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Abstract

An X-ray based system for the inspection of pistachio
nuts for internal insect infestation is presented. The
novelty of this system is two-fold. First, we construct
an invariant representation of infested pistachios from
X-ray images that is rich, robust, and compact. This
is accomplished by linking the troughs on the image
and constructing a joint curvature-proximity distribu-
tion table for each nut. Second, we partition the joint
distribution table into several regions, where each region
is used independently to train a backpropagation (BP)
network. The outputs of these subnets are then collec-
tively trained with another BP network. We show that
the resulting hierarchical network has the advantage of
reduced dimensionality while maintaining a performance
similar to the standard BP network.

1 Introduction

We present a system that is being evaluated for the in-
spection of pistachio nuts viewed with an X-ray sensor.
The X-ray device reveals internal defects that cannot be
otherwise detected by external evidences in the visible
domain. In particular, we are interested in identifying
insect infested nuts since they contribute to aflatoxin
contamination® [18]. Presently, only manual inspection
based on color, size and density of pistachio nuts is used
to remove the externally damaged nuts. A complete au-
tomated system should test for internal damages as well,
since not all infestations are externally manifested.

In this paper, we outline an inspection system for de-
tecting internal defects which has the following novel
features: First, we derive an invariant representation
that captures pertinent information on infested as well
as non-infested nuts; second, we show that by parti-
tioning this invariant representation, a classifier with
reduced dimensionality can be constructed. From a ge-
ometric perspective, infestation can be characterized by

*Research was supported by a grant from the U.S. Dept. of
Agriculture, under contract number 6053253132.

! Aflatoxin is a natural carcinogenic compound, and its con-
centration is limited by the U.S. and European regulatory
agencies.
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a dark tunneling appearance in the X-ray image. The
tunnel corresponds to the reduced density of the natu-
ral content of the nut and to the replacement of that
content by a cocoon, insect debris, and air, which have
lower X-ray absorption properties. The construction of
an invariant representation is complicated by the fact
that the tunnel can occur at any spatial location and
direction. Some air gaps are due to natural separations
between the two halves (cotyledons) of the nut meat.
These natural features may be more or less apparent
during imaging depending on the resting position of the
nut. However, the natural separations are generally ac-
centuated by higher contrast than those that are caused
by infestation. In this context, our invariant represen-
tation first encodes the tunnels and their magnitude,
and then parametrizes this representation with respect
to location and orientation. Tunnels can be represented
in terms of local positive curvature maxima; these local
maxima are then linked to form long curve segments.
The invariant and compact representation of these curve
segments, with respect to rotation and translation, is
then encoded by constructing the distribution of local
curvature maxima as a function of distance to the outer
boundary of the nut. This distribution is a two dimen-
sional joint histogram with the necessary invariant prop-
erties.

The second aspect of our work is in the design of the
classifier, which is based on a backpropagation network.
We show that partitioning the histogram into several re-
gions, training a network for each region independently,
and combining these subnets in a hierarchical fashion
can lead to an effective classifier with reduced dimen-
sionality (number of weights) than a standard backprop-
agation network.

In the next section, a brief summary of the image ac-
quisition system is given. Then in sections 3 and 4, we
outline the details of the invariant representation and
classification. In each section, we present the interme-
diate result of our system followed by examples. The
paper concludes in section 5 with a summary and a de-
scription of future efforts.
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2 Images

The X-ray images of clean and infested pistachios are
captured on photographic film. Nuts from each process
stream (Table 2) are individually arrayed on clear adhe-
sive contact paper in one of three orientations (suture
plane parallel, perpendicular or at an angle to the film
plane) and X-rayed®>. Films are handled in the dark
and exposed without film holders. Twelve bit digital
images are obtained from the films at a resolution® of
(0.125mm)? /pizel. The X-rayed nuts are then opened
to determine the presence of insect damage. An image
of a clean nut will have the following characteristics: a
bright area representing the nut meat, surrounded by
a small dark gap between the nut meat and the shell,
and a little brighter nut shell outside the kernel. Of-
ten there is a dark gap between the two halves of the
kernel. The dark areas generally have sharp edges. An
insect-infested nut has additional dark areas in the ker-
nel which have been caused by insect bites or tunneling.
Figure 1 shows representative images of clean and insect
infested pistachios.

()

(b)

() (d)

Figure 1: X-ray images of pistachios: (a) & (b) clean
and (c) & (d) infested

3 Invariant Representation

An ideal representation should capture meaningful fea-
tures with maximum compactness for effective classifi-
cation. In this context, the low level representations
should be rich, stable, and invariant to the rotation and
translation of the object in the image plane as well as
in the 3-D space. Compactness in representation can
be achieved by encoding the low level features so that
similar structures at different spatial locations have the
same representation. For example, a cocoon on the left
or right side of the nut should be represented identically.
In our system, the ideal properties of the low level fea-
tures are captured by computing the surface curvature
at each pixel position. Curvature measurements are in-
variant to translation and rotation, and their positive
local maxima identify the positions of troughs. How-
ever, other maxima may also be the results of natural

290 seconds at 25 keVIJO‘ZS mm Be window] with a Faxitron
series X-ray system 4380N, Hewlett Packard, McMinnville, OR;
Industrex B film, Eastman Kodak, Rochester, NY

3u:?.ing a Lumiscan 200 film scanner, Lumisys, Sunnyvale, CA

Vision Interface ‘95

18

surface properties of the pistachio nut such as the split
cotyledon. Still, we assert that curvature maxima on the
natural surface have higher magnitude, statistically, at
a given distance from the nut boundary when these are
compared to those curvature maxima, obtained at the
identical distance from the nut boundary, that are due to
the infestation. Compactness is achieved by parametriz-
ing curvature features as a function of their distance
from the boundary of the nut. This parametrization
is constructed as a two dimensional histogram that en-
codes the curvature-distance joint distribution. We sug-
gest that this histogram corresponds to the signature, or
a finger print, that can characterize an infested or clean
nut, and we present results to that effect. The system
architecture is shown in figure 2, and the details of the
above computational steps are outlined below.

IMAGE
] [
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CREASES CROSSINGS
Y []

LINK EXTRACT
CREASES PROXIMITY MAP
CONSTRUCT
CURVATURE-PROXIMITY
HISTOGRAM

Figure 2: Processing steps

The tunnels are localized by grouping local positive
curvature maxima, where curvature corresponds to the
differential surface properties of the local intensity dis-
tribution for the projected image of the tunnel. Curva-
ture is computed from the first and second fundamental
forms. These forms uniquely determine certain local
invariant quantities of a 3-D surface, where invariance
is expressed in terms of translation, rotation, and scal-
ing for X-ray images. Faux and Pratt [5] expressed the
first and second fundamental forms in parametric space.
However, from a computational perspective, it is desir-
able to express these forms in Cartesian space. Let a
point on the surface be defined as P = z1 + yJ + zl-c.;
then the first and the second fundamental forms are
computed to be:
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The normal curvature of a surface is the curvature of
the intersecting curve between the surface and the plane
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containing the surface normal and tangent vector to the
curve. The directions in which the normal curvature
becomes maximum or minimum are called principal di-
rections corresponding to the principal curvatures. The
normal curvature is defined as [5]:

XTDX > T z z
n=m where X* = g—I g—y ] (3)

Through elimination and the solution of a pair of simul-
taneous equations, the following quadratic equation is
obtained, where the roots of this equation correspond
to maximum and minimum principal curvatures.

(yn 922 = 912921)’93;

—(g11d22 + d11g22 — 2g12d12)kn
+(d11d22 — d12d21) =0 (4)

Figure 3 shows the curvature features corresponding to
the images shown in figure 1. On these images, white
pixels correspond to troughs (positive curvature max-
ima) and black pixels to ridges (negative curvature max-
ima) respectively.

(a)

(b) () (d)

Figure 3: Maximum principal curvatures of surface in-
tensity: (a) & (b) clean and (c) & (d) infested

Once local curvature maxima are determined, they
are linked together and long segments are constructed.
The steps leading to the extraction of trough segments
are enumerated below.

1. Smooth the original image with a Gaussian kernel,

2. Compute the curvatures at each pixel on the
smooth image,

3. Threshold the curvature image for troughs,

4. Thin the thresholded image using the non-maximal
suppression [3] method. The idea is to keep only
the troughs whose maximum curvature is the local
maximum, and

5. Link the thinned troughs using a hysteresis [3]
method. The hysteresis linking method consists of
a high and a low threshold. All points above the
high threshold are marked as trough points, and
similarly, those points below the low threshold are
marked as non-trough points. The points between
the low and high thresholds can only be traversed
from those troughs that are marked by the high
threshold.
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The result of linking troughs are shown in figure 4.
These images are computed with high threshold of 0.99,
low threshold of 0.89, and the kernel size of 1.5 for Gaus-
sian smoothing. These parameters are found to be ex-
perimentally appropriate for the nut size, and the ex-
pected size of the cocoon that is generated through in-
festation.

()

(b) () (d)
Figure 4: Result of linking for troughs: (a) & (b) clean

and (c) & (d) infested

In the next step of the computational process, we
compute the distance from each trough point to the
boundary of the nut. This is accomplished by first ex-
tracting the boundary of the nut with the Zero-crossings
of the Difference of Gaussian (DoG) filter, and then com-
puting the chamfer image. The chamfer image generates
a distance map from edges. The map has a zero value
on the edge and increases monotonically from the edge.
Figure 5 shows the chamfer images obtained from the
boundaries of the nuts shown in figure 1. Once the prox-

()

(b) (©) (d)

Figure 5: Chamfer images of boundaries of the nut: (a)
& (b) clean and (c) & (d) infested

imity map is computed, the two dimensional joint dis-
tribution of the curvature-distance table is constructed.
Figure 6 shows the cumulative curvature-distance joint
histogram for a clean and an infested pistachio, corre-
sponding to the second and the fourth images from ex-
ample respectively.

In figure 6, the distribution indicates that high cur-
vature activities are more localized, at a given distance
from the boundary, for clean pistachios than infested
pistachios.

In the next section, we show that the joint distribution
has the necessary information content to identify the
infested nuts in the population.
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(a) clean nuts

(b) infested nuts

Figure 6: Joint histograms of curvature and proximity
values

4 Classification

In the design of the classifier, we experimented with
several indexing schemes, such as Bidirectional Asso-
ciative Memory [9] and backpropagation neural network
paradigms. The latter consistently produced more fa-
vorable results. This is in part due to the large varia-
tion in pattern structure and the presence of similar pat-
terns among clean and infested pistachios. The basis for
classification is the joint distribution of the curvature-
distance table. The curvature values range from 0 to
7.5, and are partitioned into 16 groups, with the dis-
tance values ranging from 0 to 9, partitioned into 10
groups. The table is further quantized, as shown in ta-
ble 1, to reduce the size of the network used for classi-
fying based on the joint distribution and consequently,
the size of the training set. The training is based on
the backpropagation algorithm. We have experimented
with two strategies for further refinement of the classifier
design. The first one is the standard backpropagation
technique for training a network from a population. In
the second approach, we partition the joint distribution
table into several regions, where each region is used in-
dependently to train a network. These subnets are then
trained with another backpropagation network.

Curvatures Distances
1234 567 8910
1234 group 1 group 2 group 3
5678 group 4 group 5 group 6
91011 12 group 7 group 8 group 9
13 14 15 16 | group 10 | group 11 | group 12

Table 1: Quantization of joint histogram of the curva-
ture and proximity values

The backpropagation (BP) algorithm is a supervised
training technique. In the rest of this section, we first
evaluate the performance of a standard BP network,
then compare its results with the hierarchical one.

In the standard implementation of the backpropagation
algorithm, we use a three layer network and create a se-
quential array of the joint distribution table as the input
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to this network. The learning rate and the momentum
factor are set at 0.1 and 0.9 respectively. These param-
eters are selected to maintain a balance between achiev-
ing fast convergence and arriving at the desirable local
minima. The samples are arranged in different trays,
and manually identified as clean or defective nuts. Ta-
ble 2 tabulates the types of defective nuts in these trays.
The training set consists of a sample of 80 clean and in-
fested nuts. The clean and infested nuts are randomly
selected from trays M and Q respectively.

Product % of Aflatoxin Aflatoxin Insects
Stream Total NG/GM % of per
Product Crop Toxin | 100 nuts
M 31.06 0 0 0
Q 0.89 89 37 44
A 10.91 1.4 7 2
D 0.13 91 9 9
I 0.53 97 24 13

| Tray | Description |

Good large nuts

Nuts manually removed
Nuts with stained shells
Lightly stained nuts
Small nuts

—| o =|o| =2

Table 2: Processing Stream Information

We construct three sets of testing data. The first and
second set have 98 and 100 samples from trays M and
Q, respectively. The third set has 452 samples from
all the trays. All samples are selected randomly with-
out replacement, and none of the testing samples are’
included in the training set. The classification results
for the backpropagation network with various input size
and nodes in the hidden layer are shown in Table 3. The
poor performance of the third set is due to the presence
of other categories of pistachio nuts, as listed in Table
2, that in addition of being infested or clean, they may
have other defects as well. In a usual agricultural set-
ting, the inspection of pistachio nuts is a multi-stage
process, where at each stage, different types of defects
or nut grades are inspected. For example, nuts with ex-
ternal defects such as stained shells, are removed by a
different inspection system all together. The third set
of data was constructed as an experiment to test if the
multi-stage inspection and grading process can be re-
duced into one single stage. Our result indicate that a
two class image-based recognition system is not capable
of discriminating the nuts effectively.

Other researchers have explored hierarchical networks
for machine vision applications [17] as well. However,
our implementation does not use shared weights, nor use
more than one hidden layer, and it treats the output of
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each subnet as a probability measure. Furthermore, the
representation used by other researchers is at the pixel

|_NODES [ WGT [ NTRS | NTES | TPF | FPF ]

level, and no invariant properties of image features are L 6x4x2 304 80 98 0.7143 | 0.2857
exploited. In our implementation, we divide the joint H 12x8x2 100 0.8400 | 0.2600
distribution of histogram into four or six regions (the 492 0.6786 | 0.3765
number of regions is arbitrary). FEach region is then L 6x3x2 200 80 98 0.8163 | 0.3673
used independently to train a BP network. The results H 12x4x2 100 0.8600 | 0.2400
of these subnets are then used as input for the next BP 452 0.7589 | 0.4471
network, as shown in figure 7. The classification results L 6x2x2 152 80 98 0.8367 | 0.3265
for various network sizes are tabulated in table 4. H 12x4x2 100 0.8600 | 0.2000
452 0.6607 | 0.4706
| NODES | WGT [ NTRS | NTES | TPF_| FPF | L 4x3x2 [ 112 80 98 | 0.7959 [ 0.3673
98 0.7959 | 0.3265 H 8x4x2 100 0.7800 | 0.2600
24x12x2 | 312 | 80 [ 100 | 0.9200 | 0.2200 e R
452 0.8214 | 0.4441 L 4x2x2 88 80 98 0.8163 | 0.3673
9% - Tosr5 010 H 8x4x2 100_| 0.8400 | 0.2600
24x6x2 | 168 | 80 [ 100 | 0.9400 | 0.2400 e AL R U
452 0.8571 | 0.4647 L 4x1x2 44 80 98 0.7143 | 0.2245
TR R H 8x2x2 100_| 0.7000 | 0.2400
20x10x2 | 220 | 80 [ 100 | 0.8000 | 0.1800 e 0
452 0.7411 | 0.3735 L 4x1x2 34 80 98 0.7143 | 0.2449
98 [ 07055 [ 0306 H 8x1x2 100_| 0.7400 | 0.2600
20x5x2 | 110 | 80 [ 100 | 0.8200 | 0.2400 $8%.0,.0:0280. [ 03704
434 0.8125 | 04324 NODES: number of nodes in the networks
98 0.7755 | 0.3469 1‘\’IV‘I(‘;RT"~} numli)er offcomputed weiglhts
S: number of training samples
16x4x2 | 72 80 | 100 | 0.9000 | 0.2800 NTES! thitatios of tosting sammid
452 0.8482 | 0.4412 L: lower subnetwork
H: upper network
98 0.6327 | 0.3673 TPF: true posit;il\lle fractiondas the percent of infested
12x4x2 56 80 100 0.7200 | 0.3000 nuts actually detecte
FPF: false positive fraction as the percent of clean
452 0.6429 | 0.4206 nuts mistakenly identified as infested
98 [ 0.9388 | 0.7755 5 .
6x3x2 24 80 100 0.9800 | 0.7000 Table 4: Performance of hierachical backpropagation
152 0.9018 | 0.7706 networks with subnet size of 4 and 6 with varying num-

NODES: number of nodes in the networks

WGT: number of computed weights

NTRS: number of training samples

NTES: number of testing samples

TPF: true positive fraction as the percent of infested
nuts actually detected

FPF: false positive fraction as the percent of clean
nuts mistakenly identified as infested

Table 3: Performance of standard backpropagation net-
works with varying number of nodes and hidden layers

The result from our hierarchical network approach
shows a similar performance to the standard backprop-
agation network, while reducing the dimensionality. As
an example, the fourth row (20x5x2, 110 weights) from
table 3 and the fifth row (L: 4x2x2, H: 8x4x2, 88 weights)
from table 4 indicates that the hierarchical BP network
with similar performance to the standard BP network
has the reduced dimensionality. The x? test on this ex-
ample confirms the result as the 2 value 6.3185 with 6
degrees of freedom. The reduced dimensionality of the
network has the benefit of improved convergence time
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ber of nodes and hidden layers

and a reduction in the number of required training sam-
ples.

5 Conclusion

An inspection system for the classification of infested
and clean pistachios is presented. The novelty of our
approach lies in the compact and invariant representa-
tion of the image features for recognition. The invari-
ance was expressed in terms of curvature-proximity joint
distribution function. Furthermore, we showed that by
partitioning the input array and hierarchical organiza-
tion of the BP network, we could reduce the dimen-
sionality in the network significantly, without the loss of
accuracy. This result leads us that we need less number
of training samples, and that we can reduce the cost of
the inspection of pistachios. We believe that this archi-
tecture can be used to inspect other varieties of nuts as
well, which is the focus of our current effort.
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Figure 7: Hierarchical Backpropagation Networks
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