

RESEARCH GOAL

To design an efficient feature set and prediction model to classify different types of partial discharge based on signal data

BACKGROUND

- Insulation failure is the most common type of transformer breakdown
- **Partial Discharge (PD)**, an internal arcing event, is a symptom of insulation failure
- Different types of PD correlated with certain areas of transformer
- Determine PD type to find rough location
 - Extract features from signal data
 - Train classification models on features
- Install ultra-high frequency sensors around rough location to identify precise PD origin

DATA

- Samples contain 3840 data points divided into 60 cycles of 64 phases
 - 328 total samples
 - Unique patterns for each PD type

(d) Void PD (64) (c) Particle PD (80) Figure 1: Signal data of the 4 PD types we examine and the number of samples of each type

•	E	
•	р Е	
	Sa •	3
		-
	•	I
	•	-
	C	-
	300	_
mum Magnitude	250	
	200	_
	150	
Я		
Maxim	100	
Maxim	100 50	

PD Type	Recall	Precision
Corona	0.998	1
Floating	1	0.991
Particle	0.999	1
Void	0.988	1

- ample
- Maximum magnitude out of 3840
- account for outlier points
- Represents average magnitude

lassification Method	PD Type					
	Corona	Floating	Particle			
SVM	0.9915 ± 0.014	1 ± 0	0.9954 ± 0.014	0		
stic Regression	0.9997 ± 0.002	0.9882 ± 0.024	0.9680 ± 0.035	0		
andom Forest	0.9905 ± 0.014	1 ± 0	0.9954 ± 0.012	0		
adient Boosting	0.9672 ± 0.030	1 ± 0	0.9862 ± 0.024	0		
zy SVM (FSVM)	0.9859 ± 0.023	1 ± 0	0.9943 ± 0.017	0		
Stacking Model	0.9985 ± 0.007	1 ± 0	0.9984 ± 0.008	0		

- Email: jw96@rice.edu

