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Abstract—Scientific data sets, which grow rapidly in volume,
are often attached with plentiful metadata, such as their asso-
ciated experiment or simulation information. Thus, it becomes
difficult for them to be utilized and their value is lost over
time. Ideally, metadata should be managed along with its corre-
sponding data by a single storage system, and can be accessed
and updated directly. However, existing storage systems in high-
performance computing (HPC) environments, such as Lustre
parallel file system, still use a static metadata structure composed
of non-extensible and fixed amount of information. The burden
of metadata management falls upon the end-users and require
ad-hoc metadata management software to be developed.

With the advent of “object-centric” storage systems, there is an
opportunity to solve this issue. In this paper, we present SoMeta,
a scalable and decentralized metadata management approach
for object-centric storage in HPC systems. It provides a flat
namespace that is dynamically partitioned, a tagging approach to
manage metadata that can be efficiently searched and updated,
and a light-weight and fault tolerant management strategy. In
our experiments, SoMeta achieves up to 3.7X speedup over
Lustre in performing common metadata operations, and up to
16X faster than SciDB and MongoDB for advanced metadata
operations, such as adding and searching tags. Additionally, in
contrast to existing storage systems, SoMeta offers scalable user-
space metadata management by allowing users with the capability
to specify the number of metadata servers depending on their
workload.

I. INTRODUCTION

A revolution is in the making to handle the massive
amount of data in extreme-scale computing systems. High-
performance computing (HPC), inching towards exascale sys-
tems, enables scientific applications from various areas of
physics, chemistry, materials, climate, etc., to generate data in
the size of hundreds of terabytes and is projected to produce
petabytes in the near future. To preserve the data for further
analysis or even sharing among the community, various meta-
data, such as the data source and simulation configurations,
are required to be stored and linked with the data. Existing
HPC parallel file systems, such as Lustre [1], GPFS [2], and
OrangeFS [3], face serious challenges in managing metadata as
they only maintain the system metadata of data files, which is
static and not extensible. Though self-describing data formats
such as HDF5 [4], PnetCDF [5], and ADIOS [6] provide the
functionality to keep metadata within the same data file, they
focus more on data access optimizations and lack scalable
metadata services, such as search and update. As a result,
users often have to develop customized software for efficient
and scalable metadata management.

Towards scalable data management on upcoming extreme-
scale computing systems, researchers have proposed objects
as the central feature of storage systems [7], [8], [9], such

as OpenStack Swift [10] for cloud computing, and DAOS
[11] for HPC systems. We refer to these storage systems
as Object-Centric Storage (OCS) systems. As Arnold stated
in [12]: “What makes an object storage from ‘interesting’
to ‘transformative’ is the ability to use the user-specified
custom metadata as the basis for search queries”. Having a
metadata service in the OCS systems that provides efficient
and convenient user-definable operations would greatly benefit
scientific data users. However, various challenges must be
addressed to achieve such a goal.

Managing the metadata of OCS systems effectively in
a scalable manner is a critical requirement. Compared to
the traditional block-based storage systems, we envision that
future OCS systems will provide an abstract data model and
semantically rich interfaces. In those systems, a data object
contains data, such as multi-dimensional arrays and key-value
pairs, while the metadata, stored as a metadata object, contains
storage locations, data sources, or even the initial analysis
results. Such metadata-rich usage scenarios will not sustain
on existing file and directory-based hierarchical metadata
management methods. The irrelevance, restrictiveness, and
performance limits of methods from existing file systems have
been well documented in literature [13], [14]. In preparation
for OCS systems on upcoming exascale systems, it is vital for
the metadata management to achieve scalability, extensibility,
searchability, and fault tolerance.

Scalability for a HPC object-centric storage system is re-
quired to maintain the metadata associated with millions or
even billions of data objects [15]. As users may add ex-
tra descriptive information dynamically, supporting extensible
metadata is also a requirement. Locating data objects based on
metadata requires efficient search mechanisms. A fault tolerant
design is required to avoid any loss of data. A few systems
have explored some of these aspects. For example, Ceph [8]
proposed a scalable and fault-tolerant metadata management,
while DeltaFS [16] experimented with a server-less metadata
management approach. However, they are only applicable to
existing hierarchical file systems, where files are organized
by a directory tree. Database management systems, such as
SciDB [17] and MongoDB [18] can be used for metadata man-
agement, but require manual data import, separate interfaces
for maintenance, and are generally not optimized for the HPC
environment. Recent research efforts, such as DAOS [11],
are heading in the direction of managing data objects in an
object-centric manner, however, DAOS metadata management
component is still in the design phase and not yet available.

To address the above mentioned requirements, we pro-
pose SoMeta, a Scalable object-centric Metadata management
method for HPC systems. SoMeta adopts a decentralized and
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fault-tolerant approach to achieve scalable metadata opera-
tions. Metadata is separated from data objects as metadata
objects, providing the flexibility that is ready to be integrated
into OCS systems. The metadata objects are also extensible
and searchable with our tagging approach, and is targeted
for HPC with parallel computing workloads that have data
structures and access mechanisms very different from typical
database workloads. We will describe the design and an
implementation of SoMeta, and evaluate the performance with
a series of experiments. In specific, this paper has the following
contributions:
• Scalable flat-namespace metadata management for OCS

systems. SoMeta uses a flat namespace with inherent par-
allel support to distribute metadata objects, and allows
an unlimited number of servers that are able to manage
hundreds of millions of metadata objects efficiently.

• A tagging approach for extensible and user-definable
metadata. Tags are key-value pairs that form a metadata
object. SoMeta is designed to support dynamic tag creation,
update, and delete operations.

• Flexible metadata search support to retrieve interested
metadata objects. Users can search and retrieve metadata
objects by using semantic tags, without having to remember
object IDs that have limited semantic information.

• A window-based adaptive fault tolerance mechanism.
SoMeta manages the metadata objects in memory to provide
high performance. To handle any server failures, SoMeta
periodically checkpoints the metadata to persistent storage
devices, such as SSDs and hard disks. It is also able to
recover from server failure at run time without data loss.
The remainder of this paper is organized as follows: In

Section II, we present the design and the main components
of SoMeta. We demonstrate the performance of SoMeta in
Section III with basic metadata operations as well as advanced
operations such as tagging and searching. We discuss the re-
lated work in Section IV and conclude the paper in Section V.

II. SCALABLE OBJECT-CENTRIC METADATA
MANAGEMENT

A. SoMeta Overview

SoMeta aims at providing a scalable and object-centric
metadata management for HPC systems, and it treats metadata
as individual metadata objects. Each metadata object contains
basic identification information such as object ID, identi-
fication attributes, system information (e.g., creation time),
as well as other user-defined attributes. This information is
represented in the form of tags, which allows a user to form
logical groups easily (detailed description is in Section II-D).
These extensible and user-definable tags can be searched and
modified efficiently through highly parallel SoMeta system,
without the need of a centralized synchronization. In contrast
to the hierarchical namespace used by traditional file systems,
SoMeta adopts a flat namespace. Users can locate the inter-
ested data objects by searching for the tags. SoMeta can be
easily integrated into an object-centric storage system as the
metadata management component via our provided application
programming interface (API). Additionally, we design our

Fig. 1. Overview of SoMeta’s architecture with m servers and n clients.

approach to provide high scalability on upcoming and future
exascale systems.

The two main components of SoMeta system, as shown in
Fig. 1, are SoMeta Servers and SoMeta Clients. The servers
store and manage metadata objects, and run in user space
to enable scalability of metadata management. Applications,
linked with the SoMeta Client library, communicate with
the servers through network and perform operations such as
creating, searching, updating, and deleting metadata objects.
SoMeta partitions its flat namespace onto multiple servers
using a Distributed Hash Table (DHT). Each entry of the DHT
stores a list of the metadata objects that has the same name.
Additionally, we use Bloom filters for accelerating the process
of checking for metadata objects with the same name.

B. Flat Namespace

A flat namespace is used by SoMeta to manage metadata
objects, as opposed to the hierarchical directory approach
used by existing file systems. We illustrate the two different
approaches in Fig. 2, where a plasma physics simulation code
(VPIC) produces multiple datasets with different time steps
and configurations. In general, using a flat namespace avoids
the overhead of traversing the prolonged directory path in the
hierarchical namespace. However, a challenge of using flat
namespace is due to the lack of logical organization (such
as grouping by directory) for all metadata. Another challenge
with flat namespace management is locating a specific meta-
data object or finding related metadata objects, which may be
time-consuming because of the potentially large search space.
We describe our solutions to these two challenges in Section
II-C and II-E, respectively.

C. Distributed Metadata Partition

Scalability is a critical requirement for metadata manage-
ment in OCS systems to maintain good performance with a
massive number of metadata objects. Managing all metadata
objects on a single or a few metadata servers, similar to
existing parallel file systems, will easily run into scalability
problems.

In SoMeta, we distribute the metadata objects across mul-
tiple servers using a Distributed Hash Table (DHT), as shown
in Fig. 1. DHT eliminates the need for a centralized server,
and allows participating servers to efficiently locate a value
(metadata object) associated with a given key (ID attributes).
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Fig. 2. An example to compare hierarchical and flat namespace. In the
hierarchical namespace, files are organized into directories that form a tree.
Locating the target file requires a traversal of the directory tree from the
root. On the other hand, flat namespace has all metadata objects on the same
level. Each metadata object can be located directly and independently. Tags,
presented as colored boxes, are used in SoMeta for users to label data, which
can then form logical groups and used for metadata search. Data objects are
not included in this figure, while there is a one-to-one relationship between
data and metadata objects.

Based on the estimated workload, i.e., the number of metadata
objects, users can initiate a certain number of metadata servers
in the background before their application starts. SoMeta uses
a two level hash approach for efficient metadata access, with
the first level partitioning the namespace among servers, and
the second level of hashing will be used as hash key for
hash table insertion. For example, in searching for a metadata
object, SoMeta uses the following equation to find a Server
ID for managing the object:

Server ID = HashFunction(ID attributes) % p, (1)

where p is the number of SoMeta Servers, and ID attributes
(defined in Section II-D) are concatenated into one string as the
hash input. We chose to use multiple ID attributes instead of
only the name of the object to avoid potential load imbalance
when a large number of objects have the same name, but with
varied time-step values, which is a common scenario for time-
series simulation generated data. For the second level, only the
name attribute is used as the key of the metadata. One reason
of adopting this is to support efficient metadata search with
incomplete ID attributes. For example, if the user wants to
find all metadata objects of a specific name and between a
time-step range, our name-only hash approach only needs to
lookup one hash entry and iterate over the list of objects and
check their time step values, as opposed to multiple lookup
operations. While there are several hash functions available, in
our implementation of SoMeta, we use the djb2 hash function
as it can result in balanced metadata distribution. We verify
the load balance of the hash algorithm in Section III-G.

When adding a new metadata object to the DHT, a duplica-
tion check must be performed to identify all the objects with
the same name. A full scan of the metadata objects is very
costly, especially when a large number of objects have the
same name. To alleviate this issue, we use a counting Bloom
filter [19] to find an identical metadata object is definitely
not in the set with constant time. Counting Bloom filter also
supports removing items. The Bloom filter is created only
when the number of objects in the metadata object list reach
a configurable threshold. By default, we set this number to be
100. Additionally, we have found that the counting Bloom
filter is able to achieve less than 0.1% false positive rate,
indicating 99.9% of the time the full scan duplication check
is avoided.

D. Metadata Objects with Extensible and User-definable Tags

Each metadata object in SoMeta is a collection of tags,
where the implementation of tags is based on a key-value
model. Each tag is managed as a non-hierarchical key-value
pair, as shown in Fig. 3. Users can add as many tags to
an object depending on their desired content. When a tag is
created by a user, it is mandatory to specify a string-typed key,
while the value may be empty or may contain either strings
or numeric values. Specifically, each metadata object has two
types of tags: predefined tags, and user-defined tags.

• Predefined tags include identifier (ID), the location of the
associated data object, system information, and ID attributes.
ID is a 64-bit integer to uniquely identify an object and can
also be used to access an object directly. To guarantee the
uniqueness, the IDs are generated by the metadata servers,
and each server has a pre-defined range of valid ID values.
The system info tag is similar to that of the Linux file
system’s inode data structure, containing access control,
creation, modification, last accessed, time stamps, etc. Four
ID attributes are selected to uniquely identify a metadata
object. Specifically, the object name and application name
are strings specified by user. The ownership tag contains the
user ID, and time step is an attribute used to support time-
series datasets. Hence, metadata objects can have same name
as long as their other ID attributes are different.

• User-defined tags are an extensible list of key-value pairs.
SoMeta provides the flexibility to allow any number of such
tags created for each metadata object. By assigning tags,
users can label a number of objects and form logical groups.
As illustrated in Fig. 2, users can assign an “energy” meta-
data object with a tag of “Conf 0”. Such an approach also
avoids metadata duplication if a metadata object belongs to
multiple groups.

The pre-defined tags are pre-determined and must be set
either by the SoMeta or the user when creating an object, while
user-defined tags are optional. For storage as well as network
transfer, the metadata object is serialized by concatenating the
tags with special split characters to an array.
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Fig. 3. Metadata object structure.

E. Flexible Metadata Retrieval with Search

In SoMeta, there are two search methods to find and retrieve
metadata objects: exact match search (E-search) and partial
match search, (P-search). E-search requires all ID attributes
provided by user, and is similar to the Linux stat command.
P-search takes a conditional string on a subset of ID attributes
and/or other tags, e.g, “Name=‘VPIC’ AND Conf=1”, where
Name is an ID attribute and Conf is a user-defined tag. All
metadata objects that satisfy the constraint will be returned to
the user, which can then be accessed with an iterator provided
by SoMeta. P-search provides the feature similar to find or
grep command, but it works in parallel and supports different
search types such as string matching and value range query.

Note that SoMeta uses the ID-attributes to determine the
target server and then uses the name string as the key of a
hash entry in DHT. The Bloom filter is also helpful when a
searched object does not exist. Otherwise, E-search needs to
iterate over the metadata object list in finding a match. On
the other hand, P-search allows the user to specify any tag
of desired metadata objects. With incomplete ID attributes,
the exact servers containing the searched objects cannot be
determined. As a result, this type of search requires a client to
send a search constraint to all the metadata servers. To speedup
this process, SoMeta clients first coordinate among themselves
and designate a number of clients that equals the number of
servers, so that the search request is sent to the servers in
parallel and each server communicates with only one client.
When the object name is not included as part of the search
constraint, all objects must be checked and it becomes the
worst case scenario for SoMeta search. The search process
can be improved by adding indexes, which is in development.

F. Update and Delete

SoMeta supports adding, updating and removing tags. These
operations require the object ID or all ID attributes of the
target object. Once the desired metadata object is located on
the target server, add or update operation is performed directly.
However, due to the characteristic of DHT, an updated object
may have to be moved to a different server if its ID attributes
are changed. This process is done by inserting the new object
to the corresponding server and then deleting the object on the
original server. The Delete operation has a similar process as
the update, once the object is found, it will be removed from
the metadata object list, and the count of the Bloom filter is
decreased, if the filter is present for the objects.

G. Complexity Analysis

We provide the complexity analysis for each of the above-
mentioned metadata operations in Table I. We denote n as the
total number of existing metadata objects, p as the number
of SoMeta Servers, δ as the name string’s duplication ratio
and δ = max{ci}

n , where ci is the count of ith name string.
Therefore, the maximum length for the Metadata Object List
for each entry of DHT table is δn/p. We also use α to
denote the rate for Bloom filter to report uncertain existence.
Theoretically, α = (1− e−nk/m)k, where k is the number of
hash functions used by Bloom filter and m is the number of
bits in the array. Usually, α tends to be a very small value and
the Bloom filter on SoMeta Server informs the non-existence
of an object with a very high probability.

For creating metadata objects, SoMeta identifies the server
ID using Equation 1. The duplicate check costs O(1) if the
Bloom filter finds that a duplicate does not exist. Otherwise,
each item in the Metadata Object List will be checked. There-
fore, the creation has the O(αδn/p) complexity on average
and T (δn/p) complexity in the worst case. As α is usually
small, the average complexity is close to consistent time. The
Update, Delete, and E-search operations has the same time
complexity as the create operation because they have a similar
process of communicating with a server and the follow up
activity on the server.

P-search with object name has two cases: with or without
a hit, as the Bloom filter identifies whether a hit is either
possible in metadata object list or definitely not. When the
search results in a hit, the time complexity for the average case
is O(δ n

p ) as it needs to scan the list once anyway. On the other
hand, the time complexity of P-search without a hit depends
on the probability of positives (denoted with α) of Bloom
filter. In this case, the average time complexity of the name-
tag based E-Search without a hit is O(αδ n

p ), with α tends
to be a very small value. The O(αδ n

p ) can be approximately
considered as constant. For P-search that does not have the
name string as part of the input conditional string, it needs to
search all metadata objects in parallel, therefore the complexity
is T (n/p).

TABLE I
COMPLEXITY ANALYSIS FOR SOMETA METADATA OPERATIONS.

Complexity
Average-case Worst-case

Create O(αδn/p) T (δn/p)
Update O(αδn/p) T (δn/p)
Delete O(αδn/p) T (δn/p)
E-search O(αδn/p) T (δn/p)
P-search w/ name (no hit) O(αδn/p) T (δn/p)
P-search w/ name (has hit) O(δn/p) T (δn/p)
P-search w/o name O(n/p) T (n/p)

H. Fault Tolerance

SoMeta manages the metadata objects in servers’ memory,
and a potential issue with this approach is that the metadata
might be lost when one or more servers fail for any reason. To
prevent such data loss, we designed SoMeta to use a window-
based checkpoint-recovery mechanism. Specifically, the length



5

of the window is determined by a number (s) of write metadata
operations. After a server’s performing s number of write
operations, it will create a checkpoint to write all the metadata
objects in its memory to the persistent storage. The persistent
storage is adaptively selected between an SSD-based storage
a disk-based storage, given their availability and capacity in
the system. Meanwhile, it is possible that some metadata
operations are performed between a server’s checkpoint and
failure time. Since it is very costly to checkpoint for every
single operation, eacg SoMeta client maintains a linked list
that records its last s write operations, so that when a server
failure occurs during the window interval, all the recorded
operations are sent to the new proxy server for recovering.

To support runtime server failure/departure, each SoMeta
Server is configured to have proxy candidates when it fails.
Server failures are discovered by clients, when a SoMeta
Client finds that a server does not respond within a specified
time, it will broadcast to inform all clients to wait and mark
that server as failure. The client then communicates with the
failed server’s proxy, with the default to be the failed server’s
ID − 1, waiting for it to read the checkpoint data of the
failed server and reconstructs the DHT, then retrieves and
performs metadata requests after the failed server’s checkpoint
time from clients. As the proxy server is now responsible for
increased workload, we plan to explore and integrate dynamic
load balancing strategy [20] into the SoMeta system.

I. SoMeta Implementation and Usage

We have implemented SoMeta using C programming lan-
guage. Users can configure SoMeta to manage specific storage
nodes or to start the SoMeta on computing nodes of a HPC
system. We focus on the latter case such that a user can
start a number of SoMeta Servers suitable for their workload
estimation. There are two modes that a user can run SoMeta
Servers: shared mode, where the server process run on the
same compute nodes as an application’s MPI processes, and
dedicated mode, where all server processes are on dedicated
nodes that are separate from the nodes that run the application.
For the former case, it is expected to perform better with
more node-local communication between SoMeta server and
clients. The user can also choose to have the servers running
consistently, so the overhead of loading the metadata at start
time is eliminated.

SoMeta Client is implemented as a linkable library and
provides a set of metadata operation APIs. The client-server
communication layer is implemented SoMeta’s using Mer-
cury [21], a C library for Remote Procedure Call and is
optimized for HPC systems. In our experiments, we con-
figured Mercury with BMI (communication component of
OrangeFS [3]) plugin and using TCP protocol.

SoMeta does not maintain any replica at run-time, which
avoids concurrent modification of replicas and thus achieves
high performance. Each client’s metadata request is sent to
only one server, and it becomes straightforward to maintain
the consistency.

TABLE II
EXPERIMENT CONFIGURATION.

Experiment Configuration

HPC Systems Cori (Cray XC40), Edison (Cray XC30)
Comparison Lustre, SciDB, MongoDB

Workloads Synthetic (benchmark), Real-world application (BOSS)
Operations Standard (create, delete, etc.), Advanced (add tag, search)

Storage Hard disk drive, SSD-based Burst Buffer

III. RESULTS

A. Evaluation Overview

We evaluated the performance of SoMeta with a series of
experimental configurations, as shown in Table II. We compare
the performance of SoMeta with Lustre file system, SciDB,
and MongoDB, and used a standard benchmark-based work-
load, a synthetic workload, and an astronomy observational
data analysis workload in our evaluation.

We run SoMeta systems on two supercomputers at
the National Energy Research Scientific Computing Center
(NERSC), named Cori and Edison. Cori is a Cray XC40
supercomputer with 1630 Intel Xeon “Haswell” nodes, where
each node consists 32 cores and 128GB memory. On Cori,
we tested SoMeta with both of its disk-based storage space
and the “Burst Buffer”, an SSD-based non-volatile storage
space. Edison is a Cray XC30 system with 5500 Intel Xeon
“Ivy Bridge” nodes, each with 24 cores and 64GB memory.
Unless otherwise specified, we ran one SoMeta Server on
each compute node (i.e., shared mode) in our tests to share
resources with user applications.

Lustre is the most widely deployed HPC parallel file system.
The tested Lustre file systems on Cori and Edison have a fixed
set of nodes as metadata servers (MDS), which was set at
system installation time. When comparing with Lustre, we
used mdtest1, a commonly used benchmark for traditional
metadata operations, to compare the performance of standard
metadata operations. The Lustre tests are performed when
no other users are accessing the 4 MDSs. As SoMeta has
many advanced abilities, such as adding user-defined tags
and searching, are not directly supported by Lustre, we have
created a synthetic benchmark with hand optimized code.
We made our best effort to simulate object-centric metadata
operations, such as file grouping and searching. For instance,
we compare the search functions (i.e., E-search and P-Search)
of SoMeta with hand-optimized code, which uses stat and
find commands. We also use the “symlinks” as the metadata
grouping counterpart implementation of Lustre to SoMeta
tagging.

As SoMeta allows metadata objects with same names but
different ID attributes, we used three types of synthetic work-
loads:
• SoMeta 1: all metadata objects have the same name but

have different values in other ID attributes (e.g., time step).
• SoMeta 4: four unique object names are used and each name

is used by a quarter of metadata objects. The objects with
an identical name have different ID attributes.

1https://sourceforge.net/projects/mdtest/
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• SoMeta Unique: each metadata object has a unique name.
We have also demonstrated the real world application’s

performance by applying SoMeta and using other technologies
mentioned above to manage the metadata of Baryon Oscilla-
tion Spectroscopic Survey (BOSS). With the BOSS dataset,
we also compared the metadata search function of SoMeta
with SciDB and MongoDB, as they have been used manage
array datasets and relational data sets, respectively.

B. Metadata Creation

Creating the metadata is typically the first step in managing
data in objects. In this experiment of metadata creation,
we measured the number of object creations per second
(throughput) in creating one million metadata objects. We used
different numbers of client processes ranging from 120 to
3840 that issue creation requests concurrently. The number
of servers increases with the number of clients at a fixed ratio
and the total number ranges from 4 to 128 in both systems.
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Fig. 4. Performance comparison for creating one million metadata objects on
Cori.
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Fig. 5. Performance comparison for creating one million metadata objects on
Edison.
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Fig. 6. Performance of scaling SoMeta system by creating up to 100 million
metadata objects with 512 servers and 2560 clients on Edison.

Fig. 4 and 5 show the metadata creation throughput of
SoMeta on Cori and Edison, respectively. Overall, they demon-
strate the object creation throughput increases with the number
of servers. Among the three workloads, SoMeta 1 yields the
highest throughput, while SoMeta Unique has lower through-
put. For SoMeta 1, all metadata objects have the same name
but varied time step value, with our hash-based partition
approach, they are distributed to all servers with a good load

balance. Within each server, they stored in a linked list under
one hash table entry, with an average length of 1000000/p,
and p is the number of servers. Here the metadata object
list is long enough to trigger the creation of the bloom filter,
and the duplication check is accelerated. For SoMeta Unique
workload, those objects are likely to be inserted into different
hash entries (unless there is a hash collision). Hence, the
metadata object list has few objects and the bloom filter is
rarely created. We found that the hash entry insertion takes
more time than inserting a metadata object into linked list
plus maintaining and checking the bloom filter, and thus it is
reasonable for SoMeta 1 to have the highest throughput and
the SoMeta Unique being the slower one.

Scalability tests on metadata creation. Fig. 6 shows the
performance of SoMeta with a fixed number of clients and
servers, and the number of created objects increases from 10
thousand to 100 million. This is a stress test for SoMeta,
and it is uncommon for a single user to create 100 million
objects in one application run within a short time. However,
from the figure, we can observe that with 512 servers, SoMeta
is able to finish the creation of 100 million objects within
100 seconds. The time differences among the three workloads
are also similar to the previous experiment. Due to space
constraint, in the rest of the paper, we will report the results
on Cori, as the results on Edison are similar.

C. Metadata Search

As mentioned in Section II-E, SoMeta supports two types
of metadata search: exact match search (E-search) and par-
tial match search (P-search). In this section, we explored
their performance characteristics with a set of experiments.
Specifically, we tested these two search functions by varying
the selectivity, i.e., the ratio of the number of the returned
metadata objects satisfying a given conditional expression to
the total number of metadata objects. Selectivity is expressed
as a percentage and lower percentage number means fewer
returned results for a search.

We used 128 servers in this test to maintain 1 million
metadata objects. Among these objects, we varied the search
selectivity by assigning tags to different metadata objects
before the search, with the range of 2.5% to 20%. The time for
completing E-search and P-search are reported in Fig. 7 and 8,
respectively. We observe that both E-search and P-search take
just a fraction of a second, even searching a large number of
objects with a selectivity of 20%. Though P-search requires
a full scan of all the 1 million objects, it takes less overall
time to retrieve the same number of objects than E-search.
This is because each E-search transfers only one metadata at
a time, while P-search returns all the matched metadata to the
client with one bulk transfer. The network latency of a large
number of small data transfers dominates the overall time.
Additionally, among three different tested workloads (from
“SoMeta 1” to “SoMeta Unique”), SoMeta delivers almost
equal performance. Therefore, it is reasonable to conclude that
SoMeta provides a new and also efficient methods to perform
metadata search, a ‘transformative’ feature in OCS systems.
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Fig. 7. Completion time of SoMeta’s E-search.

0

0.01

0.02

0.03

2.5% 5.0% 7.5% 10.0% 12.5% 15.0% 17.5% 20.0%

Ti
m

e 
(s

)

Selectivity

SoMeta 1 SoMeta 4 Someta Unique

Fig. 8. Completion time of SoMeta’s P-search.

D. Metadata Update and Delete

In this section, we show the performance of updating
and deleting metadata objects. The update targets are chosen
randomly and the selectivity ranges from 2.5% to 20% of all
the 1 million metadata objects. 128 server processes are used
with the same number of clients sending the requests. The total
time spent on updating different numbers of objects are shown
in Fig. 9. We can observe that SoMeta has a very low latency
in performing update operations. For example, in the case of
20% selectivity, it takes less than 0.2 seconds to finish updating
all 1000000× 20% = 200000 metadata objects. For different
workloads, “SoMeta 1” takes more time than the other two
and “SoMeta Unique” offers the fastest response time. This
is because of the search process that requires scanning the
metadata object list in the DHT, where all objects of “SoMeta
1” are in the same linked list and need more time to find the
match. The list of “SoMeta Unique” has much less objects
and thus takes less time.
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Fig. 9. Total time of metadata update.
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Fig. 10. Total time of metadata delete.

We measured the latency of deleting metadata object using
the same configuration as that of the above update tests and the
results are shown in Fig. 10. Similar to the update operation,
deleting metadata objects requires finding the target object
first, then removing it from the DHT and as well as the
Bloom filter if it is created. It has a similar performance
trend with metadata update. Among different workloads, the
“SoMeta Unique” is the fastest one. The time to delete
200, 000 metadata objects only takes 0.2 seconds.

E. Comparison with Lustre

In this section, we compared SoMeta with the Lustre file
system using mdtest, a popular metadata operation benchmarks
for HPC storage system. We have configured the mdtest bench-
mark to perform traditional metadata operations, including file
creation and deletion. While Lustre does not have an explicit
search operation, in order to compare with SoMeta’s search
operation, we used stat and find functions from glibc
and developed hand-optimized programs for locating target
files in Lustre file system. The “stat” and “find” commands
provide functions analogous to exact match and partial match
searches of unique filenames using regular expressions. For
Lustre, 1 million empty files are created in different directories
on 4 MDS and 120 clients. To have a fair comparison, although
SoMeta can scale to much more number of servers, we have
used the same number of metadata servers (i.e., 4) for both
systems in these tests.
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Fig. 11. A comparison of SoMeta and Lustre, where both systems use 4
metadata servers, and accessed by 120 clients.

As shown in Fig. 11, for metadata create and delete
operations, SoMeta outperforms Lustre by 3.7X and 2.4X ,
respectively. One major impact factor is that Lustre uses the
directory tree-based namespace to organize its metadata, such
that creating and deleting files need to access its parent direc-
tory all the way up to the root. In contrast, SoMeta uses flat
namespace to organize the metadata objects that can be created
and deleted directly. Since E-search and ‘stat’ go through the
same steps as those of create, it is expected that SoMeta
outperforms Lustre with ‘stat’. For the ‘find’ operation, Lustre
and other file systems require visiting all the files recursively
under the provided directory and sub-directories. SoMeta’s
P-search is more efficient than Lustre+‘find’ since it does
not require visiting all the objects unless an object name is
not provided. Fig. 11 shows that SoMeta’s E-search and P-
Search outperforms Lustre+‘stat’ and Lustre+‘find’ by 2.1X
and 2.6X , respectively.

When we remove the fairness constraint of equaling the
number of metadata servers with Lustre, SoMeta distributes
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the metadata across all user-level server processes on dif-
ferent compute nodes. With unrestrained SoMeta using 128
metadata servers, we found out that SoMeta delivers 37X
better throughput speedup over the current Lustre with 4
MDS. This high performance indicates that a scalable metadata
management component as the one we had developed in this
paper is a meaningful exploration for the future exascale
storage systems.

F. BOSS application

In this section, we report the results by using SoMeta
to manage the metadata of a real-world application named
Baryon Oscillation Spectroscopic Survey, or BOSS for short.
The BOSS data is from the Sloan Digital Sky Survey (SDSS)
project 2, and provides information about composition of stars
and galaxies, and can be used to obtain their redshift, i.e., how
fast a star is moving away from the earth. BOSS typically
produces a single data file per object observed. Each BOSS
data file is associated with three attributes, which can be
represented as a triple (plate, mjd, fiber), where plate is the
SDSS plug plate ID that is used to collect the spectrum, mjd
is the modified Julian date of the night when the observation
was carried out, and fiber is the fiber number, ranging from 1
to 1000.

The dataset used in our tests includes 276, 575 files scattered
in 4, 888 directories. One typical operation by the astronomers
is to locate and access a subset of these files by providing
a list of (plate, mjd, fiber) attribute triples. Since most ex-
isting parallel file systems do not support adding tags and
searching on metadata, i.e., attribute triple for each file in
this case, current BOSS management team develops their own
querying program, which accepts the triple list and copies its
matched files to a new concatenated file. Duplicating data
is expensive but it can speedup future analysis of the same
data and is also convenient for data sharing. We can also
replace the expensive copy operations with symbolic links,
which requires copying the system metadata and therefore
can be more efficient. An alternative way to perform the
metadata management for BOSS is to use database systems,
e.g., SciDB and MongoDB. Potentially, loading the metadata
of all 276, 575 BOSS files into these DB systems allow users to
utilize the index technologies for faster query response. In the
following paragraphs, we discuss and compare these methods
with our SoMeta system.

Metadata grouping comparison. The process of selecting
a number of interested data objects by a query constraint can
be abstracted as forming logical groups of objects. SoMeta
provides a natural solution for such a task through metadata
search and tag update, so that the objects of a group can be
easily accessed using a previously assigned tag. Existing paral-
lel file systems such as Lustre do not support adding tags (e.g.,
user-defined attributes) to data files, the closest comparison for
forming a logical group among files is to create symbolic links
(symlink) for all interested files into a directory. We developed
a hand optimized code that creates symlinks for the queried
BOSS files in parallel. However, to use database management

2http://classic.sdss.org/legacy/index.html
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Fig. 12. Total elapsed time to group objects by adding tags (SoMeta),
attributes (SciDB), symlink (Lustre) with different selectivity. The number
after the name in the legend is the number of servers used.
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Fig. 13. Total elapsed time for searching and retrieving the metadata of
previously assigned tags/attributes with different selectivity. The number after
the method name indicates the number of servers and the number of clients.

systems such as SciDB and MongoDB, the metadata must
be first be converted to a specific format and then manually
loaded into those systems. This takes extra time, ranging from
seconds to minutes, and requires a separate interface for any
following metadata operations.

Fig. 12 compares the total time for using SoMeta and other
methods to group different numbers of objects with selectivity
ranging from 1% to 32%, i.e., from 26, 000 to 832, 000 files
or objects, respectively. For Lustre, as the queried files are
scattered in different files and directories, the cost for using
the hand-optimized code needs directory traversal as well
as system metadata duplication, which leads to a relatively
high overhead. SoMeta with 80 servers achieves 15X to 40X
speedup over Lustre, which is expected as SoMeta stores
individual objects within the flat namespace and therefore
allows direct access without directory traversal. On the other
hand, with SoMeta’s parallel optimization for such workload,
it is 10 to 90 times faster than SciDB and MongoDB.

Metadata search comparison. Fig. 13 compares the per-
formance of using SoMeta, SciDB and MongoDB searching
metadata. As mentioned previously, searching metadata of
files requires users developing their own programs or using
database systems, such as SciDB and MongoDB. Additionally,
databases allow only one client to send a search request to their
server, and thus are not optimized for typical HPC applications
that distribute the workload to multiple processes and run
in parallel. In comparison, our SoMeta is able to handle
one search request issued collectively by multiple clients and
therefore each process gets a share of the result.

To compare the performance, we have developed a program
for importing all BOSS metadata to databases, where each
record corresponds to one metadata object with a number
of attributes. Both SoMeta and SciDB uses 80 servers and
MongoDB uses only 1 server. All these methods are tested
with one client sending the search request. In addition, we
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TABLE III
STATISTICS ON THE DISTRIBUTION OF 1 MILLION METADATA OBJECTS ON

128 SERVERS.

Statistics SoMeta 1 SoMeta 4 SoMeta Unique

Minimum 7812 7692 7575
1st Quartile 7812 7782.25 7740

Median 7812.5 7812.5 7817
3rd Quartile 7812 7842.75 7882.5

Maximum 7813 7933 8087
Standard deviation 0.50 85.19 99.19

also include the performance of SoMeta using 80 clients
to issue the search request concurrently for most optimized
performance. From Fig. 13, we observe that SoMeta delivers
the best performance. SciDB does not allow creating an index
for faster querying, and the query is executed by scanning all
records regardless of selectivity. On the other hand, MongoDB
allows users to create an index at data import time that can
later be used to speed up metadata search. However, due to the
configuration limit, only one MongoDB server was available
to us, resulting it to be the slowest. SoMeta is 2X to 16X
faster than SciDB and MongoDB when using one client, and
up to 1000X with 80 clients. Theoretically, when running with
one SoMeta server, the performance is expected to be slower
than MongoDB. We expect a similar or better performance in
single server tests after the integration of indexing technology
to SoMeta in our future work. Overall, we can conclude that
SoMeta provides a scalable and also efficient metadata search
function for managing metadata objects on HPC systems.

G. Load balance of SoMeta

Load balance among servers is another key factor for
SoMeta to achieve high throughput by utilizing all avail-
able resource. Table III presents the statistics of the number
of objects per server (i.e., workload) among 128 SoMeta
metadata servers after creating 1 million objects. Overall,
these metadata objects are distributed close to evenly as their
quartiles and medians are very close to the mean value of
1,000,000

128 = 7812.5. With different workloads (“SoMeta 1” to
“SoMeta Unique”), their distributions vary. In the “SoMeta
Unique” case, even with 1 million objects of unique names,
standard deviation still is relatively low, which indicates that
SoMeta servers are able to achieve good load balance in
common use cases.

H. SoMeta Overheads

As a new metadata management system designed for HPC
object storage system, we expect that SoMeta has ignor-
able overhead in system setup and less memory and storage
footprint. Towards these goals, we measure and discuss the
different overheads of our proposed system.

Server initialization overhead. In Fig. 14, we show the
SoMeta servers’ start time, which includes loading 1 million
metadata objects from previously preserved metadata, recon-
struct the DHT, and other preparations before accepting clients
connections. The total amount of data related the metadata
objects is ≈ 500MB. As expected, the majority of the startup
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Fig. 14. Overhead in loading one million metadata objects from checkpoint
file into memory.
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Fig. 15. Total time spent in checkpointing 1 million objects onto Burst Buffer
(BB) and Lustre file system.

time is spent on reading the data from a storage system, yet
the overhead remain under half a second in all cases. As the
amount of metadata is relatively small, the overhead does not
decrease significantly with more than 16 servers. The total time
increases with more servers due to the global synchronization
for all servers at start time that guarantees all are functioning
correctly.

Persistent storage overhead. To support fault tolerance,
SoMeta checkpoints the metadata from the servers’ main
memory to the persistent storage system. Fig. 15 shows the to-
tal time spent on checkpointing 1 million objects with various
numbers of SoMeta servers. It takes less than 0.4 seconds in
all cases to write the checkpoint data to the persistent storage.
Burst buffer (BB) takes less time than Lustre, but not by a
significant amount as we expected. We believe it is because
only small-sized I/O is performed, since less than 500MB of
data is written by all servers.

Server memory usage. SoMeta stores metadata in memory
to provide fast response for various metadata operations. We
show that the memory consumption overhead by all partici-
pating server in Table IV, after creating different numbers of
metadata objects, ranging from 50k to 1 million. These low
amounts of memory overhead is a minute fractions of total
available memory on the compute nodes (64GB on Edison
and 128GB on Cori) we ran our experiments, and has minimal
impact on user applications.

IV. RELATED WORK

In the database domain, SciDB [17] uses a flat namespace
based on PostgresSQL to manages its metadata (e.g., array
schema). We have tested the performance of metadata oper-
ations, but due to its single metadata instance and therefore
poor scalability, a fair comparison is not feasible, and thus
was not included in our paper. Existing NoSQL databases,
such as MongoDB [18] and Cassandra [22] are generally not
optimized for HPC environment because most HPC workloads
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TABLE IV
SOMETA SERVER MEMORY USAGE.

Objects SoMeta 1 SoMeta 4 SoMeta Unique

50000 35 MB 36 MB 37 MB
100000 63 MB 69 MB 72 MB
500000 337 MB 345 MB 356 MB

1000000 643 MB 685 MB 713 MB

are write intensive from tens of thousands of CPU cores.
To the best of our knowledge, there is no scalable way to
directly ingest HPC data from simulation codes into a DBMS,
as demonstrated by [23].

The tree structure-based hierarchical metadata manage-
ment methods are widely adopted in single-node or paral-
lel/distributed file systems. General examples for the single-
node file system include NTFS, EXT4, Btrfs [24]. Some
specific single file systems (such as JFFS2 [25]) are developed
for flash SSD devices. Distributed file systems such as HDFS
[26] and GFS [27] use a single node to manage the whole hi-
erarchical namespace. In order to improve the performance of
metadata operations, most recent distributed file systems such
as Ceph [8], Lustre [1], LH [28], OrangeFS [3], and FusionFS
[29] partition the whole directory tree among multiple servers.
However, since the hierarchical namespace requires traversing
directory tree path from root before accessing the actual
data, extra overhead is involved to traverse the directory tree
and leads to potential multi-pass communications to different
servers [30]. In addition, it is reported Ceph [8] does not scale
well in HPC environment [31]. MetaKV [32] is a specialized
key-value store that indexes the file segments on distributed
burst buffers. Each file segment is a one-dimensional region
of a shared file. BurstMem [33] and TRIO [34] use stacked
AVL tree to index file segments on burst buffers. The generic
property graph [35] is proposed to manage and organize the
data, but such graph-based methods may share the similar issue
as the tree-based methods in supporting efficient partitioning
among multiple nodes.

Different from the hierarchical namespace, the flat names-
pace is proposed to manage all metadata on a single level.
Typical examples of these flat namespace systems are Coper-
nicus [14] and hFAD [13]. Some scientific data formats (like
HDF5 [4] and ADIOS [36]) allow users to store metadata
with their data in the same file. However, the issues of scalable
metadata operations such as tagging and searching have not yet
been fully addressed. Developing ad-hoc metadata manage-
ment system methods for different applications is another main
efforts towards efficient metadata storage systems. Blanas et
al. [37] provide a full survey of these methods. For example,
Atmospheric Data Discovery System (ADDS) [38] was de-
veloped to store, index and search the observed atmospheric
dataset and metadata. While adopting the flat namespace, our
proposed SoMeta supports tagging and searching to efficiently
label and group objects, as well as retrieve those of interest
with a highly parallelized architecture. In addition, SoMeta
allows users to directly operate on metadata objects, without
the need to touch data objects and ensures scalability.

The Object-based storages (e.g., NASD [39], T10 [7],

PanFS [40]) usually treat the data and their attributes to-
gether as a whole data object. As the attributes are stored
and transferred with the objects, object-centric storage can
efficiently express quality-of-service, transparent performance
optimizations, data sharing, and data security qualities that
storage system can exploit. Different from those approaches,
our work treats the metadata itself as individual objects, that
records the location, group, and other system information of
the corresponding data object.

V. CONCLUSION AND FUTURE WORK

Existing HPC file systems are inefficient and not scalable
when managing user metadata. They are not capable of sup-
porting operations such as searching the metadata. Aiming
at future object-centric storage systems on HPC systems,
where extensive metadata management is supported, we have
developed a scalable metadata management infrastructure,
named SoMeta. SoMeta views the metadata as separate objects
to provide a flexible way for users and storage systems
to maintain the extensive information about data. Different
from the hierarchical tree-structure based namespace used
by existing HPC systems, SoMeta uses a flat namespace to
organize metadata objects. The flat namespace within the
SoMeta is partitioned and served by multiple user-level server
processes for extremely scalable and concurrent operations.
We introduced a tagging method to label objects and form
logical groups of related objects. To locate and retrieve inter-
ested metadata objects efficiently, a parallel search approach
is introduced with the utilization of data structures such
as Bloom filters to accelerate the search process. We have
demonstrated the scalability of SoMeta, which is 3.7X faster
than Lustre file systems in standard metadata operations and
up to 16X faster than SciDB and MongoDB for searching
metadata objects. In the near future, we plan to integrate with
SoMeta upcoming object-centric storage systems and optimize
performance further such as using indexing technologies to
accelerate the search performance.
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