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ABSTRACT
We propose a new class of lossy compression based on locally ex-
changeable measure that captures the distribution of repeating data
blocks while preserving unique patterns. The technique has been
demonstrated to reduce data volume by more than 100-fold on
power grid monitoring data where a large number of data blocks
can be characterized as following stationary probability distribu-
tions. To capture data with more diverse patterns, we propose two
techniques to transform non-stationary time series into locally
stationary blocks. We also propose a strategy to work with val-
ues in bounded ranges such as phase angles of alternating current.
These new ideas are incorporated into a software package named
IDEALEM. In experiments, IDEALEM reduces non-stationary data
volume up to 100-fold. Compared with the state-of-the-art lossy
compression methods such as SZ, IDEALEM can produce more
compact output overall.

CCS CONCEPTS
• Theory of computation→ Data compression; • Mathemat-
ics of computing→ Bayesian nonparametric models; Time series
analysis; • Information systems → Data streaming; Similarity
measures;
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1 INTRODUCTION
Lossy compression reduces data storage requirement by dropping
some information in the original data. The quality of these tech-
niques is currently measured by the Euclidean distance between
the original data and the reconstructed data. Though this approach
is typically effective, there are cases where introducing an alter-
native quality measure would produce better compression. In gen-
eral, compression takes advantage of repeated patterns or common
features in the original data; thus high entropy data is hard to
compress. In many applications, only the probability distribution
of the high entropy data is important, in which cases, capturing
the probability distribution accurately is sufficient for the analysis
tasks. More generally, we propose to use the locally exchangeable
measure (LEM) [3] to decide whether two data blocks could be
used interchangeably. When some blocks are interchangeable, we
could keep only a single copy and therefore reduce the storage
requirement. Preliminary study of LEM shows that this approach
is promising [13], but there are also noticeable shortcomings that
we will address.

Our aim is to compress floating-point values produced from large
scientific simulations or large experiments. Numerical values, espe-
cially floating-point values, are known to be hard to compress [1, 10].
Recently, there has been a flurry of publications on compressing
floating-point values [1, 4, 8, 10, 14]. However, all these techniques
are designed to reduce the Euclidean distance between the original
data and the reconstructed data. Among these, SZ [4] and ZFP [14]
are able to reduce the data volume by more than 100-fold while
maintaining good quality. In both cases, SZ and ZFP rely heavily on
continuity present in data. However, there are many applications
where such continuity is not present; instead, the most common
feature in the data might be the apparent randomness.

Given two data blocks, LEM defines a statistical similarity mea-
sure to decide whether or not the two blocks are exchangeable.
Following the general design of a dictionary-based compression
approach [16, 18, 23], when an incoming data block is found to be
similar to an existing one, we maintain a pointer to the existing
block. This approach works well when there are many data blocks
with the same empirical probability distributions. When a data
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block is different from all others, it is stored precisely as is; thus
the unusual features in the original data are preserved.

A simple way to decide whether two blocks are exchangeable
is to compare their distributions. When their distributions match,
we say they are similar enough to be exchanged. In other words,
for our LEM based compression method to be effective, the prob-
ability distribution of original data must be stationary. However,
many real-world data sets are not stationary. For example, outdoor
temperature measurements have seasonal trends, and the phase
angle of electricity data is carefully managed so that it can only
drift slowly over time. In our preliminary tests, our implementation
of the compression software named IDEALEM was found to be able
to reduce the storage requirement by a factor of more than 100 for
a set of voltage and current recorded by µPMUs1 [13]. However,
we also noted that IDEALEM was not effective in compressing the
phase angles in the same data set. One key motivation of this work
is to explore options for IDEALEM to compress some forms of non-
stationary values as well as stationary random values. In particular,
we propose to explore a number of transformations that could turn
some non-stationary time series into stationary time series.

The main contributions of this work are as follows:

• We propose two different transformation methods, named
residual transformation and delta transformation, to capture
long-range trends in data and allow local variations to be
compared through LEM.
• Values in bounded ranges, such as angles between 0◦ and
360◦, are also considered.
• We carefully modify the IDEALEM software to implement
the above methods [20], and conduct extensive tests of the
resulting software on the phase angles known to be hard to
compress for the original IDEALEM software. Tests show
that the new IDEALEM can reduce the storage requirement
by nearly 100 fold in many cases. Furthermore, the new
methods significantly outperform the state-of-the-art lossy
compression methods.

2 RELATEDWORK
Since lossless compression methods are typically not able to signif-
icantly compress floating-point values, we focus on lossy compres-
sion techniques. Conventional lossy compression schemes typically
quantize or threshold data to adjust quality and reduce storage re-
quirement [18]. They measure compression quality using ℓ2 norms
(Euclidean distance), such as mean squared error (MSE) and signal-
to-noise ratio (SNR) [2, 11, 12, 18]. These compression methods
are unable to effectively reduce the data size when incoming data
have high entropy or are floating-point values. Intuitively, high
entropy data can be regarded as random and floating-point values
often have unpredictable variations in their lower order bits. Since
the existing compression methods could not find patterns among
the values in these cases, we decided to explore the patterns in
probability distributions instead. Following a statistical concept
known as exchangeability, we define a statistical similarity measure
named locally exchangeable measure (LEM) [3].

1More information about the data could be found at http://powerdata.lbl.gov/.

Overall, our LEM-based compression technique resembles a
dictionary-based methods [16, 18] in lossless compression. In IDE-
ALEM, data values are reconstructed from learned probability distri-
butions during the encoding process, not from the encoded (quality-
adjusted) data itself. The encoded output is not a direct representa-
tion of the original data; instead, the encoder informs the decoder
how to regenerate them. Thus, this approach can be also regarded
as one of the analysis/synthesis schemes [9, 18, 21], in the sense
that they rely on the self-similarity of data, suggesting parts of data
often resemble other parts of the same data.

Research on the compression of floating-point data has been very
active. Here, we briefly review ZFP [14, 15], ISABELA [7, 10], and
SZ [4, 5]. ZFP is designed to work with multi-dimensional floating-
point arrays commonly used in scientific simulations. ZFP can
reduce the data size by 100 fold or more on some three-dimensional
arrays while maintaining high reconstruction quality. However, on
one-dimensional arrays ZFP do not perform very well [13].

ISABELA [10] sorts the incoming data blocks and uses the B-
spline to approximate the sorted values. Since the splines can be
represented compactly, the overall storage requirement may be
reduced. However, it also needs to store a representation of the
sorting order, which limits its compression performance.

SZ (squeeze) [4] is a recently developed lossy coding scheme
with superior performance. Similar to ISABELA, SZ employs curve
fitting; but it provides three curve-fitting models and chooses the
one that best predicts each target value. The authors of SZ have
demonstrated it to be more effective than all known lossy compres-
sion methods [4].

3 IDEALEM COMPRESSION ALGORITHM
Various application scenarios might be considered as generating
random numbers. For example, internet traffic might be regarded
as random and sensors monitoring many phenomena might be
recording background noise while waiting for interesting events.
For such noisy data blocks, a compression method that reproduces
the same distribution would be sufficient for many analysis op-
erations. To explore the potential of this approach, we developed
Implementation of Dynamic Extensible Adaptive Locally Exchange-
able Measures (IDEALEM) [20]. Our preliminary tests showed that
IDEALEM was able to significantly reduce the storage requirement
while preserving the “interesting” features in the electric power
grid monitoring data [13]. Next, we outline the key concepts in
IDEALEM.

3.1 IDEALEM Data Blocks
IDEALEM treats an incoming data series as a sequence of fix-sized
blocks. The basic approach of IDEALEM follows the dictionary-
based compression, where each dictionary entry represents a user-
specified block of incoming data. Let B denote the block size, yi the
incoming values (i = 0, 1, 2, . . .). Then the block j (j = 0, 1, 2, . . .), de-
noted by bj , would include values (yjB ,yjB+1, . . . ,yjB+B−1). When
two blocks are similar, the newer block would be replaced with the
existing block.

Fig. 1a shows 160 values broken into ten 16-element blocks, and
the ten blocks are split into three groups based on their empirical

http://powerdata.lbl.gov/
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Figure 1: (a) An example of 160 data values broken in blocks of 16 values each. IDEALEM treats blockswith a similar probability
distribution as “exchangeable” and only records one copy of each group of “exchangeable” blocks. (b) The encoded stream
structure of (a) with B = 16 and D = 2 (j = 0, 1): a dotted box represents an index (pointer) in 1 byte; a solid box with pattern
represents a source distribution (dictionary entry) in 8B bytes (128 bytes); 0xFF denotes a special marker for overwriting signal.

probability distributions. The IDEALEM software records a repre-
sentative from each group as a dictionary entry, and a pointer to the
dictionary entry for each of the remaining blocks. IDEALEM creates
a new dictionary entry when the incoming data block is different
from all dictionary entries. During the reconstruction process, it
copies the dictionary entry when a new block is encountered, which
allows to keep unique blocks exactly as in the original data, while
reconstructing the repeating blocks through a random process.

3.2 Dictionary Size
IDEALEM software keeps a small number of dictionary blocks
in memory during encoding and decoding process. We limit the
number of dictionary entries to be no more than 255, which allows
us to use a byte as the pointer to a dictionary entry.

In Fig. 1a, we have identified three groups of blocks. Ideally, we
would like to store a dictionary entry for each of the groups in
memory. Fig. 1b illustrates how we might record the blocks if only
two dictionary blocks are allowed to be kept in memory (D = 2).
In this case, the seventh block, i.e., group 2, overwrites an existing
dictionary entry. IDEALEM uses a special marker 0xFF to denote
that the oldest dictionary entry has been overwritten. Since the
value 0xFF is used for this special purpose, the maximum dictionary
size is 255 (j = 0, 1, . . . , 254).

The dictionary size D plays an important role in compression
performance: more entries in general promise higher compression
ratios because there is a higher chance of finding a similar distribu-
tion stored in the dictionary when we encounter a new data block.
Increasing D may also have drawbacks: (i) it increases memory
usage; (ii) it increases the number of similarity tests needed since
the new data block is compared against each dictionary entry.

3.3 Measuring Similarity with
Kolmogorov-Smirnov Test

We measure the similarity between two data blocks with
Kolmogorov-Smirnov test (KS test) [17, 19, 22]. KS test is a popu-
lar choice for testing similarity and is also relatively simple and

fast to compute as compared to other well-known statistical tests.
It compares empirical distributions of two time series, computes
the maximum distance between the two distributions, and then
normalizes the distance into the p-value. A large p-value means
the two time series are more likely to be produced from the same
probability distribution. In our work, when the p-value is larger or
equal to a user-specified parameter α , i.e., the KS test threshold, we
declare the two data blocks to be similar.

4 IMPROVING IDEALEM
This work continues our development of IDEALEM. In the previous
study of IDEALEM [13], we have identified a number of cases where
it does not work very well: when data values contain trends (e.g.,
cyclostationary process) and the values are in bounded ranges. Next,
we outline our approach to address these challenges.

4.1 Transforming Data Blocks
The similarity test in IDEALEM declares two data blocks to be the
“same” when their empirical distributions are close to each other.
Assuming data blocks are generated by random processes, com-
pressible time series must be generated from stationary processes.
For those time series from non-stationary processes, we seek to
transform the data blocks so that we can reuse the basic mechanism
of IDEALEM. Our basic design is to capture the long-range trends
explicitly by keeping one value from each block, which we call the
base value. We transform the rest of values of the block relative
to this base value. Next, we describe two different transformation
strategies named residual transformation and delta transformation.

4.2 Residual Transformation
Recall that we use the notation bj to represent the block with the
following values:yjB ,yjB+1, . . . ,yjB+B−1, where B is the block size.
The residual transformation records a base value, say yjB of bj and
transforms the remaining values of the block as follows: yrjB+k =
yjB+k − yjB , where k = 1, 2, . . . ,B − 1. In this case, the similarity
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comparison is performed on brj ≡ (yrjB+1,y
r
jB+2, . . . ,y

r
jB+B−1). In

most non-stationary processes, we expect the probability distri-
bution within B − 1 values to be relatively stable; therefore, it is
possible that brj could be similar to brk .

4.3 Delta Transformation
It is possible that probability distribution changes rather quickly, in
which case, the successive difference among yi might follow a sta-
tionary process. Again, using yjB as the base value of block bj , the
delta transformation computes a new block consisting of ydjB+k =
yjB+k−yjB+k−1, wherek = 1, 2, . . . ,B−1. In this case, the similarity
comparison is performed on bdj ≡ (ydjB+1,y

d
jB+2, . . . ,y

d
jB+B−1).

Fig. 2 shows the residual and delta transformations of 256 sample
values. The original values in Fig. 2a are a small subset of the
angular values that are difficult to compress using the original
IDEALEM [13]. After the transformations (see in Fig. 2b and Fig. 2c),
the new data blocks appear more likely to be similar to each other,
and therefore could be more compressible.

4.4 Values in Bounded Ranges
Values such as the phase angles of alternating current have bounded
ranges; the encoding and decoding procedures of a compression
method should respect the ranges. For instance, the phase angle
of electricity data has a range of 0◦ to 360◦, which is a periodic
variable.

In order to handle the values in bounded ranges, IDEALEM has a
provision for controlling the range of encoded and decoded data in
the residual/delta transformation. Range minimum rmin and range
maximum rmax are two parameters that define the minimum and
maximum values of a variable. Using these values, the encoding
process assures that residual/delta values are within the range of
rmin to rmax ; similarly, the decoding process also wraps all values
outside of the range to be within the range.

5 EXPERIMENTAL RESULTS
We employ a set of power grid monitoring data from µPMUs in-
stalled on-site at Lawrence Berkeley National Laboratory (LBNL)
for experiments.1 In this test, we only use the phase angles that
were found to be hard to compress for the original IDEALEM soft-
ware. This data set contains 12 variables representing phase angles
of current (C) and line voltage (L) of three phases of the alter-
nating electricity (marked with 1, 2, 3) captured by two different
µPMUs (A6BUS1 and BANK514). The recorded values are about
half a month’s recording, and contain nearly 1 GB for each time
series.

Experiments were conducted on a server equipped with Intel
Xeon X3450 (2.66 GHz) CPU, 8 GB RAM, and 256 GB SSD, which
runs Ubuntu 10.04.4 LTS (Linux kernel 2.6.32-57-server). We com-
pare the performance of IDEALEM with the state-of-the-art com-
pression algorithms described in Section 2 including ZFP [15], IS-
ABELA [7], and SZ [5]. We also present the results of gzip [6] for
reference, which is a popular lossless coding scheme that can handle
general data types [18, 23].

With either the residual or delta transformation, IDEALEM can
theoretically achieve a compression ratio up to (8/9)B. In the best

case, if all data blocks have the same empirical distribution, then
we can represent each data data block with a pointer (1 byte) plus
a corresponding base value (8 bytes), which reduces the storage
requirement for a block from 8B bytes to 9 bytes. In general, a
larger block size B increases the compression ratio; but a large
B also increases the difficulty of passing the KS test due to the
sensitivity with the number of samples [13], which reduces the
compression ratio. Since there is no theoretical analysis telling us
the optimal block sizes to use, we plan to explore the choice of B
through an empirical study.

Fig. 3 shows the compression ratios of IDEALEM in the residual
and delta transformations. The optimal choice of B depends on
each time series. When block sizes are small, compression ratios
of all time series are almost identical to the maximum theoretical
compression ratio for given B. As B grows, these compression ra-
tios diverge from the maximum compression ratio and eventually
reach their maximum values. However, these curves show differ-
ent shapes depending on time series and transformation methods,
though they are similar among three-phase measurements within
each transformation method. For instance, compression ratios are
relatively similar to each other in the residual transformation in
Fig. 3a; whereas they are dramatically different from each other in
the delta transformation in Fig. 3b. In particular, six current (C) time
series in Fig. 3b have very high compression ratios, which keep
increasing till B ∼ 688 where compression ratios become higher
than 400.

Overall, the angle values change relatively slowly over time,
which allows methods such as SZ to work quite well. Nevertheless,
as illustrated in Fig. 2, there are small “random” fluctuations in the
angle values and the delta transformation produces values that look
more “random” especially for current (C) data, which makes them
somewhat easier to pass the KS test and increases the compress
ratio. The KS test with the delta transformation mode is susceptible
to the noisiness (variance) of data and produces totally different
results depending on time series.2 On the contrary, the KS test with
the residual transformation mode shows more robust results in
compression ratios, regardless of data characteristics.

We present the results of the compression ratio and the execution
time of IDEALEM along with other compression algorithms in
Table 1 and Table 2, respectively. We selected a set of parameters
for each compression method that performed best on our data set
of first phase (1) measurements, in both compression ratio and
reconstruction quality. Specifically, gzip uses the compression level
-5; ZFP uses the tolerance parameter -a 8; ISABELA uses the
window size 512, the number of coefficients 15, the error rate 5, and
the BSplines switch; SZ uses the error bound errorBoundMode=REL
and the ratio relBoundRatio=0.001; the original IDEALEM [13]
uses B = 32, D = 255, and α = 0.01; both the residual and delta
transformations use B = 112, D = 255, and α = 0.01.

In Table 1, the compression performance of IDEALEM has been
improved a lot from the original version with the addition of the
residual/delta transformation, which is far beyond the performance
of gzip, ZFP, and ISABELA. On the other hand, SZ (version 1.4.9.3-
hacc) shows the best performance on voltage (L) data that are
cleaner than current (C) data; whereas IDEALEM, especially delta

2Current (C) data has higher variances than voltage (L) data has.
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Figure 2: Scatter plot of 256 samples of angular values froman electric power grid data (BANK514C1ANG)withB = 64. Residual
values of data blocks are shown in (b), and delta values in (c), both without base values (63 values for each data block).
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Figure 3: Compression ratios of IDEALEM with µPMU phase angle (ANG) data in residual and delta transformations. Max CR
(compression ratio), the fundamental limit (8/9)B, is shown together for comparison. Overall, phase angles of current (C) data
show higher compression ratios than those of voltage (L) data. Compression ratios with the delta transformation increase up
to higher than 400 when B ∼ 688.

Table 1: Compression Ratio

Data/Compression gzip ZFP ISABELA SZ(1.2) SZ(1.4.9.3-hacc) original residual delta

A6BUS1C1ANG 2.42 8.76 5.36 45.84 58.95 2.04 86.89 99.19
A6BUS1L1ANG 2.45 8.78 5.38 159.34 147.77 1.68 84.32 38.21
BANK514C1ANG 2.39 8.76 5.36 49.18 63.76 2.45 96.39 99.21
BANK514L1ANG 2.45 8.78 5.38 148.22 185.34 1.69 85.05 62.99

Overall 2.43 8.77 5.37 72.50 92.67 1.92 87.91 64.30

transformation, shows the best performance on the noisier current
(C) data.

The improved compression performance of IDEALEM also af-
fects the encoding and decoding time in Table 2, because IDEALEM
can now easily find a similar distribution stored in the dictionary

and this search finishes quickly, which is not the case for the orig-
inal version where searching attempts generally fail after a full
search. The high variance in the compression ratio of the delta
transformation in Table 1 is closely connected with high variance
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Table 2: Execution Time (s)

Data/Compression gzip ZFP ISABELA SZ(1.2) SZ(1.4.9.3-hacc) original residual delta
En

co
di
ng

A6BUS1C1ANG 45.84 10.79 106.91 13.07 8.27 167.28 66.25 17.09
A6BUS1L1ANG 48.48 11.34 105.02 11.44 9.04 172.24 42.14 77.68
BANK514C1ANG 46.82 10.56 107.50 13.17 9.50 153.01 48.14 17.85
BANK514L1ANG 49.57 10.75 104.23 11.56 8.83 169.98 43.56 79.32

Total 190.71 43.44 423.66 49.24 35.64 662.51 200.09 191.94

D
ec
od

in
g

A6BUS1C1ANG 20.11 11.43 39.09 140.51 4.46 12.76 2.51 2.65
A6BUS1L1ANG 18.08 12.32 39.13 138.34 4.32 18.21 6.55 10.73
BANK514C1ANG 24.65 12.17 39.22 143.76 8.33 17.27 10.05 9.38
BANK514L1ANG 20.71 11.07 39.19 138.13 5.98 17.92 7.28 10.45

Total 83.55 46.99 156.63 560.74 23.09 66.16 26.39 33.21

in its encoding time: higher compression ratios lead to shorter en-
coding time. In contrast to IDEALEM, the execution time of ZFP
does not vary much between encoding and decoding, as it is not
based upon dictionary searching. In Table 2, the most notable im-
provements are those of SZ. In the previous SZ (version 1.2) shows
the shortest encoding time and the longest decoding time. As the
previous SZ targets for in-memory data compression, its decoding
time including file I/O using the actual implementation [5] was
slower than the decoding time of memory-only computation re-
ported in the paper [4], and the previous file I/O had outputs in text
format only by default which contributes to more I/O time. The
latest SZ follows the same data format as the input data, and the
file I/O has been improved.

6 CONCLUSIONS
We reported a new lossy compression method based on statis-
tical similarity, called IDEALEM, which has been demonstrated
to compress many variables by more than 100-fold. This paper
proposed new transformation methods that enabled to compress
non-stationary data which were hard to compress for the original
IDEALEM software. We also considered values in bounded ranges
which are commonly found in periodic variables. Experimental
results showed that new IDEALEM could compress non-stationary
data by up to 100-fold.
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