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Abstract—
High performance computing (HPC) architectures have been

adding new layers of storage, such as burst buffers, to tolerate
latency between memory and disk-based file systems. However,
existing file system and burst buffer management software
typically manage each storage layer separately. As a result, the
burden of moving data across multiple layers falls upon HPC
system users. To hide the complexity of managing the scattered
storage devices from applications, we introduce UniviStor, a data
management service offering a unified view of storage layers.
By considering each layer’s distinct characteristics, UniviStor
provides performance optimizations and data structures tailored
for distributed and hierarchical data placement, interference-
aware data movement scheduling, adaptive data striping, and
lightweight workflow management. UniviStor supports parallel
I/O library APIs, such as MPI-IO and HDF5. Our evaluations
on a large-scale supercomputer demonstrated that UniviStor
outperforms Data Elevator, a state-of-the-art transparent caching
solution for burst buffers by up to 17×, and Lustre by up to 46×.

I. INTRODUCTION

Upcoming exascale storage sub-systems in HPC are adding

new layers of heterogeneous storage devices. To improve

the I/O performance on HPC systems that are traditionally

limited by slow disk-based devices, the storage subsystem is

being expanded in both hierarchical and distributed manner.

Hardware such as NVRAM-based burst buffer is added on

each compute node, or on I/O nodes accessible by all compute

nodes, or on both. In addition, faster DRAM and Storage-Class

Memory (SCM) are being added on compute nodes.

Efficient use of the deep memory and storage hierarchy is

a complex task for application developers and HPC system

users without a unifying storage sub-system view. Existing

storage management solutions are generally designed to man-

age one or a few layers, and require applications or users to

explicitly move data across layers using each layer’s individual

solutions. For instance, data in node-local storage such as

DRAM and SSDs are addressable within the compute node

containing them using its local operating system. To share data

across nodes, libraries such as UPC [1], OpenShmem [2], and

DataSpaces [3] provide a global address space for moving

data across node-local DRAM. They expose to applications

with library-specific interfaces. On the other hand, shared burst

buffer has a larger capacity than node-local storage and is

connected to all the compute nodes via a high-speed network;

its data management software, such as Cray DataWarp [4] and

DDN IME [5] expose to applications POSIX and parallel I/O

interfaces (e.g. MPI-IO [6], HDF5 [7], and netCDF [7], [8]).

The distinct interfaces and data services for each layer make

data management a complex task. For instance, a memory-

hungry application using HDF5 may want to place part of its

file on DRAM and spill the rest to the shared burst buffer.

Using existing solutions, the application developer has to

resolve the interface incompatibility and to explicitly invoke

the service for different layers. DAOS [9] is an object-based

storage system being developed as a replacement for Lustre to

unify different storage devices, but its current deployment re-

quires significant storage infrastructure changes. Hermes [10]

is another recent I/O buffering system developed to automate

data movement across storage layers, but current design relies

on the fact that users know the behavior of their applications

in advance.

The data management task is further complicated by the

transiency of data on node-local storage and shared burst

buffer, as they are typically allocated to a job on-demand

and data integrity is assured within the job’s life cycle [11].

Consequently, important data have to be flushed to a paral-

lel file system (PFS) for long-term persistence. Transparent

caching [12] has been either proposed or supported by several

burst buffer software [4], [13], [14] to enable an I/O redirection

between burst buffers and PFS. Likewise, these solutions are

only designed for flushing data from one layer to PFS without

an integrated solution considering all available layers.

Providing a unified storage view integrating memory and

storage layers is challenging. First, a unified address space is

needed for data in all layers. Second, each layer has distinct

performance characteristics, an integrated system has to be

optimized for each layer. For instance, DRAM or SCM has

high performance that is sensitive to context switches and task

placement among cores. In contrast, shared storage layers,

such as shared burst buffer and PFSs are vulnerable to the

I/O contention [15], [16], [17] caused by multiple processes

concurrently accessing the same file.

To ease the burden of rewriting existing codes, an integrated

storage solution should be compatible with standard parallel

I/O libraries, such as MPI-IO, HDF5 and netCDF. While

existing software generally supports standard I/O on the shared

burst buffer, there is still a lack of counterpart support on the

node-local DRAM/burst buffers. Furthermore, a core benefit

of the DRAM and burst buffer layer is the acceleration

of scientific workflows with in-situ/in-transit analysis, where

analysis programs can immediately read data that are close
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to computing nodes. However, the aforementioned parallel

I/O libraries do not support this feature, forcing analysis

programs to read only after a simulation completes or requiring

an application-specific workflow management implementation.

Although ADIOS [18], [19] supports in-situ/in-transit analysis

using DataSpaces/FlexPath [20], applications based on other

I/O libraries have to be rewritten with ADIOS’ I/O interface.

Towards providing a unified view of various storage layers,

we have designed and implemented UniviStor, a system that

exposes the distributed and hierarchical storage spaces to ap-

plications as a single mount point. UniviStor adopts the design

philosophy of several state-of-the-art data service systems [21],

[22], [23], [24] that decouple address management from data

management, and implement the address management as a

distributed key-value service. More importantly, it extends

this philosophy with a unified address management for dif-

ferent layers and location-aware data service. Furthermore,

we have developed an interference-aware resource scheduling

procedure that accelerates writing and reading data using the

DRAM/SSDs distributed on compute nodes. We have intro-

duced adaptive data striping for load balanced data movement

to the disk-based PFS. UniviStor provides this unified service

via the MPI-IO interface, which is used by high-level I/O li-

braries such as HDF5. We have also added parallel I/O support

for in-situ/in-transit analysis on DRAM/burst buffers with a

lightweight workflow management. The research contributions

of this paper include:

• Design and implementation of UniviStor to integrate

node-local and shared storage devices into a unified stor-

age space using a distributed metadata service to manage

the address space. UniviStor provides compatibility with

existing I/O APIs and hides the complexity of managing

different storage layers.

• Performance optimization strategies to support distributed

and hierarchical placement of data using log-structured

writes and interference-aware data movement scheduling

for fast node-local caching.

• An analytical performance model to guide adaptive data

striping on a parallel file system.

• A lightweight mechanism to orchestrate applications with

data access dependencies when data are distributed across

a multi-layer storage subsystem.

We have evaluated UniviStor using both benchmarks and

application I/O workloads, and compared our system with the

state-of-the-art solutions, including Data Elevator and Lustre,

on a production HPC system. Our experiments demonstrate

that UniviStor integrates both node-local and hierarchical

storage layers efficiently. UniviStor outperforms Data Elevator

and Lustre by up to ≈17× and ≈46×, respectively. We have

also evaluated the performance of UniviStor in using various

combinations of storage hierarchy to support data generation

and analysis workflow.

In the remainder of the paper, we introduce UniviStor ar-

chitecture and optimization strategies in Section II. In Section

III, we first evaluate UniviStor with optimizations using mi-

crobenchmarks, and then compare its performance with Data

Elevator and Lustre file systems using both microbenchmarks,

I/O kernels from scientific simulations, and workflows. We

then discuss related work (§IV) and conclude the paper (§V).

II. UNIVISTOR INTEGRATED STORAGE

A. Overview

We show the high-level architecture of our proposed inte-

grated storage system in Fig. 1. The memory and storage layers

shown in the figure include local DRAM and/or NVRAM-

based burst buffer on each compute node (CN), shared SSD-

based burst buffer (on specialized nodes accessible by all com-

pute nodes), as well as a disk-based Parallel File System (PFS).

UniviStor services include managing metadata, caching, and

moving data in the hierarchy.

UniviStor server processes are launched as a parallel pro-

gram on all the compute nodes allocated to an application

job. This job can include one or more coupled parallel client

applications (e.g., App 1 and 2 in Fig. 1). The number of

servers on each node is configurable by users and is set to

a default value of 1. The UniviStor servers collectively serve

the I/O requests from the client applications, and manage the

hierarchical storage space with several services. Data caching
service temporarily cache clients’ writes to the fastest avail-

able memory or storage device, including node-local DRAM

or SSDs, shared burst buffer. If the dataset is too large to fit

in DRAM and burst buffer, data is written to disk-based PFS.

When a client process requests a portion of data, each

client process’s read requests are directed to the server process

co-located on the same compute node. The server reads the

requested data from the storage space and returns the data to

the client. Delegating the read requests to the co-located server

process enables data sharing among processes in different

programs. In Fig. 1, processes in App 1 and App 2 can share

data with the help from the server processes running on all

compute nodes. In order to find the requested data in the

hierarchical storage space, a distributed metadata service is

provided by all the servers for data look-up. Server-side flush
service is triggered by the client program automatically at the

file close time, in which servers collectively flush the cached

data to a PFS for long-term data persistence. An application

without data persistence requirement can optionally disable the

flush service.

UniviStor clients are parallel applications launched in the

same job as the UniviStor servers (i.e., App 1 and App 2 in

this example). Each application is linked with the UniviStor

library, which transparently redirects their parallel I/O requests

to UniviStor servers. These requests can be issued by MPI-IO,

or high-level I/O libraries such as HDF5. I/O redirection has

two benefits. First, redirecting read/write requests to UniviStor

servers’ faster storage allows different applications to share

data directly on the high throughput storage layers, avoiding

the interaction with the slower disk-based storage. Second,

redirecting the file close requests to UniviStor servers trig-

gers automatic data flush operations, during which UniviStor

servers asynchronously move the cached data to the long-term
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Fig. 1: A high-level view of UniviStor’storage hierarchy.

Fig. 2: Distributed and hierarchical data placement.

storage layers concurrently while the application processes

continue to perform their computation. However, redirecting

all the I/O requests without considering their data dependency

can incur consistency issues. To avoid this issue, we imple-

mented UniviStor with a lightweight workflow management

component for coordinating the order of data accesses from

different client applications.

We have implemented UniviStor client as an I/O driver

in the MPI-IO layer. Users can enable this I/O driver by

setting the environment flag “ROMIO FSTYPE FORCE” as

“UniviStor”. In order to use UniviStor, users start the Uni-

viStor server program before launching the client applica-

tions. UniviStor servers automatically detect applications’

membership with its connection management module that

handles clients’ connection and disconnection requests sent

from MPI_Init and MPI_Finalize, respectively. The

server processes terminate after all the client applications exit.

In the following subsections, we describe UniviStor’s data

management strategies (§II-B), interference-aware scheduling

of the servers (§II-C), adaptive data striping (§II-D), and light-

weight workflow management (§II-E).

B. Data management in the integrated storage

UniviStor provides an integrated view of both distributed

and hierarchical storage spaces. We make four design choices

to achieve this goal: distributed and hierarchical data place-

ment, virtual addressing, distributed metadata service, and

location-aware read service.

1) Distributed and hierarchical data placement: We have

designed a Distributed and Hierarchical data Placement (DHP)

strategy to efficiently place data on the multi-layer storage

space. Using DHP, when a client process opens a file for

writing, a memory-mapped log-structured file is created (via

mmap) in DRAM. The size of the file is configurable by

applications. The file persists beyond the client process’s life

cycle in the form of shared memory managed by UniviStor.

Data is first written to this file until its allocated space depletes.

When space is not available in the memory-mapped file, a new

log file is created in the next available storage layer (e.g., node-

local storage or shared burst buffer) and the subsequent data is

written to it until exceeding the new file’s allocated capacity.

This operation repeats across all the storage layers until data

reaches the destination storage layer set by the application,

which is typically a disk-based PFS.

We illustrate DHP in Fig. 2 with an example. Let D1-D16 be

the data segments laid out sequentially within a single logical

shared file, issued by two client MPI processes located on

two compute nodes. Assuming each segment is sized 1, the

capacity of each log on the node-local storage and a shared

burst buffer are 2 and 3, respectively. With DHP, segments

from each process are physically stored in different logs spread

across three storage layers. This design has two benefits: first,

it transforms the “shared write” pattern into “file-per-process”

write pattern. In Fig. 2, D1-D16 originally belong to the same

shared file, but are physically stored as log files for each

process. This transformation accelerates writing to the shared

burst buffer and the PFS with reduced I/O contention [25],

[26]. Second, this approach takes advantage of the storage

space available on all storage layers.

By default, UniviStor configures the capacity of each log as

c/p, where c is the capacity and p is the number of processes.

For node-local storage, c is the available capacity of the log’s

local storage, p is the number of client processes launched on

its local node. In the shared storage layer (e.g. shared burst

buffer), all devices are shared by all the clients across nodes.

Hence, c is the available capacity of all storage devices in this

layer, p is the total number of client processes in the parallel

application(s).

Internally, the storage space of each log file is formatted as

a set of data chunks. Data are appended inside each chunk

in a log-structured manner. This log-structured writes can

maximize the bandwidth of both disk-based PFS and SSD-

based burst buffer with the sequential write pattern. UniviStor

also creates a free chunk stack for each log file. This stack

records all the free chunk IDs. Once a chunk is used up, a new

chunk ID is popped up from the stack and data are written to

the corresponding chunk. Once a chunk is overwritten/deleted,

its ID is pushed back to the stack for reuse.

2) Virtual addressing: As DHP places data in different

layers of storage, reading data remains a challenge because

segments issued by each process may reside on logs belonging

to different storage layers. Locating the storage device of a

requested segment requires a global addressing scheme that

spans across multiple layers. In order to uniquely locate a

segment among the individual process’s log files, we introduce

the concept of a Virtual Address (VA). The VA of a segment
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Fig. 3: Distributed metadata service.

located on ith storage layer is defined in Eq. 1.

V Ai =
i∑

k=0

Ci +Ai (1)

In Eq. 1, Ci represents the capacity of a log file in the ith

storage layer. Ai denotes the physical address of a segment

within that log file. Using the example in Fig. 2, segment

D4’s physical address in Log3 is 1, its VA is 3. VA identifies

both the storage layer of a segment and its physical address

within its log file on that layer.

3) Distributed metadata service: The adoption of VA itself

is insufficient for reading data. On the one hand, the VA of

each segment is only available for the logs of the producer (or

source) process and segments generated by different processes

can have the same VA. For instance, in Fig. 2, D4 and D12 are

produced by source processes on Nodes 1 and 2, respectively.

They are indistinguishable since both have a VA of 3. On the

other hand, using log-structured write, VA of a segment is

not the same as its offset in a logical file. For instance, in

Fig. 2, D12’s logical offset is 12 in the logical shared file, but

its VA is 3. Due to this difference between logical offset and

VA, UniviStor requires to maintain a structure that maps each

segment’s offset to its VA and the source process information.

A naı̈ve solution is to record the mapping information

for each file segment on a global map, and store the map

on one of the server processes. However, such centralized

approach is not scalable as the server containing the map

becomes a bottleneck. Instead, UniviStor stores this map using

a distributed key-value (KV) store maintained by all UniviStor

servers. In Fig. 3, a metadata record is created for each file

segment (M1-M16 for D1-D16). Each record contains several

attributes that associate its segment’s logical offset with its VA

and source process. In Fig. 3, FID and offset locate the logical

file of a segment and its offset in the file, respectively. ProcID

and VA point to the source process and its virtual address,

respectively. These records are distributed on different servers

based on their logical offsets. For instance, in Fig. 3, M1-M16

are partitioned into 4 ranges based on their offsets (1-16), and

these ranges are assigned to servers on two compute nodes in

a round-robin manner. Consequently, M1-M16 are distributed

to the servers based on their belonging ranges.

With this distributed metadata service, when a server re-

ceives a read request from its co-located client process (e.g.

request for D12 on Node 2 in Fig. 3), it looks up this segment’s

source process (process on Node 2) and VA (3 for D12),

and forwards the request to a remote server (e.g., a server on

Node 2). Upon receiving the read request, the server on Node

2 retrieves the requested file segment based on its VA, and

returns it to the requesting server, and the requesting server

then delivers the segment to its client.

4) Location-aware read service: The read service assumes

that each log file is only visible within its host compute node.

For instance, in Fig. 3, D10 resides on the local storage of

Node 2, its log file (Log2) is only visible to Node 2. In

this case, each read request is directed to the server whose

node contains the requested segment (e.g. Node 2 for D10).

Consequently, each read request incurs at least one round-trip

of data transfer across the network. However, the requested

segment can also reside on the shared burst buffer (e.g. D12

in Fig. 3), with its host log globally visible to all compute

nodes, the requesting client can directly retrieve the segment

from the shared burst buffer, the aforementioned read service

incurs additional data transfer cost. Furthermore, this read

service can also introduce additional memory copy overhead

if the requested segment resides on the local storage, since

the client’s read request goes through the co-located server

process.

To further improve read performance, we have designed

a location-aware read service. To avoid the memory copy

overhead, each UniviStor server maintains a shared metadata

buffer in its local storage that caches the metadata records for

all the locally generated segments. When the client issues a

read request, it first compares the requested segment with the

locally cached metadata. All the portions of requested segment

cached locally are directly retrieved from the local storage,

without going through the co-located UniviStor servers. To

avoid additional data transfers among UniviStor servers, we

allow the client processes to directly retrieve the metadata

of the requested file segment. Once the client acquires the

metadata, it can distinguish the portion of the segment that

resides on the shared burst buffer, and directly retrieves this

portion from the shared burst buffer without transferring data

between the remote servers.

C. Interference-aware resource scheduling for local caching

UniviStor accelerates applications by directing their I/O re-

quests to the node-local memory or storage space. Performance

benefit of UniviStor depends on how application processes

can exploit the multi-core parallelism for parallel memory ac-

cesses. Existing HPC systems typically adopt Linux’s default

task scheduler (i.e. Complete Fair Scheduler (CFS) [27]) to

schedule processes among the cores. Although CFS works

well for the web servers and desktop applications that have

the intermittent and random arrival of I/O requests, it is not

optimized for the highly concurrent and synchronized scien-

tific workloads. In Fig. 4(a), we show the potential issues with

CFS, where 6 processes are launched on the same compute

node with two NUMA sockets and 6 cores (C1-C6). P1 1 and

P1 2 are client processes from Application 1. P2 1 and P2 2

are client processes from Application 2. These four processes
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Fig. 4: Interference-aware resource scheduling.

are served by UniviStor server processes S1 and S2. CFS is

agnostic about which process belongs to which application

and placing processes without such awareness may result in

two issues. First, P2 1 and P1 1 are stacked together on the

same core. This stacked placement not only incurs interference

between P2 1 and P1 1 causing context switches, but also

under-utilize the memory and network bandwidth provisioned

by the other cores (e.g., C6). Second, without this awareness,

processes from the same application may be placed in the same

NUMA socket (e.g., S1 and S2 in Fig. 4(a)). Consequently,

they can only use the CPU/memory/network resources from

one NUMA socket.

As UniviStor servers are deployed across all the compute

nodes allocated to each individual job, it has the knowledge

of how many processes of each parallel program (including

the server itself) are co-located on the same node. Using this

insight, UniviStor servers evenly spread the processes of each

program across all the NUMA sockets. In Fig. 4(b), processes

from all the three programs (P 1 i, P 2 j, and S k) are spread

across cores on the two NUMA sockets. In this way, each

process can use all the NUMA sockets without interfering with

each other. In case a program’s process count on a compute

node is not divisible by the number of NUMA sockets, the

remainder cores are assigned to the less loaded NUMA socket

to balance NUMA resource utilization.

This strategy causes an issue when the total process count of

the server and application programs exceeds the available CPU

cores. A natural solution is to assign the additional processes

to the existing cores already allocated to the same program.

For instance, in Fig. 4(c), P1 3 and P1 4 are assigned on

C1 and C4, respectively. This approach can potentially under-

utilize other cores, since programs may stay at a distinct

state (e.g., busy/idle/exit), and have differentiated demands

for cores. In Fig. 4, S1 and S2 are both idle. This idle state

is common for the typical scientific simulations: their life

cycles alternate between computation and checkpoint phases;

UniviStor servers are active only when an application finishes

one or more rounds of computations, checkpoint data to the

distributed DRAM layer or burst buffer, followed by the close

operation that triggers server-side flush operation. To utilize

the resources, UniviStor assigns the additional processes in

a state-aware manner as shown in Fig. 4(d). When server-

side flush is not triggered, application processes can utilize

the server cores for computation (e.g. P1 3 and P1 4 use

C3 and C6, respectively). When data flush is triggered, client

processes on the server cores are migrated to other cores to

let server program quickly complete. In Fig. 4(d), P1 3 and

P1 4 can be migrated to C1 and C4 respectively. When the

application exits, UniviStor server reassigns its cores to the

existing processes based on the rules depicted in Fig. 4(b).

This adaptive migration use all the cores efficiently under over-

subscription scenario.

D. Adaptive data striping for fast data flush

UniviStor’s server-side asynchronous flush operation allows

applications to continue their computation without waiting for

writing the data to PFS. The benefit of asynchronous writes

heavily depends on UniviStor servers’ flush bandwidth. A slow

flush operation may lead to servers constantly competing with

their client applications for shared resources (CPUs, memory,

and network).

A simple and widely used approach to increase write

bandwidth to PFS is to stripe (i.e., split) each shared file across

all available storage devices (e.g., Object Storage Target (OST)

in Lustre file system) and let each server write a contiguous

file range evenly partitioned across the servers. However, this

approach has limitations. For instance, striping each file across

all storage units has no advantage when only a small number

of servers are flushing data, because each server has to contact

all storage units, and the additional synchronization overhead

diminishes the benefits of a large stripe count [28], [29]. In

contrast, a large number of servers concurrently flushing to

all storage units causes load imbalance: the write requests are

randomly directed to storage units. In any given time period,

some storage units can receive many more write requests

than others. This unbalanced load results in bandwidth under-

utilization [30].

In order to address these issues, we have designed an

adaptive data striping approach. The core idea is to adjust the

striping pattern of files dynamically in two cases: 1) When

the server count is smaller than the available storage units on

PFS, UniviStor maximizes each server’s flush bandwidth by

striping its contiguous file range on a distinct set of storage

units; 2) when the server count is larger, it balances concurrent

flushing servers on each storage unit.

A key question for the first case is deciding on the number of

distinct storage units each servers’ file range is striped across

(Cper server). UniviStor calculates Cper server by Equation

(Eq.) 2.

Cper server = min(Cmax units/Cservers, α) (2)

In Eq. 2, Cmax units is the total storage unit count in the

PFS and Cservers is the server count. Our goal is to set

Cper server as large as possible given that it does not exceed

α, α represents the minimum storage unit count that saturates

a server’s write bandwidth. The stripe size and count of a

shared file based on Cper server is derived in Eq. 3 and Eq. 4,

respectively. In Eq. 3, Sfile is the file size and Smax is the
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maximum allowable stripe size in the system.

Sstripe = min(Sfile/(Cservers × Cper server), Smax) (3)

Cstripe = min(Sfile/Sstripe, Cmax units) (4)

The second goal is balancing the workload when the number

of flushing servers is larger than the maximum number of

storage units. As the servers need to overlap their flush on the

storage units. In this case, one potential approach to evenly

distribute the per storage unit’s workload is by configuring

the stripe size following Eq. 5.

Sstripe = Sfile/Cservers (5)

In Eq. 5, the file range of each server is striped to one

storage unit, and all storage units are assigned to servers in

a round robin manner. This approach balances the number of

flushing servers per storage unit when Cservers is divisible

by Cmax units. However, load balancing issue still remains

otherwise. For instance, assume a Lustre file system has 248

OSTs. Using 512 flushing servers, 16 OSTs (512%248) have to

sustain the flushing workload from one additional process and

become potential stragglers. To resolve this issue, we adjust

Cservers to Cdum servers (Eq. 6).

Cdum servers = �Cservers/Cmax units� × Cmax units (6)

It can be perceived that Cdum servers ≥ Cservers, resulting

in a smaller stripe size than that in Eq. 5. In our example,

Cdum servers is set to 724 instead of 512. Applying this larger

value to Eq 5 results in a smaller stripe size that amortizes the

workloads across all OSTs.

E. Lightweight workflow management

Uncoordinated redirection of application I/O requests to the

UniviStor servers may lead to reading stale data. For example,

an analysis application can read incomplete or stale data when

it reads the file being written by a simulation application.

Without coordination, the read requests have to wait until

the writing process completes, or the application developers

have to resolve data dependency by writing their own code

in order to run these applications concurrently. Similarly, an

application may overwrite a file that is being read/written

by another application. To avoid conflicting accesses and to

enable in-situ/in-transit analysis on distributed and hierarchical

storage layers, we designed a lightweight workflow manage-

ment scheme in UniviStor that coordinates applications with

data dependencies. Users can enable this feature optionally

by setting an environment variable ENABLE WORKFLOW.

An application attempting to acquire a lock on a file for

reading has to wait until another writing application release

it. Similarly, a writer has to wait until another reader/writer

releases the lock on the shared file. UniviStor attaches the lock

acquire/release operations to MPI File open/MPI File close,

instead of forcing applications to use separate lock functions.

Internally, lock acquire/release is enforced by monitor-

ing/updating a shared state file located on a file system

(e.g. PFS): A writing/reading application locks a file by

updating this file’s record in the state file to WRITING /

READING state; it releases the lock by updating its state

to WRITE DONE / READ DONE. With these operations,

a writing application operating on a file needs to wait if

it is in WRITING / READING state, and update its state

to WRITE DONE upon completing the writes. Similarly, a

reading application on a file needs to wait if the file is in

WRITING state, and update its state to READ DONE upon

read completion. In addition, FLUSHING and FLUSH DONE

states are defined to avoid the conflicting accesses when a

write application is writing a file currently being flushed by

the servers to PFS.

A key design consideration is monitoring/updating the state

file for locking. In particular, an approach that involves all

the processes of the writing/reading applications concurrently

operating on the state file can largely offset UniviStor’s

performance benefit. Instead, UniviStor piggybacks lock ac-

quire/release operations with MPI File open/MPI File close

operations in the MPI-IO layer, and only allows the root

process to operate on the state file. When an applica-

tion opens a file in a write-only/read-only mode, it at-

tempts to acquire the write/read lock. When an application

closes a file in write-only/read-only mode, it releases the

write/read lock. This design choice is based on the fact

that MPI File open/MPI File close are collective operations,

attaching the locking mechanism to these functions avoids

additional synchronization overhead.

F. Implementation

We have implemented UniviStor client in MPICH 3.3 [31],

where the UniviStor server is a separate MPI program

launched across all the compute nodes allocated to a job. For

transparent support of the standard parallel I/O libraries, such

as MPI-IO, HDF5, and netCDF that are generally stacked

on top of POSIX, a typical solution is to directly intercept

the underlying POSIX function calls. However, this approach

requires an extensive implementation of the full list of POSIX

functions and demands that the implementation complies with

the POSIX semantics, whose consistency model is widely

considered as the key performance limiting factor.

In order to make our system efficient, portable, and transpar-

ent, we have developed an UniviStor I/O driver for MPI-IO’s

Abstract-Device Interface (ADIO) [32], and implemented Uni-

viStor within this layer. ADIO allows file system developers

to implement their own file system feature for MPI-IO while

exposing to applications the same MPI-IO interface. As MPI-

IO is the underlying library for other high-level parallel I/O

libraries (e.g., HDF5), this approach makes our system readily

extensible to these libraries.

Our I/O driver implementation is optimized based on MPI-

IO semantics. For instance, when a shared file is opened/closed

by all the processes, all the processes have to send the same

metadata requests (e.g., file attributes) to the same UniviStor

server (determined by the file name hash). However, this

all-to-one operation is not a scalable option. In our ADIO

implementation, when all processes open/close a shared file
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using MPI-IO, only the root (MPI rank #0) process operates on

the metadata and broadcasts the results to other processes. We

have also provided an option for users to optimize the HDF5

operations. When processes open/close a shared file using

HDF5 without a collective optimization, all processes need to

read/write the metadata region stored on the same UniviStor

server. Instead, when the user enables HDF5 optimization,

our ADIO layer is able to detect HDF5 open/close calls and

only the root process operates on the metadata region and

broadcasts the result to all other processes.

III. EVALUATION

To evaluate UniviStor, we first used micro-benchmark work-

loads using various optimizations (§III-B). We then used

I/O workloads from real scientific applications to compare

UniviStor with the state-of-the-art storage management solu-

tions (§III-C). We have also evaluated UniviStor’s support for

scientific workflows with reading and writing data on multiple

storage layers (§III-D).

A. Experimental setup

We ran all our experiments on Cori, a Cray XC40 system

located at the National Energy Research Scientific Computing

Center (NERSC), consisting of 2388 Intel Xeon “Haswell”

compute nodes and 9688 Intel Xeon Phi “Knight’s Landing”

nodes. Our experiments used the “Haswell” partition, where

each node has 32 cores spread across two NUMA sockets and

128 GB DDR4 2133MHz DRAM. All nodes are connected to

a Lustre file system with 248 object storage targets (OSTs).

Additionally, this system has been deployed with a layer of the

shared burst buffer. The burst buffer is allocated to individual

jobs based on the request made in a job script.

Comparisons: In this evaluation, we compare UniviStor

with Data Elevator [14] and Lustre [33]. Data Elevator is a

software library to use shared burst buffer as a caching layer

before writing data to PFS. It relies on DataWarp [4] to manage

the burst buffer and Lustre as PFS. In comparison, besides the

shared burst buffer and PFS, UniviStor unifies the distributed

storage devices (i.e., DRAM in this evaluation) on all compute

nodes. UniviStor also provides a “file-per-process” format

(§II-B1) to store the cached data. Lustre is a traditional and

the most popular disk-based parallel file system for HPC, but

it does not support data caching on burst buffers. Applications

can only use Lustre to write data from local DRAM to the

file system. The comparisons between UniviStor with Lustre

shows the benefits of managing data on both the DRAM and

a shared burst buffer.

I/O workloads: We have used both micro-benchmarks and

representative I/O workloads from real scientific applica-

tions. The micro-benchmarks are from the HDF5 source

code [34], where each process creates a shared HDF5 file and

writes/reads an independent but overall contiguous block of

data. The scientific I/O workloads, including VPIC-IO [35]

and BD-CATS-IO [36], are I/O kernels of a large-scale space

weather plasma simulation code and a corresponding data

analysis code. In VPIC-IO, each MPI process writes data

related to eight million particles, and each particle has eight

floating point properties with a total size of 32 bytes. The total

size of output data is n×8×220×32, where n is the number of

MPI processes. BD-CATS-IO implements reading properties

from the datasets similar to that produced by VPIC, for a

parallel clustering algorithm to identify the irregularly shaped

clusters from the particles. Our tests read all eight properties

of all particles, similar to the BD-CATS analysis.

Performance metrics: We measured the time required to

open, write, read, and close a file. We define I/O rate as

the ratio of the size of data read/written to the I/O time. We

placed two UniviStor servers on each compute node to exploit

UniviStor’s NUMA benefits. We placed the same number of

Data Elevator servers, i.e., 2 on each compute node. We scale

the application from 64 to 8192 processes with 2× increments

and run each test at least three times and report the best

performing results.

B. Evaluation with micro-benchmarks

In this section, we evaluate the optimizations of UniviStor

for reading, writing, and flushing with I/O workloads on both

distributed and hierarchical storage, and compare with state-

of-the-art solutions.

I/O with interference-aware scheduling (IA) and collective
file open/close (COC). We report the performance of writing

256MB data per process to UniviStor’s distributed DRAM

space in Fig. 5a. We can observe that each feature has a distinct

benefit, as the performance drops evidently when either feature

is disabled. IA avoids inter-process interference and efficiently

utilizes the on-node resources, and COC transforms the all-to-

one/one-to-all communication to one-to-one communication

between the root client and the server. For the read perfor-

mance (in Fig. 5b), we observed similar benefits. Overall, as

the number of processes varies, the combined improvement

of IA and COC is from 1.45× to 2.5× (1.9× on average),

1.1× to 3.5× (1.6× on average) speedup compared with when

either is disabled, respectively, for the writes; and 1.13x to

1.5× (1.25× on average), 1.15× to 1.8× (1.3× on average)

speedup, respectively, for the reads.

Server-side data flush with adaptive data striping (ADPT)
and interference-aware resource scheduling (IA). In this test,

we explore the impact of IA and ADPT (see Section II-D)

when data are flushed from UniviStor’s distributed DRAM

space to the Lustre PFS. Fig. 5c reports the flushing I/O

rate. When IA is enabled, the co-located client processes are

migrated away from the flushing servers during the flush,

and moved back after the flush, allowing the servers to flush

without interference from the co-located clients. When ADPT

is enabled, each flushing server avoids the synchronization

overhead with the OSTs and balances the per OST workload

on Lustre. The results suggest that enabling both IA and

ADPT can improve the performance by 1.9× to 2.7× (2.3×
on average).

Comparing UniviStor with Data Elevator and Lustre using
micro-benchmarks. Fig. 6a compares UniviStor’s overall write

performance with Data Elevator and Lustre. In this compar-

ison, we focus on investigating UniviStor’s performance on
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(a) Write (b) Read (c) Flush

Fig. 5: Performance of writing, reading, and flushing data with Interference-Aware (IA) resource scheduling, Collective

Open/Close (COC), or ADaPTive data striping (ADPT). The y-axis is logarithmic scale.

(a) Write (b) Read (c) Flush

Fig. 6: Comparing UniviStor with Data Elevator and Lustre with micro-benchmarks. The y-axis is logarithmic scale.

each storage layer with all optimizations enabled. We observe

that UniviStor using both DRAM and burst buffer outperform

Data Elevator and Lustre. UniviStor/DRAM performs the best

due to the raw bandwidth benefit from UniviStor’s distributed

DRAM. The performance advantage of UniviStor/BB over

Data Elevator is because UniviStor reorganizes processes’

writes on burst buffer using the “file-per-process” format,

whereas Data Elevator lays out processes’ data in one shared

HDF5 file. Overall, UniviStor/DRAM and UniviStor/BB out-

perform Data Elevator by 3.7× to 5.6× (4.3× on average)

and 1.2× to 1.7× (1.3× on average), respectively, as the

number of processes varies between 64 and 8192. Compared

with Lustre that stores data on the disk-based PFS, UniviS-

tor/DRAM and UniviStor/BB deliver up to 46× and 12×
performance improvement, respectively. We observe the same

pattern for the read performance, as shown in Fig. 6b. Overall,

UniviStor/DRAM and UniviStor/BB outperform Data Elevator

by 2.7× to 4.5× (3.6× on average) and 1.15× to 1.6× (1.2×
on average) for read, respectively. They deliver up to 16.8×
and 5.4× speedup over Lustre, respectively.

UniviStor supports flushing from DRAM and burst buffers

to the persistent storage (e.g. Lustre). Data Elevator only

supports flushing from burst buffers to Lustre. Hence, we track

the time for UniviStor in two different cases: UniviStor/DRAM

and UniviStor/BB. They refer to I/O rate of flushing data

from DRAM to Lustre and burst buffer to Lustre. Fig. 6c

compares UniviStor’s flush I/O rate with Data Elevator, we

can see that the I/O rate of UniviStor/BB are higher than

Data Elevator since UniviStor balances the workload on Lus-

tre OSTs and avoids servers’ synchronization overhead with

Fig. 7: Total I/O time of writing 5-time-step VPIC-IO data.

OSTs using ADPT discussed in Section II-D. Meanwhile, we

observed even higher performance in UniviStor/DRAM, due

to the faster DRAM bandwidth than burst buffer. Overall,

UniviStor/DRAM and UniviStor/BB outperform Data Elevator

by 1.8× to 2.5× (2× on average) and 1.6× to 2.5× (1.8× on

average), respectively.

C. Evaluation with scientific I/O workloads

Scientific simulations such as VPIC [35] typically progress

in time steps. After one or more time steps of computations, all

processes concurrently checkpoint data to the storage system.

We use the VPIC-IO kernel to evaluate UniviStor’s support

for such I/O workload. In VPIC-IO, each process writes eight

variables with a total size of 256MB in each time step. We run

VPIC-IO with 5 time steps and 10 time steps. Based on our

current hardware configuration, UniviStor’s distributed DRAM

space is insufficient for containing data pertaining to 10 time

steps. The additional data has to be spilled to a storage layer,

such as a burst buffer. To emulate the computation behavior,
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Fig. 8: Total I/O time of writing 10-time-step VPIC-IO data

with UniviStor using different storage layers.

we manually add a sleep interval of 60 seconds between

checkpoints. Both UniviStor and Data Elevator overlap the

server-side flush operation with the sleep time, by temporarily

caching data in DRAM or burst buffer, and letting servers

asynchronously flush the data to the Lustre file system. There-

fore, I/O time of both UniviStor and Data Elevator include

the time for writing to DRAM/burst buffer layer, as well as

flushing the last timestep data (labeled with “Flush” in suffix

in the plots). The I/O time for Lustre represents only the time

for writing to the Lustre file system for all the time steps.

VPIC-IO with 5 time steps on a single layer of storage
space. In Fig. 7, we compare the I/O time with UniviStor,

Data Elevator (DE), and Lustre to store the data generated by

VPIC-IO. We configure UniviStor to write its data to DRAM

(UniviStor/DRAM) and to burst buffer (UniviStor/BB). As

expected, writing data to DRAM is the fastest. On the other

hand, the performance of UniviStor/BB is almost equal to that

of DE at smaller scale, but gradually outperforms DE as more

processes are involved. This is because UniviStor/BB’s “file-

per-process” format mitigates the contention issue faced by

DE at larger scales. It is also observable that UniviStor/BB’s

flush is faster than that of DE, due to the flush optimization

introduced in UniviStor (§ II-D). Overall, UniviStor/DRAM

and UniviStor/BB are 1.9× to 3.1× (2.5× on average) and

1.1× to 1.6× (1.3× on average) faster than that of DE.

VPIC-IO with 10 time steps on multiple layers of
storage. In this test case, the accumulated VPIC-IO data

does not fit in the DRAM and UniviStor has to spill roughly

half of the data to burst buffer. We label to this case as

(DRAM+BB+Disk) in Fig. 8, where “Disk” means the time

for flushing the last time step data to the file system. For

comparison, we measure the time of caching data entirely

in the burst buffer (BB+Disk) and Lustre file system (Disk).

It can be observed that UniviStor/(DRAM+BB+Disk) writes

much faster than UniviStor/(BB+Disk) and UniviStor/(Disk),

with 1.2× to 1.6× (1.4× on average) speedup over UniviS-

tor/(BB+Disk), and 1.4× to 2× (1.7× on average) speedup

over UniviStor/(Disk), respectively, because UniviStor benefits

from both the DRAM and burst buffer bandwidth. These tests

also demonstrate the benefits of UniviStor’s data management

on distributed and hierarchical storage.

Fig. 9: Total time of finishing the workflow consisting of 5-

time-step VPIC-IO and BD-CATS-IO. Y-axis is logarithmic

scale.

Fig. 10: Elapsed time of the workflow consisting of a 10 time

steps of VPIC-IO writes and BD-CATS-IO reads.

D. Support for scientific workflows

Scientific applications often involve workflows, where data

producers and consumers share data. To evaluate UniviStor’s

support for scientific workflows, as introduced in § II-E, we

use BD-CATS-IO [36] to read data produced by VPIC-IO.

We configure both programs to run 5 time steps and 10 time

steps. Similar to the experiment in § III-C, data produced in

10 time steps does not fit entirely in the DRAM layer and

UniviStor has to spill the data to burst buffer. We evaluate

UniviStor’s workflow management by comparing two modes:

BD-CATS-IO and VPIC-IO running concurrently orchestrated

by UniviStor’s workflow management (“overlap” mode); and

BD-CATS-IO running after VPIC-IO finishes all its time steps

(“nonoverlap” mode). We evaluate UniviStor’s acceleration of

data movement across storage layers by comparing UniviStor’s

non-overlap mode with Data Elevator and Lustre using the

same execution sequence, i.e., BD-CATS-IO starts after VPIC-

IO finishes. We configure VPIC-IO and BD-CATS-IO to use

half the number of processes each, and measure the elapsed

time as the interval between the start of VPIC-IO and the

end of BD-CATS-IO. We show in Fig. 9 the results of a

5-time-step run. UniviStor/DRAM and UniviStor/BB refer to

the scenario where VPIC-IO data are written to the DRAM

and to the burst buffer layers, respectively. We can observe

that with the workflow management, performance of Uni-
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viStor/DRAM Overlap and UniviStor/BB Overlap are both

faster than UniviStor/DRAM Nonoverlap and UniviStor/BB

Nonoverlap, accounting for 1.2× to 1.7× (1.3× on average)

and 1.5× to 2× (1.7× on average) performance improvement,

respectively. In addition, UniviStor/DRAM Nonoverlap and

UniviStor/BB Nonoverlap still demonstrate 3.5× to 17× (9×
on average) and 1.3× to 7.2× (3.4× on average) performance

improvement over DE, respectively. The main reason for the

performance benefit of UniviStor/DRAM Nonoverlap comes

from UniviStor’s fast data movement on distributed DRAM

layer. Moreover, the benefit on UniviStor/BB Nonoverlap is

because UniviStor’s “file-per-process” data transformation on

BB substantially accelerates both VPIC-IO’s write operations

and BD-CATS-IO’s read operations.

We demonstrate the benefit of a unified view of storage in

Fig. 10 by comparing the elapsed time for supporting 10 time-

step workflow. In UniviStor/(DRAM+BB), 10-time-step data

is spread across the distributed DRAM layer and the burst

buffer. For comparison, we also measure the time when all

data are placed on burst buffer (UniviStor/(BB)) and the Lustre

file system (UniviStor/(Disk)). We noticed that placing data

on both DRAM and BB can achieve 1.5× to 2× (1.8× on

average) speedup over placing the data only on BB and 4× to

4.8× (4.3× on average) over placing data on Lustre.

IV. RELATED WORK

HPC storage hierarchy evolution has fostered various data

management solutions for each layer. Traditional efforts pri-

marily manage data on the hard-disk based PFS, such as

Lustre [33], OrangeFS [37], GPFS [38], etc. The striping-

based data placement adopted by most PFSs cannot distinguish

the devices across layers, and I/O performance of PFS varies

significantly due to locking and interference [39], [15], [40].

There are several recent burst buffer management software

developments. Cray DataWarp [4] and DDN IME [5] are two

vendor solutions for shared burst buffers. DataWarp stripes a

file across burst buffer nodes similar to conventional PFSs.

IME adaptively places data on burst buffer nodes based

on their loads. BeeOND [41] and BurstFS [23] are open-

source software for node-local SSDs. BeeGFS On Demand

(BeeOND) creates a file system on demand per job and stripes

each file across multiple nodes similar to DataWarp. BurstFS

directs each process’s writes to its local SSD for scalable write

bandwidth. PLFS [25] has the feature to direct processes’ IO to

either node-local or shared burst buffer. In contrast, UniviStor

is designed to unify various node-local and shared storage

layers.

A few burst buffer libraries have transparent caching feature

that redirects writes to the PFS to burst buffer transparently,

and asynchronously flush data to the PFS, such as DataWarp,

Data Elevator [14] and Spectrum Scale [13]. By comparison,

UniviStor can cache data on any of the available layers, includ-

ing DRAM, and its data flush operation is highly optimized.

In managing distributed DRAM, solutions such as OpenSh-

mem [2], UPC [1], DataSpaces [3] expose to a user library-

specific interfaces for globally addressing the distributed mem-

ory. In contrast, UniviStor is designed for a large number of

HPC applications using parallel I/O (e.g. MPI-IO, HDF5). In

addition, UniviStor supports a lightweight workflow manage-

ment for in-situ/in-transit analysis on DRAM and burst buffer.

There are a few efforts for managing data on multiple stor-

age layers. CRUISE [42] is a checkpoint file system that writes

either to node-local DRAM/SSD or to PFS. SSUDP [43] and

BurstMem [44], [45] are burst buffer systems that write to

shared burst buffer or to PFS. These efforts generally move

data between specific storage layers. In contrast, UniviStor

supports all available layers that are either node-local or shared

across the compute partition. DAOS [9] is an object-based file

system solution being developed for managing data objects

in a hierarchical storage layers using transactions. DAOS can

be accessed with HDF5 API, and its current deployment

on HPC systems requires significant storage infrastructure

modifications. Hermes [10] is recent I/O buffering system

developed to manage multiple storage layers. It offers three

policies to navigate data placement across layers, and intro-

duces three novel techniques to perform memory, metadata,

and communication management. In contrast, UniviStor is a

transparent service and does not need users to know the behav-

ior of their applications in advance. While Hermes’ service is

implemented as a library linked to the individual application,

UniviStor is an independent parallel program providing data

sharing service for multiple coupled applications.

V. CONCLUSIONS AND FUTURE WORK

With the goal of providing an integrated storage subsystem

on supercomputing machines with multiple layers of storage,

we have designed and implemented UniviStor. Applications

using MPI-IO and HDF5 libraries for performing I/O can take

advantage of UniviStor without any source code changes. Our

system accelerates I/O of these applications using efficient data

placement and movement across hierarchical storage layers.

Our evaluation on a leadership-class computing system and

comparison to the state-of-the-art data management solutions

demonstrates that UniviStor achieves efficient scientific appli-

cation I/O on upcoming exascale storage architectures without

burdening the users on modifying existing applications. In

particular, it outperforms Data Elevator and Lustre by up

to 17× and 46×, respectively. We are exploring various

enhancements to UniviStor as future work, including adding

resilience to data in volatile storage layers and adaptive and

proactive placement of data based on data usage patterns.
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