

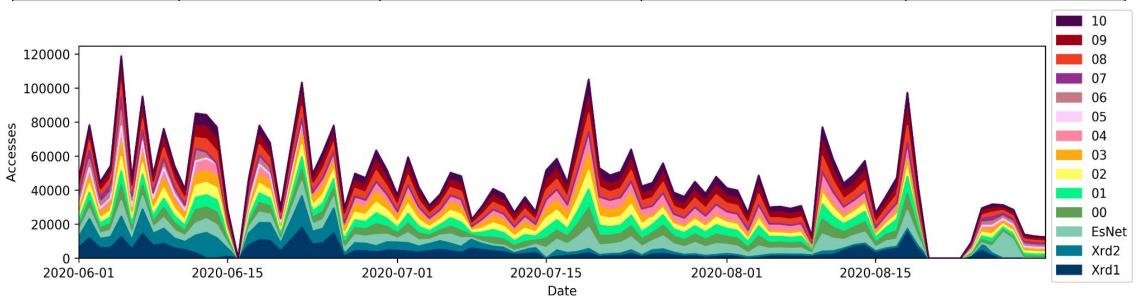
Analyzing Scientific Data Sharing Patterns for In-Network Data Caching

Elizabeth Copps Middlebury College

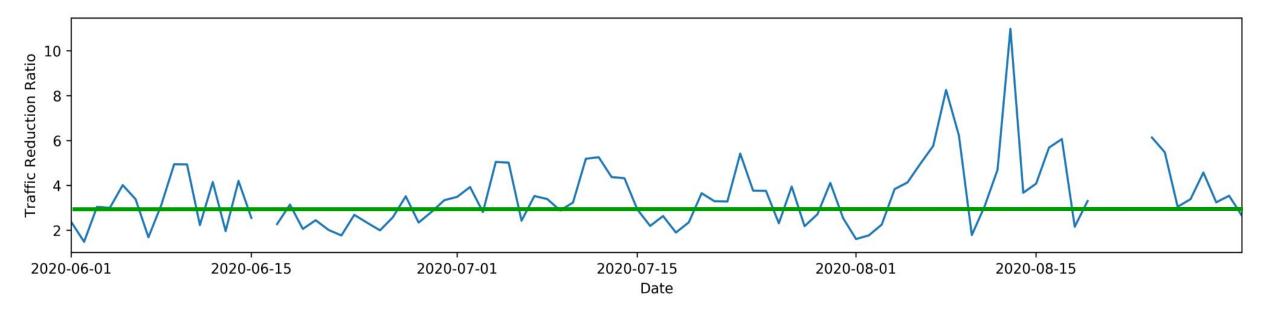
- Data volume from new scientific projects and simulations exponentially increasing
 - Drives up network traffic, data latency, and total data transfer costs
- Problem: Many files accessed multiple times by the same user or users in the same region
- Solution: In-network regional data caches
 - Reduce costly and redundant transfers by sharing data among regional users
 - Previously shown to reduce network demand by factor of ~3

Southern California Regional Cache

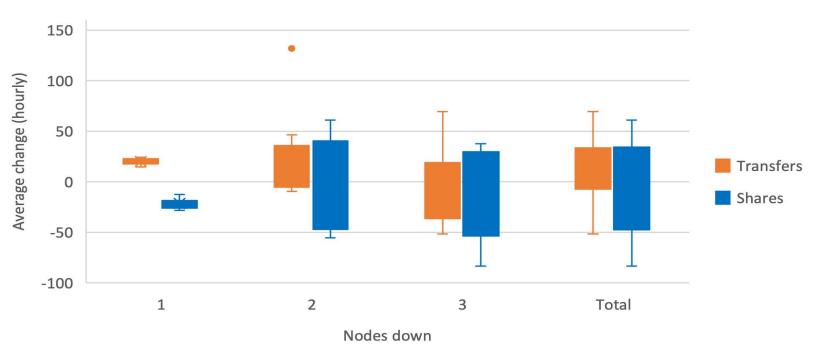
- 11 at UCSD
 - Each w/ 24 TB, 10 Gbps network connection
- 2 at Caltech
 - Each w/ 180 TB, 40 Gbps network connection
- 1 at ESnet
 - 40 TB, 40 Gbps network connection
- XCache fetches data from source to store locally
- Cache relevant from research standpoint
 - Spans almost 500 miles
 - Data from Large Hadron Collider



Summary Statistics & Cache Utilization


	Number of accesses	Data transfer size (TB)	Shared data size (TB)	Percentage of shared data size
June 2020	1,804,697	532.04	818.96	60.62%
July 2020	1,426,585	354.45	764.35	68.32%
Aug 2020	995,324	249.58	586.19	70.14%
Total	4,226,606	1,136.07	2,169.50	65.63%
Daily average	48,029.61	12.91	24.65	

- Ratio measures the sizes of the data that the cache shares rather than transfers
 - Traffic Reduction Ratio = Total access size / Total transfer size
 - Total access size = Share size + Transfer size
- Average ratio: 2.91



Studied node downtimes to analyze impact of a single node

- Downtimes reduce number of nodes in cache
- Predict what happens when we add nodes

Downtime changes

- Hourly shares and share sizes decrease
- Hourly transfers and transfer sizes increase
- Remaining nodes
 evenly split load

Proportion of data volume being shared increases over time

- More files in cache
- Increases traffic reduction rate
- Increase stops once cache is full
- Single node affects rest of cache proportionally
 - More transfers after downtime because less data stored in cache
- Future
 - Adding nodes expected to proportionally reduce demands on other nodes
 - Larger nodes store more data but do not take proportionally more accesses
 - More total disk space = higher traffic reduction rate
 - As users increase, accesses increase proportionally