length reaches to d , and then perform the above calculation to
determine the virtual node to start from.

Note that the base virtual node of termT = (t1t2...tl)must reside
in the root region labeled with character t1. For example, given the
partition tree in Figure 3, the set of keywords {B, BB, BBB*} goes to
virtual node 13, which resides in root region B. Similarly, the set of
keywords {AB, ABB*} goes to virtual node 4 in root region A, and
the set of keywords {CBC*} goes to virtual node 23 in root regionC .

4.4.2 Alternative Virtual Node Selection.
Now we introduce how we select alternative virtual node. First,
according to the rst character of a keyword, we select an alter-
native root region for the keyword by performing the following
calculation:

Ialter_r eдion_star t = [(it1 + dk/2e)%Nleaf] × Droot (3)

This calculation returns the oset of the starting virtual node in
the alternative root region. This is to make sure the alternative root
region of term T is dierent than its base root region. For example,
as shown in Table 1, the alternative root region starts from virtual
node 18 in region C for the set of keywords {AB, ABB*}. Similarly,
0 in region A for {B, BB, BBB*} and 9 in region B for {CBC*}.

Afterwards, we further calculate the oset of alternative subre-
gion, which we dene as the major oset, denoted as w1. For a
DART partition tree of height d , given a keyword T = (t1t2...tl),
we perform such calculation following the equation below:

w1 = (itd−1 + itd + itd+1)%k (4)

where td is the character on the leaf level of the partition tree,
which we call on-leaf character. For td−1, we call it the pre-leaf
character and td+1 the post-leaf character. However, when d =
1, there is no pre-leaf character, and we let itd−1 = 0 in this case.
When l = d , there is no post-leaf character, so we just let itd+1 = itl
and let itd = itl in this case, where tl is the very last character

5

PACT ’18, November 1–4, 2018, Limassol, Cyprus Wei Zhang, Houjun Tang, Suren Byna, and Yong Chen

in term T = (t1...tl). When l < d , we pad term T with its ending
character until its length reaches to d , and we follow the same
procedure as when l = d .

Keyword Base
Root Region

Base
Virtual Node

Alternative Root
Region

Alternative
Virtual Node

AB A (begins at 0) 4 C (begins at 18) 21
ABB A (begins at 0) 4 C (begins at 18) 21
ABBC A (begins at 0) 4 C (begins at 18) 25
B B (begins at 9) 13 A (begins at 0) 3
BB B (begins at 9) 13 A (begins at 0) 3
BBBA B (begins at 9) 13 A (begins at 0) 3
CBCBA C (begins at 18) 23 B (begins at 9) 10

Table 1: Virtual node selection on concrete examples of set
of keywords {AB, ABB*}, {B, BB, BBB*} and {CBC*} on char-
acter set A = {A,B,C}

After getting the oset for selecting an alternative subregion,
we nally calculate the oset for selecting a virtual node in the
subregion, which we callminor oset, denoted asw2. We perform
the following calculation:

w2 = |(itd+1 − itd − itd−1)|%k (5)

Now, with the aforementioned base virtual node ID Iv , the start-
ing virtual node ID of the alternative root region Ialter_r eдion_star t ,
the root region distance Droot and subregion distance Dsub , we
can nally calculate alternative virtual node ID Iv ′:

Iv ′ = Ialter_r eдion_star t + (Iv +w1 × Dsub +w2)%Droot (6)

In Table 1, we also show the alternative root region and alter-
native virtual node of each concrete keyword example. It can be
seen from the table that, for any keyword, the alternative root re-
gion is dierent from the base root region. And inside either of
the root region, the oset of the virtual node is also dierent. This
actually ensures sucient randomness when it comes to eventual
node selection.

4.4.3 Eventual Virtual Node Selection. After getting the
base virtual node Iv and the alternative virtual node Iv ′ for term
T , the client will retrieve the number of indexed keywords on
corresponding physical nodes of both virtual nodes. Since such op-
eration only take few microseconds to nish and can be performed
in parallel, it does not introduce much communication overhead.
Afterwards, the client will pick the virtual node with less indexed
keywords as the eventual virtual node Ev . Then, following the
eventual virtual node, the index for term T will be created on the
corresponding physical node. By following such node selection
procedure, DART is expected to maintain a balanced keyword dis-
tribution among all physical nodes. For a randomized load balancing
scheme[29], the choice of two nodes are randomly made. But in
DART, the node selection is performed by mathematical operations
over known parameters, so the ID of the physical node can be easily
calculated, which is helpful for achieving ecient deterministic
query routing during the query responding process. But at the same
time, DART makes an eort in maintaining sucient randomness
in terms of the distance between base virtual node and alternative
node.

4.4.4 Index Replication. As discussed in Section 3, another
cause for an imbalanced workload is the skewness in the number
of requests on dierent terms. Since the popularity of a term is
uncertain when the index is created, we can only alleviate the
excessive requests by having more replicas of the index. In DART,
we dene a replication factor r , by which the index of any term will
be replicated for r times, and these r replicas are created by selecting
r virtual nodes along the DART hash ring using the following
calculation:

Ri = Ev +
Nleaf

k
× i (7)

where i denotes the ID of replica and i ∈ [1, r] and Ev is the eventual
virtual node selected from the based virtual node and the alternative
virtual node. By doing so, each query request will be sent to one
replica at a time in a round-robin fashion, thus the r replicas of
each indexed keyword will share the workload caused by the query
requests. Therefore, the excessive requests against some popular
keywords can be alleviated. Since such replication is done in an
asynchronous way, the index creation latency is not bound to the
creation of replicas.

4.5 Query Response
As discussed in Section 3.1, DART supports four types of ax-based
keyword search, including exact keyword search, prex search,
sux search and inx search, and both exact keyword search and
sux search can be transformed into the problem of solving prex
search. Thus, in this section we only discuss how DART fullls
prex search and inx search.

4.5.1 Prefix Search using DART.
For a given prex p of length n = |p |, there can be multiple terms
T that match with p. We rst discuss the case when the length of
prex p is greater than the height of the DART partition tree d ,
i.e., n > d . In this case, the client can follow the same procedure
as described in Sections 4.4.1 and 4.4.2 to select the base virtual
node and the alternative virtual node. Subsequently, the query will
be sent to the corresponding physical nodes. The client takes the
result from the node whichever returns a non-empty result. If both
physical nodes return empty result, we consider the query does not
hit any index record, meaning, there is no relevant data matching
the given query. The communication cost of such operation remains
as constant of O(1) since only two physical nodes are contacted.

When the length of given prex is less than or equal to the height
of DART partition tree, i.e., when n ≤ d , we perform prex search
only according to the leading character of the search term. For
example, if the search term is “AB*” or “ABB*”, we actually perform
prex search “A*” instead. And since all the keywords sharing the
same leading character must reside on the same base root region or
the same alternative root region, we send this query to all virtual
nodes in both root regions to collect the result. For character set A
of size k , 2/k of the virtual nodes will be queried. In real practice,
the size of the character set can be much larger. In the case of ASCII,
there are 128 characters in the character set. Thus, only 2/128 of
the virtual nodes will be selected for responding the prex query.
This is a huge deduction in the communication cost as compared
to query broadcasting on all physical nodes.

6

DART: Distributed Adaptive Radix Tree
for Eicient Aix-based Keyword Search on HPC Systems PACT ’18, November 1–4, 2018, Limassol, Cyprus

4.5.2 Infix Search with DART. Since the position of a given
inx is uncertain in a keyword, to guarantee that no relevant key-
word will be omitted in the query responding process, we still have
to perform query broadcasting to all physical nodes. To the best of
our knowledge, there is no indexing technique that can avoid full
scan on the indexed keywords when it comes to inx query. Also, it
is dicult to predict where a given inx will appear in a keyword.
Thus, in DART, when an inx query is requested, the client sends
request to all physical nodes, and on each physical node, a full scan
on the local index is performed to collect all matching results.

4.5.3 Alleviating Excessive Requests. In DART, we main-
tain a request counter at each client, and the request counter will
be increased by one each time when a request is sent. When there
are r replicas, each time the client will do the following calculation
to determine the ID of the replica where the request should be sent
to:

Rv = (Iv +Cr equest) % r (8)
where Rv represents the ID of the replica, Iv represents the ID of
the initial virtual node, andCr equest is the value of request counter.
Such mechanism enables the round-robin access pattern among all
replicas, and helps to alleviate the excessive requests against some
extremely popular keywords.

4.6 Index Update and Index Deletion
In DART, index update is done by deleting the original index record
and rebuild a new index record. To delete an index, we still perform
the same calculation described in Sections 4.4.1 and 4.4.2 to select
the base virtual node and alternative virtual node. And then we
send the index deletion request to both virtual nodes and hence
their corresponding physical nodes. Whichever the physical node
with the specied index record will actually perform the index
deletion operation while the other ignores the operation once it
conrms there is no specied index record. The communication
cost of this operation is still O(1), which is constant.

4.7 Complexity Analysis on DART
All operations in DART, including DART initialization, index cre-
ation, query response, index update and index deletion, all involve
one or more of the 8 equations from (1) to (8). It is noteworthy that
all calculations of these equations are arithmetical calculations and
can be performed very quickly at the client side with O(1) time.

Also, for conducting these calculations, only a few of scalar
values are required to be maintained in the memory, including the
number of physical nodes, the size of the character set, the index of
each character in the character set, and some intermediate results
like Nleaf , Ialter_r eдion_star t , Iv , w1, w2, Droot and Dsub . And
since DART partition tree only virtually exists, there is no need to
maintain DART partition tree in memory. So the memory footprint
of DART is also very low.

As for communication cost, the selection of eventual virtual
node only involves access of two physical nodes, in addition to the r
requests for actually creating the index replicas, the communication
cost is O(r), which is constant. When multiple replicas are created
in parallel, the index creation overhead can be considered to be even
lower. Also, since each client actually follow the same procedures
to conduct DART operations independently, there is no need to

perform any synchronization between clients, which saves huge
amount communications in the network as well.

Operations
Computation Complexity of

Locating Procedure
(Worst Case)

Communication
Complexity
(Worst Case)

Insertion O(1) O(1)
Deletion O(1) O(1)

Exact Search O(1) O(1)
Prex Search O(1) O(Mk)

Sux Search O(1) O(Mk)

Inx Search O(1) O(M)

Table 2: Complexity of Dierent DART Operations

We provide worst case complexity of dierent DART operations
in Table 2.

5 EVALUATION
5.1 Experimental Setup
We have evaluated DART on Cori, a Cray XC40 supercomputing
system, located at the National Energy Research Scientic Com-
puting Center (NERSC). It has 2,388 Haswell compute nodes, with
each node featuring two 16-core Intel® Xeon™ processors E5-2698
v3 (“Haswell”) at 2.3 GHz and 128GB memory. The interconnect of
Cori is Cray Aries with Dragony topology and 5.625 TB/s global
bandwidth.

We implemented DART on the same software platform that
has been used in SoMeta [43] and PDC [44], which is built upon
MPI and Mercury [41] RPC framework. The software platform
already contains DHT implementation which already facilitated
the experiments in both aforementioned research works. To be
coherent with the trie-based design that DART is following, we use
ART [21] as the server-side indexing data structure for DART. We
use hash table as the server-side local data structure for two DHT-
based approaches, “Full String Hashing” and “Initial Hashing”, since
such combination is prevalently used in many existing studies, such
as FusionFS [49], DeltaFS [50], SoMeta [43], etc. For all experiments,
we set up an equal number of client instances and server instances.
Each client instance can access all server instances.

We choose three datasets,UUID,DICT [28], andWIKI [45] (dis-
cussed in Section 3.3), for our evaluation. We use dataset UUID for
our performance test since it can be generated by Linux libuuid [5]
in memory, which avoids the overhead of disk read operations. For
load balance test, we use all three datasets since we would like
to observe whether DART is capable of balancing the keyword
distribution among various sets of keywords. Since every keyword
in all three datasets consists of only basic ASCII characters, so we
set up the radix of DART as 128.

5.2 Eciency
We compare the eciency of DART against full string hashing and
initial hashing in terms of the throughput of various operations at
dierent cluster scales, ranging from 4 nodes to 256 nodes. Two
million UUIDs were inserted each time to all servers to perform
index creation. Afterwards, we took the 4-letter prex, 4-letter

7

PACT ’18, November 1–4, 2018, Limassol, Cyprus Wei Zhang, Houjun Tang, Suren Byna, and Yong Chen

sux and 4-letter inx of each UUID to conduct prex search,
sux search and inx search respectively. Finally, we performed
deletion operation for each UUID. We measure the throughput in
thousands of transactions per second (TPS).

Please note that DART works for any prex/sux/inx length
(denoted as n). The reason we choose n = 4 is that the DART
partition tree height ranges from 2 to 3 when the number of servers
varies from 4 to 256. In our evaluation, we emulated a predictably
more common use case where some of the characters in the query
keyword will be addressed by the DART partition tree and the
remaining characters would be addressed by a local index on a
given server.

5.2.1 Index Creation and Deletion.
In the index creation process, DART needs to perform load de-
tection operations for determining the workload between base
virtual node and alternative virtual node. Then, DART needs to
send index creation request to the selected server, which introduces
communication overhead. In contrast, both full string hashing and
initial hashing are conventional hashing algorithms and do not
include any sophisticated operations. For delete operation, DART
only needs to send delete requests to both base virtual node and
alternative virtual node simultaneously, which does not introduce
much overhead.

4 8 16 32 64 128 256
Number of Servers

0k

100k

200k

300k

400k

500k

600k

700k

Th
ro

ug
hp

ut
(T

PS
)

Full String Hashing
Initial Hashing
DART

(a) Index Creation Throughput

4 8 16 32 64 128 256
Number of Servers

0k

100k

200k

300k

400k

500k

600k

Th
ro

ug
hp

ut
(T

PS
)

Full String Hashing
Initial Hashing
DART

(b) Index Deletion Throughput

Figure 4: Throughput of Index Creation and Index Deletion

As shown in Figure 4(a), for dierent cluster scales, the insert
throughput of full string hashing and initial hashing are slightly
higher than that of DART. Such a trend can be observed at dierent
cluster scales. Considering that DART accomplishes much more in
load balance, such performance gap between DART and the other
two DHT cases is reasonable and acceptable. As for the throughput
of index deletion, as it can be seen from Figure 4(b), DARTmaintains
comparable performance with these two DHT-base approaches.

5.2.2 Prefix Search and Suix Search.

DART is designed to support ecient ax-based search. In terms
of prex search and sux search, the advantage of DART is more
obvious.

As shown in Figure 5(a) and Figure 5(b), both initial hashing
and DART achieve better throughput than full string hashing. This
is because, in full string hashing, the query broadcasting is re-
quired when performing prex search and sux search, while in
initial hashing there is no need to perform query broadcasting
and in DART the query broadcasting is eliminated as well in most

cases. Particularly, as compared to full string hashing, at dierent
scales the throughput of prex search and sux search on DART
is 4×∼55× higher.

4 8 16 32 64 128 256
Number of Servers

0k

100k

200k

300k

400k

500k

600k

700k

Th
ro

ug
hp

ut
(T

PS
)

Full String Hashing
Initial Hashing
DART

(a) Prex Search Throughput

4 8 16 32 64 128 256
Number of Servers

0k

100k

200k

300k

400k

500k

600k

700k

Th
ro

ug
hp

ut
(T

PS
)

Full String Hashing
Initial Hashing
DART

(b) Sux Search Throughput

Figure 5: Throughput of Prex Search and Sux Search

It is noteworthy that DART even performs better than initial
hashing. This is because DART achieves a more balanced keyword
distribution which help with avoiding overloaded servers. For ex-
ample, in the case of 256 servers, the standard deviation of the
DART keyword distribution is 2877.208 while the same index in ini-
tial hashing is 15128.953, which means, with initial hashing, there
can be more overloaded servers and each of them will damage the
overall throughput.

5.2.3 Exact Search and Infix Search.

4 8 16 32 64 128 256
Number of Servers

0k

100k

200k

300k

400k

500k

600k

700k

Th
ro

ug
hp

ut
(T

PS
)

Full String Hashing
Initial Hashing
DART

(a) Exact Search Throughput

4 8 16 32 64 128 256
Number of Servers

10k

15k

20k

25k

30k

Th
ro

ug
hp

ut
(T

PS
)

Full String Hashing
Initial Hashing
DART

(b) Inx Search Throughput

Figure 6: Throughput of Exact Search and Inx Search

For exact keyword search, full string hashing is expected to de-
liver the best performance, since each keyword can be eciently
found via the hashing function. The actual results, plotted in Fig-
ure 6(a), show that the exact search performance of DART and
full string hashing are almost identical, while the throughput of
initial hashing slightly falls behind the others, when the system
size scales to 64 servers and beyond. This is because the keyword
distribution of initial hashing is imbalanced, and the server hosting
the most frequent keywords becomes the bottleneck. We show that
the keyword distribution of initial hashing later in Section 5.4 and
further justify our explanation on this.

In the case of inx search, each query has to go through all
indexed keywords since the position of the inx in a keyword is
uncertain. As shown in Figure 6(b), the throughput of inx search
with three dierent indexing methods are very close. These results
show that DART achieves comparable eciency as DHT for inx
searches.

8

DART: Distributed Adaptive Radix Tree
for Eicient Aix-based Keyword Search on HPC Systems PACT ’18, November 1–4, 2018, Limassol, Cyprus

5.2.4 Latency of DART Operations.
We show the latency of dierent DART operations on dierent
number of physical nodes in Figure 7 with box plot. As shown
in the gure, most of the insertion and deletion operations can be
nished within 400 microseconds (0.4 milliseconds), and on average,
the insertion operation latency and the deletion operation latency
are around 300 microseconds and 200 microseconds respectively.

4 8 16 32 64 128 256
Number of Servers

200

300

400

Ti
m

e
(

s)

Insert

4 8 16 32 64 128 256
Number of Servers

200

300

Ti
m

e
(

s)
Delete

4 8 16 32 64 128 256
Number of Servers

50

100

150

Ti
m

e
(

s)

Prefix

4 8 16 32 64 128 256
Number of Servers

50

100

150

200

Ti
m

e
(

s)

Suffix

4 8 16 32 64 128 256
Number of Servers

50

100

150

200

Ti
m

e
(

s)

Exact

4 8 16 32 64 128 256
Number of Servers

0

5000

10000

15000

Ti
m

e
(

s)

Infix

Figure 7: Latency of DART operations

The average latency of prex search, sux search and exact
search is around 100 microseconds, with no search latency exceed-
ing 250 microseconds. As for inx search, as the number of server
grows exponentially, the query latency increases in the same pace
since an increasing amount of communications was performed due
to query broadcasting. At maximum, the inx query latency on 256
physical nodes is around 17000 microseconds, namely, 17 millisec-
onds. When consider the natural complexity of inx search, we
consider such latency to be acceptable.

Note that there is some uctuation in terms of latency over dif-
ferent number of servers. We took multiple times of our evaluation,
and all of them show dierent uctuating pattern. We believe this
may relate to the uctuating network condition at the time when
we conducted our evaluation. We did not try to even out such dy-
namics by taking results from multiple runs, since we believe such
dynamics actually makes our result valid in reecting the actual
variations in query latency. So we only demonstrate the latency
result from one single run, and this shows the actual performance
limit that our DART can reach to in the real case, which turns out
to be decent.

5.3 Load Balance
In this series of tests, we inserted three dierent datasets - UUID,
DICT, and WIKI - onto 16 servers via full string hashing, initial

hashing, and DART. The hashing algorithm we used for both DHT
cases are djb2 hash, which is known to achieve load balance well.

For each keyword, the full string hashing takes all the characters
in a keyword as a whole, computes the hash value accordingly and
use the modulus hashing function to uniformly select the server
where the keyword should be indexed. Thus, the full string hashing
is able to generate balanced keyword distribution. However, for
each keyword, initial hashing will only take the rst character into
account, which leads to aggregation of keywords sharing common
leading character. As we analyzed in Section 2, the distribution of
keywords led by dierent characters is imbalanced, thus, the initial
hashing is expected to generate imbalanced keyword distribution.
DART is designed to alleviate imbalanced keyword distribution,
and we should see such eect in the result of DART.

In order to compare the dispersion of keyword distribution on
dierent dataset in an intuitive way, we introduce coecient of
variation (abbv. CV) as a metric. The coecient of variation Cv
is dened as the ratio of the standard deviation σ to the mean
µ, i.e. Cv = σ

µ [12]. It is a standardized measure of dispersion of
probability distribution. A smaller CV means smaller deviation to
the average value and hence a more balanced distribution.

UUID DICT WIKI
Dataset

10 3

10 2

10 1

100

CV
 o

f
Ke

yw
or

d
D

is
tr

ib
ut

io
n

Full String Hashing Initial Hashing DART

Figure 8: CV of keyword distribution by 3 dierent hashing
policies on 3 dierent datasets over 16 servers.

As shown in Figure 8, on 16 servers, the CV value by full string
hashing algorithm is always the smallest on our three dierent
datasets - UUID, DICT and WIKI. Such result shows that the full
string hashing algorithm always leads to a perfectly balanced key-
word distribution regardless the variance of datasets. Similarly, the
initial hashing policy always leads to the highest CV value over 3
dierent datasets, which means the keyword distribution rooted
from this algorithm is the most imbalanced. However, our DART al-
gorithm always leads to a smaller CV value than the initial hashing
algorithm on dierent datasets, which means it is able to gener-
ate a more balance keyword distribution than what initial hashing
algorithm can do, even though it does not achieve the balanced
keyword distribution as perfectly as the full string hashing does.
Overall, such result shows the universality of DART in maintaining
balanced keyword distribution over dierent datasets, which meets
our expectation.

In DART, we also design the replication strategy to replicate the
index record of a certain keyword and hence reduce the excessive

9

PACT ’18, November 1–4, 2018, Limassol, Cyprus Wei Zhang, Houjun Tang, Suren Byna, and Yong Chen

r=1 r=3 r=4 r=5
Replication Factor

1.15

1.20

1.25

1.30

1.35

1.40

CV
 o

f W
IK

I
Re

qu
es

t
D

is
tr

ib
ut

io
n

Figure 9: Coecient of variation on the request distribution
while replaying WIKI requests with DART under dierent
replication factors.

workload of some extremely popular keywords. We used the WIKI
dataset to test the eectiveness. Recall that in theWIKI dataset, each
keyword is recorded along with the number of requests that has
been queried during September, 2007. We have shown the request
distribution on dierent WIKI keywords in Section 2, Figure 2. It
can be seen that the request distribution is highly skewed. We
replayed these 48M requests recorded in the WIKI dataset on 16
servers, after the index was created for all keywords.

As reported in Figure 9, as the replication factor increases, the CV
value of the request distribution decreases, which means the index
replication mechanism in DART is able to mitigate skewness of
the request distribution as well, which can be another performance
perk when it comes to real use cases.

As discussed in Section 2, the UUID dataset can be considered as a
representative of digital identiers of scientic dataset, while DICT
can be viewed as a representative of a more general keyword set in
natural languages. We also consider the WIKI dataset represents a
realistic workload. These load balance tests and results demonstrate
that the DART algorithm is not sensitive to the type of keyword set,
which makes it a suitable choice for various scenarios and capable
of mitigating imbalanced keyword distribution on servers, not to
mention HPC applications. We further report the load balancing
capability at dierent scales in the next section.

5.4 Scalability
5.4.1 Performance at scale.

As discussed in Section 5.2, DART is able to maintain its eciency
at scale for dierent operations, which already demonstrates the
scalability of DART in terms of eciency. The achieved scalable
performance conrms DART as an ecient indexing method for
ax-based searches on HPC systems.

5.4.2 Load balance at scale.
As a distributed inverted index, DART is designed to mitigate im-
balanced keyword distribution on dierent nodes. We repeated the
series of tests discussed in Section 5.3 at dierent cluster scales.
When testing the key distribution, we set the replication factor
of DART to be 1. For testing the request distribution of the WIKI
dataset, we set the replication factor of DART to be 3. In order to
compare the dispersion of keyword distribution of dierent datasets

on dierent number of servers fairly, we still use coecient of vari-
ation as our metric (as introduced in Section 5.3), since it removes
the impact of the changes in the number of servers and the size of
the dataset.

4 8 16 32 64 128 256
Number of Servers

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

CV
 (

U
U

ID
 K

ey
w

or
d

D
is

tr
ib

ut
io

n) Full String Hashing
Initial Hashing
DART

(a) UUID Keyword Distribution

4 8 16 32 64 128 256
Number of Servers

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

CV
 (

D
IC

T
Ke

yw
or

d
D

is
tr

ib
ut

io
n) Full String Hashing

Initial Hashing
DART

(b) DICT Keyword Distribution

4 8 16 32 64 128 256
Number of Servers

0.0

1.0

2.0

3.0

4.0

5.0

6.0

CV
 (

W
IK

I K
ey

w
or

d
D

is
tr

ib
ut

io
n) Full String Hashing

Initial Hashing
DART

(c) WIKI Keyword Distribution

4 8 16 32 64 128 256
Number of Servers

1.0

2.0

3.0

4.0

5.0

6.0

7.0

CV
 (

W
IK

I R
eq

ue
st

 D
is

tr
ib

ut
io

n) Full String Hashing
Initial Hashing
DART

(d) WIKI Request Distribution

Figure 10: Comparison of load balance at scale

As shown in Figure 10 (a), (b), and (c), full string hashing has
smallest CV at dierent scales. However, the CV value of initial
hashing remains the largest throughout all dierent scales with
an increasing trend. This behavior indicates that, as the number
of server grows, the imbalance of the keyword distribution under
initial hashing becomes more signicant.

On all three datasets, the CV value of DART always remains
the second when the number of server increases. As it can be seen
in the gure, in both UUID and DICT datasets, DART is able to
maintain a small value of CV (under 0.6 at all scales). For WIKI
dataset, although the CV value of DART grows as the number of
server grows, it is still smaller than that of initial hashing. We
consider that DART is able to maintain better balanced keyword
distribution than initial hashing.

Figure 10 (d) demonstrates the coecient of variation for the
request of WIKI at dierent scales. As it can be seen from the gure,
DART is able to maintain a more balanced request distribution
even though the actual requests on dierent keywords is highly
skewed as we have shown in Figure 2 at Section 2, while full string
hashing and initial hashing perform poorly for such highly uneven
workload. It is noteworthy that, for achieving this, we only set the
replication factor of DART to be 3. If the replication factor increases,
DART is expected to achieve even better load balance at scale.

6 RELATEDWORK
Many solutions exist for ax-based keyword search. A straight-
forward approach is to perform string comparison of each data
record. Methods including Brute-Force string comparison, Rabin-
Karp[10], Knuth-Morris-Pratt[20], nite state automaton for regular

10

DART: Distributed Adaptive Radix Tree
for Eicient Aix-based Keyword Search on HPC Systems PACT ’18, November 1–4, 2018, Limassol, Cyprus

expressions[16] are well studied. However, such approach cannot ef-
ciently handle ax-based keyword search, as they do not support
pattern matching directly.

To address ecient ax-based keyword search, various index-
ing techniques are proposed and shown to be eective. Tree-based
indexing techniques are integrated into RDBMS for keyword search.
B-Trees, including the original B-Tree and its variants like B+ Tree,
B* Tree, etc. [8] are widely used. They are ecient to search through
a large number of records on disk and are ideal solutions formany re-
lational databaseswhere disk seeking is frequent and time-consuming.
For keyword search, a prex B+ tree stores the indexed keywords
on its leaf nodes and uses the prexes as the separator keys on the
non-leaf nodes. However, to keep all branches balanced, compli-
cated operations are required to adjust the tree structure with each
tree modication and has a signicant overhead.

Another approach to create index for keywords is the trie data
structure, or prex tree, such as Patricia Tree [19], radix tree [9],
ART (Adaptive Radix Tree) [21], etc. These approaches do not need
to balance the branches, and hence do not require signicant struc-
tural changes. An intuitive model of the prex tree uses each node
to represent a character, such that a query on a string or its prex
can be performed by traversing through the path starting from the
leading character and ending at the very last end of the string or
prex. Patricia tree [19], a variant of trie, compresses the paths by
collapsing all interior vertices that have only one child into one
single path and thus reduces the tree height. Radix tree [9] makes
brunch comparisons based on its radix, which is 2s (where the span
s ≥ 1). The increase of the span s will result in the decrease of the
tree height, which helps reducing the number of node comparisons
and the total search time. While a large span of the radix tree may
cause degradation in space utilization, Adaptive Radix Tree [21]
is proposed to provide better space utilization and optimized tree
height for search eciency by having dierent size of tree nodes.
The radix of dierent tree nodes may vary according to the content
the node stores. However, these data structures are all designed to
address keyword search problem on a single machine. They can-
not be directly applied to distributed systems, as node selection
and load balance must be taken into consideration for optimized
performance.

In cloud computing environment, popular services such as Elas-
ticSearch [11] and SolrCloud [2] can address various text-related
queries eciently. However, these approaches require a number
of dedicated servers running services constantly, making them un-
desirable for HPC applications as maintaining such an indexing
cluster can be very expensive. Moreover, such solution follows the
document-partitioned approach, query broadcasting is necessary
and limits their performance.

A recent HPC-oriented work, TagIt [40], attempted to integrate
embedded database like SQLite [42] to achieve ecient keyword

search on metadata. However, it requires specic runtime support
and also introduces extra cost and overhead to maintain. In addi-
tion, it follows the document-partitioned approach which leaves
many challenges of ax-based keyword search in a distributed
environment unsolved, such as high network trac due to query
broadcasting and load imbalance among indexing nodes. In com-
parison, DART is designed as a light-weight distributed indexing
method which can be easily incorporated into any platform that
follows the client-server model, and does not require any other
runtime support. Additionally, DART keeps low network trac by
avoid query broadcasting, and the load balancing feature meets the
requirement of distributed ax-based keyword search.

7 CONCLUSION
With the goal of developing a distributed ax-based keyword
search on HPC systems, we have developed a trie-based inverted
indexing technique, called DART (Distributed Adaptive Radix Tree).
DART can eciently locate a keyword based on its partition tree
and node selection procedures. Our evaluation results show that
DART can achieve ecient ax-based keyword search while main-
taining load balance at large scale. Particularly, when comparing
with full string hashing DHT, the throughput of prex search and
sux search using DART was up to 55× faster than full string
hashing over dierent number of servers. The throughput of exact
search and inx search on DART remains comparable to that of full
string hashing. Compared with initial hashing DHT, DART is able
to maintain balanced keyword distribution and request distribution
while initial hashing fails to achieve. These two advantages of DART
are also independent on dataset, making DART an ideal inverted in-
dexing technique for distributed ax-based keyword search. While
DHT is prevalently used for data placement in many applications,
in scenarios where ax-based search is required or frequent on
HPC systems, DART is a competitive replacement of DHT since it
provides scalable performance and achieves load balance at scale.
In our future work, we plan to apply DART to in-memory metadata
object management systems in searching metadata objects using
axes of user-dened tags or other object attributes.

ACKNOWLEDGMENT
This research is supported in part by the National Science Foun-
dation under grant CNS-1338078, IIP-1362134, CCF-1409946, and
CCF-1718336. This work is supported in part by the Director, Of-
ce of Science, Oce of Advanced Scientic Computing Research,
of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. (Project: Proactive Data Containers, Program manager:
Dr. Lucy Nowell). This research used resources of the National En-
ergy Research Scientic Computing Center (NERSC), a DOE Oce
of Science User Facility.

11

PACT ’18, November 1–4, 2018, Limassol, Cyprus Wei Zhang, Houjun Tang, Suren Byna, and Yong Chen

REFERENCES
[1] MG Aartsen, K Abraham, M Ackermann, J Adams, JA Aguilar, M Ahlers, M

Ahrens, D Altmann, K Andeen, T Anderson, et al. 2016. Search for sources of
High-Energy neutrons with four years of data from the Icetop Detector. The
Astrophysical Journal 830, 2 (2016), 129.

[2] apache.org. 2014. SolrCloud. https://wiki.apache.org/solr/SolrCloud.
[3] Baruch Awerbuch and Christian Scheideler. 2003. Peer-to-peer systems for prex

search. In Proceedings of the twenty-second annual symposium on Principles of
distributed computing. ACM, 123–132.

[4] Dirk Bradler, Jussi Kangasharju, and Max Mühlhäuser. 2008. Optimally Ecient
Prex Search and Multicast in Structured P2P Networks. CoRR abs/0808.1207
(2008). http://arxiv.org/abs/0808.1207

[5] Ralph Böhme. 2013. libuuid. https://sourceforge.net/projects/libuuid/
[6] Hailong Cai and Jun Wang. 2004. Foreseer: a novel, locality-aware peer-

to-peer system architecture for keyword searches. In Proceedings of the 5th
ACM/IFIP/USENIX international conference on Middleware. Springer-Verlag New
York, Inc., 38–58.

[7] Chi Chen, Zhi Deng, Richard Tran, Hanmei Tang, Iek-Heng Chu, and Shyue Ping
Ong. 2017. Accurate force eld for molybdenum by machine learning large
materials data. Physical Review Materials 1, 4 (2017), 043603.

[8] Douglas Comer. 1979. Ubiquitous B-tree. ACM Computing Surveys (CSUR) 11, 2
(1979), 121–137.

[9] J. Corbet. 2006. Trees I: Radix trees. http://lwn.net/Articles/175432/
[10] T Cormen, C Leiserson, R Rivest, and Cliord Stein. 2001. The rabin–karp

algorithm. Introduction to Algorithms (2001), 911–916.
[11] elastic.co. 2017. Distributed Search Execution. https://www.elastic.co/guide/en/

elasticsearch/guide/current/distributed-search.html.
[12] Brian Everitt and Anders Skrondal. 2002. The Cambridge dictionary of statistics.

Vol. 106. Cambridge University Press Cambridge.
[13] Apache Software Fundation. 2017. Apache Lucene. https://lucene.apache.org.
[14] Gaston H Gonnet, Ricardo A Baeza-Yates, and Tim Snider. 1992. New Indices

for Text: Pat Trees and Pat Arrays. Information Retrieval: Data Structures &
Algorithms 66 (1992), 82.

[15] Matthew Harren, Joseph Hellerstein, Ryan Huebsch, Boon Loo, Scott Shenker,
and Ion Stoica. 2002. Complex queries in DHT-based peer-to-peer networks.
Peer-to-peer systems (2002), 242–250.

[16] John E Hopcroft, Rajeev Motwani, and Jerey D Ullman. 2006. Automata theory,
languages, and computation. International Edition 24 (2006).

[17] Yuh-Jzer Joung and Li-Wei Yang. 2006. KISS: A simple prex search scheme in
P2P networks. In Proc. of the WebDB Workshop. 56–61.

[18] Yuh-Jzer Joung, Li-Wei Yang, and Chien-Tse Fang. 2007. Keyword search in dht-
based peer-to-peer networks. IEEE Journal on Selected Areas in Communications
25, 1 (2007).

[19] Donald Knuth. 1997. 6.3: Digital Searching. The Art of Computer Programming
Volume 3: Sorting and Searching (1997), 492.

[20] Donald E. Knuth, Jr. James H. Morris, and Vaughan R. Pratt. 1977. Fast Pattern
Matching in Strings. SIAM J. Comput. 6, 2 (1977), 323–350. https://doi.org/10.
1137/0206024 arXiv:https://doi.org/10.1137/0206024

[21] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The Adaptive Radix
Tree: ARTful Indexing for Main-memory Databases. In Proceedings of the 2013
IEEE International Conference on Data Engineering (ICDE 2013) (ICDE ’13). IEEE
Computer Society, Washington, DC, USA, 38–49. https://doi.org/10.1109/ICDE.
2013.6544812

[22] J. Liu, D. Bard, Q. Koziol, S. Bailey, and Prabhat. 2017. Searching for millions
of objects in the BOSS spectroscopic survey data with H5Boss. In 2017 New
York Scientic Data Summit (NYSDS). 1–9. https://doi.org/10.1109/NYSDS.2017.
8085044

[23] Yaning Liu, George Shu Heng Pau, and Stefan Finsterle. 2017. Implicit sam-
pling combined with reduced order modeling for the inversion of vadose zone
hydrological data. Computers & Geosciences (2017).

[24] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, et al. 2008. In-
troduction to information retrieval, Chapter 20.3 Distributing indexes, 415–416.
Volume 1 of [26].

[25] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, et al. 2008. Intro-
duction to information retrieval, Chapter 4.4 Distributed indexing, 68–71. Volume 1
of [26].

[26] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, et al. 2008. Intro-
duction to information retrieval. Vol. 1. Cambridge university press Cambridge.

[27] Arun Mannodi-Kanakkithodi, Tran Doan Huan, and Rampi Ramprasad. 2017.
Mining materials design rules from data: The example of polymer dielectrics.

Chemistry of Materials 29, 21 (2017), 9001–9010.
[28] Marius. 2017. English Words. https://github.com/dwyl/english-words.
[29] Michael Mitzenmacher. 2001. The power of two choices in randomized load

balancing. IEEE Transactions on Parallel and Distributed Systems 12, 10 (2001),
1094–1104.

[30] Inc. MongoDB. 2018. MongoDB. https://www.mongodb.com/
[31] Oracle. 2017. MySQL. https://www.mysql.com
[32] David Paez-Espino, I Chen, A Min, Krishna Palaniappan, Anna Ratner, Ken Chu,

Ernest Szeto, Manoj Pillay, Jinghua Huang, Victor M Markowitz, et al. 2017.
IMG/VR: a database of cultured and uncultured DNA Viruses and retroviruses.
Nucleic acids research 45, D1 (2017), D457–D465.

[33] PostgreSQL. 2018. PostgreSQL. https://www.postgresql.org/
[34] Sriram Ramabhadran, Sylvia Ratnasamy, Joseph M Hellerstein, and Scott Shenker.

2004. Prex hash tree: An indexing data structure over distributed hash tables.
In Proceedings of the 23rd ACM symposium on principles of distributed computing,
Vol. 37.

[35] Kai Ren, Qing Zheng, Swapnil Patil, and Garth Gibson. 2014. IndexFS: Scaling le
system metadata performance with stateless caching and bulk insertion. In High
Performance Computing, Networking, Storage and Analysis, SC14: International
Conference for. IEEE, 237–248.

[36] Patrick Reynolds and Amin Vahdat. 2003. Ecient peer-to-peer keyword search-
ing. In Proceedings of the ACM/IFIP/USENIX 2003 International Conference on
Middleware. Springer-Verlag New York, Inc., 21–40.

[37] Gerard Salton. 1989. Automatic text processing: The transformation, analysis,
and retrieval of. Reading: Addison-Wesley (1989).

[38] David J Schlegel, M Blanton, D Eisenstein, B Gillespie, J Gunn, P Harding, P
McDonald, R Nichol, N Padmanabhan, W Percival, et al. 2007. SDSS-III: The
Baryon Oscillation Spectroscopic Survey (BOSS). In Bulletin of the American
Astronomical Society, Vol. 39. 966.

[39] Shuming Shi, Guangwen Yang, Dingxing Wang, Jin Yu, Shaogang Qu, and Ming
Chen. 2004. Making Peer-to-Peer Keyword Searching Feasible Using Multi-level
Partitioning.. In IPTPS. Springer, 151–161.

[40] Hyogi Sim, Youngjae Kim, Sudharshan S Vazhkudai, Georoy R Vallée, Seung-
Hwan Lim, and Ali R Butt. 2017. TagIt: An Integrated Indexing and Search Service
for File Systems. (2017).

[41] Jerome Soumagne, Dries Kimpe, Judicael Zounmevo, Mohamad Chaarawi,
Quincey Koziol, Ahmad Afsahi, and Robert Ross. 2013. Mercury: Enabling
remote procedure call for high-performance computing. In Cluster Computing
(CLUSTER), 2013 IEEE International Conference on. IEEE, 1–8.

[42] sqlite.org. 2017. SQLite. https://sqlite.org.
[43] Houjun Tang, Suren Byna, Bin Dong, Jialin Liu, and Quincey Koziol. 2017. SoMeta:

Scalable Object-Centric MetadataManagement for High Performance Computing.
In Cluster Computing (CLUSTER), 2017 IEEE International Conference on. IEEE,
359–369.

[44] Houjun Tang, Suren Byna, François Tessier, Teng Wang, Bin Dong, Jingqing Mu,
Quincey Koziol, Jerome Soumagne, Venkatram Vishwanath, Jialin Liu, et al. 2018.
Toward Scalable and Asynchronous Object-centric Data Management for HPC.
In Proceedings of The 18th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), 2018. 113–122.

[45] Guido Urdaneta, Guillaume Pierre, and Maarten van Steen. 2009. Wikipedia
Workload Analysis for Decentralized Hosting. Elsevier Computer Networks 53,
11 (July 2009), 1830–1845. http://www.globule.org/publi/WWADH_comnet2009.
html.

[46] Brent Welch and John Ousterhout. 1985. Prex tables: A simple mechanism for lo-
cating les in a distributed system. Technical Report. CALIFORNIA UNIV BERKE-
LEY DEPT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES.

[47] Wikipedia. 2018. Distributed Hash Table. https://en.wikipedia.org/wiki/
Distributed_hash_table. Accessed: 2018-04-15.

[48] Dongfang Zhao, Kan Qiao, Zhou Zhou, Tonglin Li, Zhihan Lu, and Xiaohua Xu.
2017. Toward Ecient and Flexible Metadata Indexing of Big Data Systems. IEEE
Trans. Big Data 3, 1 (2017), 107–117.

[49] Dongfang Zhao, Zhao Zhang, Xiaobing Zhou, Tonglin Li, Ke Wang, Dries Kimpe,
Philip Carns, Robert Ross, and Ioan Raicu. 2014. Fusionfs: Toward supporting data-
intensive scientic applications on extreme-scale high-performance computing
systems. In Big Data (Big Data), 2014 IEEE International Conference on. IEEE,
61–70.

[50] Qing Zheng, Kai Ren, Garth Gibson, Bradley W. Settlemyer, and Gary Grider.
2015. DeltaFS: Exascale File Systems Scale Better Without Dedicated Servers. In
Proceedings of the 10th Parallel Data Storage Workshop (PDSW ’15). ACM, New
York, NY, USA, 1–6. https://doi.org/10.1145/2834976.2834984

12

https://wiki.apache.org/solr/SolrCloud
http://arxiv.org/abs/0808.1207
https://sourceforge.net/projects/libuuid/
http://lwn.net/Articles/175432/
https://www.elastic.co/guide/en/elasticsearch/guide/current/distributed-search.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/distributed-search.html
https://lucene.apache.org
https://doi.org/10.1137/0206024
https://doi.org/10.1137/0206024
http://arxiv.org/abs/https://doi.org/10.1137/0206024
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1109/NYSDS.2017.8085044
https://doi.org/10.1109/NYSDS.2017.8085044
https://github.com/dwyl/english-words
https://www.mongodb.com/
https://www.mysql.com
https://www.postgresql.org/
https://sqlite.org
http://www.globule.org/publi/WWADH_comnet2009.html
http://www.globule.org/publi/WWADH_comnet2009.html
https://en.wikipedia.org/wiki/Distributed_hash_table
https://en.wikipedia.org/wiki/Distributed_hash_table
https://doi.org/10.1145/2834976.2834984

	Abstract
	1 Introduction
	2 Background
	3 Key Requirements
	3.1 Functionality
	3.2 Efficiency
	3.3 Load Balance
	3.4 Scalability

	4 Distributed Adaptive Radix Tree
	4.1 Terminology
	4.2 Overview of DART
	4.3 DART Initialization
	4.4 Index Creation
	4.5 Query Response
	4.6 Index Update and Index Deletion
	4.7 Complexity Analysis on DART

	5 Evaluation
	5.1 Experimental Setup
	5.2 Efficiency
	5.3 Load Balance
	5.4 Scalability

	6 Related Work
	7 Conclusion
	References

