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BACKGROUND 
•  Insulation failure is the most common 

type of transformer breakdown 
•  Partial Discharge (PD), an internal 

arcing event, is a symptom of insulation 
failure 

•  Different types of PD correlated with 
certain areas of transformer 

•  Determine PD type to find rough 
location 
• Extract features from signal data 
• Train classification models on 

features 
•  Install ultra-high frequency sensors 

around rough location to identify precise 
PD origin 

To design an efficient feature set 
and prediction model to classify 

different types of partial 
discharge based on signal data 
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Figure 1: Signal data of the 4 PD types we examine 
and the number of samples of each type 

•  Extract smaller feature set from 3840 
points of PD signal 

•  Each meta-feature represents entire data 
sample 
• Maximum magnitude out of 3840 

points 
• Averaged over top 3 points to 
account for outlier points 

• Total magnitude of 3840 points 
• Represents average magnitude 

• Length of longest empty phase band 
• Estimate of signal distribution 

FEATURE ENGINEERING 
•  Several successful classification models 

• Certain models perform better for 
specific PD type 

• Combine strengths of each model 
•  Stacking ensemble 

• Train multiple first layer classifiers 
• Use outputs as input to second layer 

classifier 

•  Define feature set that efficiently 
represents PD signal samples 
• Better accuracy and less data than 

phase based features 
•  Stacking ensemble outperforms any 

single model 
• Higher accuracy and lower variance 

Figure 4: SVM (Support Vector Machine), FSVM, and Random Forest have high overall accuracy. However, 
Logistic Regression performs best for just Corona PDs. The stacking ensemble model has the best overall 

accuracy with lower variance than any single model. 

(b) Floating PD (99) 

(c) Particle PD (80) 

(a) Corona PD (85) 

Classification 
Method 

PD Type 
Total 

Corona Floating Particle Void 
SVM 0.9915 ± 0.014 1 ± 0 0.9954 ± 0.014 0.9789 ± 0.042 0.9923 ± 0.010 

Logistic  Regression 0.9997 ± 0.002 0.9882 ± 0.024 0.9680 ± 0.035 0.9809 ± 0.024 0.9847 ± 0.011 
Random Forest 0.9905 ± 0.014 1 ± 0 0.9954 ± 0.012 0.9832 ± 0.035 0.9931 ± 0.009 

Gradient Boosting 0.9672 ± 0.030 1 ± 0 0.9862 ± 0.024 0.9785 ± 0.035 0.9838 ± 0.012 
Fuzzy SVM (FSVM) 0.9859 ± 0.023 1 ± 0 0.9943 ± 0.017 0.9712 ± 0.029 0.9893 ± 0.011 
Best Stacking Model 0.9985 ± 0.007 1 ± 0 0.9984 ± 0.008 0.9836 ± 0.021 0.9961 ± 0.005 

Empty Band 
(wraps around)

PD Type Recall Precision 
Corona 0.998 1 
Floating 1 0.991 
Particle 0.999 1 

Void 0.988 1 

(d) Void PD (64) 

Figure 2: Empty phase band is a continuous 
set of phases with no magnitudes greater 

than 40% of maximum magnitude.  

Figure 6: Diagram of stacking classifier. 
Parameters to test are first and second layer 

classifiers as well as how to translate first layer 
outputs to second layer input.  

Figure 5: The precision and recall for all PD types 
are very close. However, we notice that the most 
common errors are void PDs being misclassified 
as floating PDs. 

Figure 3: The PD data is almost separable based on the 3 features. There are fairly distinct clusters with few 
outliers, especially when considering all 3 features together. 

DATA 
•  Samples contain 3840 data points 

divided into 60 cycles of 64 phases 
• 328 total samples 
• Unique patterns for each PD type 


