
Novel Data Reduction Based on Statistical Similarity

Dongeun Lee

⇤

Lawrence Berkeley National Laboratory

Berkeley, CA 94720, USA

eundong@lbl.gov

Alex Sim

Lawrence Berkeley National Laboratory

Berkeley, CA 94720, USA

asim@lbl.gov

Jaesik Choi

Ulsan National Institute of

Science and Technology

Ulsan, 44919, Korea

jaesik@unist.ac.kr

Kesheng Wu

Lawrence Berkeley National Laboratory

Berkeley, CA 94720, USA

kwu@lbl.gov

ABSTRACT
Applications such as scientific simulations and power grid
monitoring are generating so much data quickly that com-
pression is essential to reduce storage requirement or trans-
mission capacity. To achieve better compression, one is often
willing to discard some repeated information. These lossy
compression methods are primarily designed to minimize the
Euclidean distance between the original data and the com-
pressed data. But this measure of distance severely limits
either reconstruction quality or compression performance.
We propose a new class of compression method by redefin-
ing the distance measure with a statistical concept known
as exchangeability. This approach reduces the storage re-
quirement and captures essential features, while reducing
the storage requirement. In this paper, we report our design
and implementation of such a compression method named
IDEALEM. To demonstrate its e↵ectiveness, we apply it on
a set of power grid monitoring data, and show that it can
reduce the volume of data much more than the best known
compression method while maintaining the quality of the
compressed data. In these tests, IDEALEM captures ex-
traordinary events in the data, while its compression ratios
can far exceed 100.

CCS Concepts
•Theory of computation ! Data compression;
•Mathematics of computing ! Bayesian nonparamet-
ric models; Time series analysis; •Information systems
! Data streaming; Similarity measures;

⇤Dongeun Lee is jointly a�liated with Ulsan National Insti-
tute of Science and Technology.

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to allow oth-
ers to do so, for Government purposes only. Permission to make digital or hard copies
for personal or classroom use is granted. Copies must bear this notice and the full ci-
tation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.

SSDBM ’16, July 18–20, 2016, Budapest, Hungary
c� 2016 ACM. ISBN 978-1-4503-4215-5/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2949689.2949708

Keywords
Floating-point data, locally exchangeable measure, lossy
compression, online algorithm, time series data

1. INTRODUCTION
Compression is a common technique for reducing storage

requirement or transmission capacity. As computer systems
and devices gather more and more data, our ability to store
or transmit data records is significantly challenged. In these
cases, compressing the data could provide an e↵ective path
to address such a challenge. To reduce the compressed data
volume, we may drop some information in the original data.
These techniques are known as lossy compressions. The
quality of these techniques is judged currently by the Eu-
clidean distance between the original data and the decom-
pressed version of the compressed data. This focus on a
single quality measure has imposed a significant limitation
on the e↵ectiveness of the compression methods. To break
this limitation, we propose a new type of compression met-
hod based on a statistical concept known as exchangeability.
This approach allows us to capture common data blocks in
a very compact form while preserving key statistical proper-
ties. With a carefully designed algorithm, it can capture the
essential characteristics of the data while using only a very
small fraction of bytes needed by the original data records.

In general, compression takes advantage of repeated pat-
terns or common features in the original data. In this regard,
our approach is no di↵erent from others. What is di↵erent
is that we consider the distribution of the values as a ba-
sic pattern. To quantify the similarity of two data blocks,
we extend the concept of exchangeability with the locally ex-
changeable measure (LEM) [8]. When the LEM value passes
a given threshold, we consider two blocks as exchangeable
and choose to store only one of them as a representative.
If new blocks are found to be exchangeable with the stored
block, it is unnecessary to store the new blocks.

Since our approach relies on statistical properties of data
values, it can only work on numerical values. Numerical val-
ues, especially floating-point values, are known to be partic-
ularly hard to compress [4, 11]. Recently, there has been
a flurry of publications on compressing floating-point val-
ues [15, 10, 11, 4]. However, all these techniques are designed
to reduce the Euclidean distance between the original data
and the decompressed data. ZFP [15], which is one of those

techniques, has been demonstrated to be able to reduce the
volume of data by 100-fold, while maintaining good quality.
In this case, ZFP relies heavily on continuity present in 3D
simulation data. There are many applications where such
continuity is not present; rather, variations in data values
might be in some sense small but apparently random. In-
tuitively, such data should be compressible, but even the
state-of-the-art floating-point value compression techniques
fail to achieve good compression in such cases. We believe
the key limitation of the existing compression methods is
that they attempt to reproduce every rise and fall in the
original data records, where preserving key statistical prop-
erties might be su�cient for the applications.

By focusing on the statistical distribution of data, our
approach does not aim to reproduce the original data with
small Euclidean distances, instead we produce decompressed
data that have the same distribution as the original data.
This is a significant departure from the common practice
in designing compression techniques. In this work, we pro-
pose a practical algorithm to realize this unique approach.
This design also allows us to capture rare events precisely,
which can be very useful for analysis tasks. Our design ad-
ditionally allows analysis operations on the compressed data
without decompression. This is a useful feature that we plan
to explore in future work.

In this work, we provide an e↵ective implementation of
the algorithm, and demonstrate the e↵ectiveness of the new
compression scheme on a set of power grid monitoring data.
Experimental results show that our new scheme can reduce
the data volume by more than 100-fold, while retaining key
features of the original data.

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly review related work and discuss the key
design considerations of the new algorithm. In Section 3,
we discuss a similarity measure that could be used with the
LEM concept. The details of the IDEALEM implementa-
tion is presented in Section 4, and an extensive evaluation of
IDEALEM is given in Section 5. We conclude with a brief
summary and the discussion of future work in Section 6.

2. MOTIVATION: NEW PERSPECTIVE
ON DATA COMPRESSION

Data compression reduces the space needed to represent
some information. This is accomplished by identifying and
using structures that exist in the data [20]. A data com-
pression method is categorized into two broad classes: loss-
less coding where a reconstruction of compressed data is
identical to the original data; and lossy coding where a
reconstruction is di↵erent from the original data. Typically,
a lossy coding can provide much better compression than
a lossless one. When one can tolerate a certain amount of
distortion [22, 19], the quality of data can be adjusted in fa-
vor of better compression with the lossy coding [13]. Next,
we briefly review related compression methods and high-
light two design considerations that drive our work on the
new compression method named IDEALEM (Implementa-
tion of Dynamic Extensible Adaptive Locally Exchangeable
Measures) [2].1 The first one is redefining the distance (sim-
ilarity) measure to relax the order of values to increase the
possibility of compression, and the second is allowing anal-
ysis to be performed directly on the compressed data.

1Code is available.

2.1 Relaxing Order of Values
To quantify information loss, lossy coding methods treat

incoming data as numbers. Most of the lossy coding meth-
ods could be described as a transformation of these numbers
to produce a compact form. Since our work is originally mo-
tivated by time series of measurements, our review of lossy
codings will concentrate on those designed for time series or
arrays of values. A common transformation used by lossy
coding methods is quantization [20]. Some of the most e↵ec-
tive compression techniques, such as ZFP [15] and SQE [10],
are based on variant forms of quantization.

The information loss due to compression is generally mea-
sured by the Euclidean distance (`2 distance) between re-
constructed data and the original data. Given some con-
straints such as the number of bits to be used per value, the
most successful lossy compression methods are designed to
minimize objectives such as the mean squared error (MSE)
or to maximize objectives such as the signal-to-noise ratio
(SNR) [18, 20, 12, 13]. One fundamental limitation of this
approach is that the order of the values is preserved. For
example, if values are gradually increasing in the original
input, the reconstructed data will also be roughly increas-
ing. In some applications, the order of these values is not
important, for example, when the original data values are
assumed to be generated from random number generators,
then only probability distributions that explain the source
of data are the essential character of the data. Giving up
preserving the order of the incoming values should lead to
better compression.

Of course, application data could not be explained by ran-
dom numbers. However, in some situations, devices such as
sensors might be measuring background noise during the
majority of their operation time. For example, during nor-
mal operations of a computer network, monitoring devices
will be observing random tra�c. Similarly, during normal
operations of a transformer on a power grid, a micro phasor
measurement unit (µPMU) will be measuring random fluc-
tuations. In these cases, faithfully reproducing the random
fluctuations is not necessary. Section 5 demonstrates the re-
construction results of IDEALEM, which shows relaxing the
order of data sequence is a reasonable approach.

2.2 Allowing Analysis without Decompres-
sion

Widely used general-purpose compression tools, such as
gzip [1], are based on lossless coding methods [28, 20]. How-
ever, these methods are known to not perform well on nu-
merical values, especially on floating-point numbers from sci-
entific simulation or high-precision sensor measurements [11,
15]. The key reason for this poor compression is that the
numerical values are usually di↵erent from each other, even
though the di↵erences might be small. When the di↵erences
are relatively small, the lossy coding could capture the es-
sential character of data without losing much information
and therefore are good alternatives to the lossless coding.

Lossless coding methods similar to IDEALEM lie in the
area of biological sequence compression, especially deoxyri-
bonucleic acid (DNA) compression [5]. Some DNA se-
quences are highly repetitive, but they are not exactly iden-
tical to the original sequence as nucleotides can be changed,
inserted, or deleted. This is the reason why most conven-
tional dictionary-based algorithms [28, 25, 20] fail to com-
press DNA data, as they all try to look up the same recurring

0 10 20 30 40 50 60
108

109

110

111

112

113

114

115

116

117

118

Time

Va
lu
e

X1 X2 X4

X3

Figure 1: An example time series and correspond-
ing random variables. All random variables except
X3 were generated from the normal distribution
N (110, 1). X1, X2, and X4 look visually similar,
as they share the same underlying probability dis-
tribution.

pattern stored in the dictionary. To handle this, substitution
approaches exploiting approximate repeats have been pro-
posed [6, 7]. IDEALEM also reconstructs data from learned
patterns during the encoding process that do not need to be
identical to the original sequence.

It would be desirable if these compression methods permit
certain analysis operations to be directly performed on com-
pressed data without decompression, because these methods
in the broad sense preserve selected values from the input
data, along with side information for the reappearance of
these values. However, the complexities of encoded data
structures hamper direct analysis on the compressed data.
On the other hand, IDEALEM is designed to have a simple
encoded structure that allows certain analysis to be per-
formed on the compressed data without decompression.

3. SIMILARITY MEASURE
Fig. 1 shows time series data of total 64 samples. If we

assume that each sequence of 16 samples is an instantiation
of a random variable X

i

(i = 1, . . ., 4), we can consider sim-
ilarities between these random variables. In Fig. 1, X1, X2,
and X4 all look visually similar; whereas X3 looks di↵er-
ent from other random variables. The design of IDEALEM
is based on these observations: we may represent X1, X2,
and X4 using a single random variable, claiming that three
random variables have an identical distribution behind.
Fig. 2 displays the graphical model representation of the

observations shown in Fig. 1. We conceive a latent random
variable ⇥

j

(j = 1, 2) that governs random variables shar-
ing the common distribution. In this paper, we focus on a
practical data compression scheme leveraging the identical
distribution shared by random variables with the same par-
ent ⇥

j

, rather than consider relationships between these la-
tent variables and infer the exchangeability of a new random
variable for dynamic sampling, as discussed in the previous
work [8].
Specifically, if we keep only a single sequence (distribu-

tion) from one of three random variables, i.e., X1, X2, and
X4, we can achieve data reduction with the compression
ratio of 3, where the compression ratio is defined by the

X1 X2 X4 X3

Θ1 Θ2

Figure 2: Graphical model representation of Fig. 1.
Latent random variables ⇥1 and ⇥2 govern common
distributions behind. These distributions are non-
parametric, allowing any shapes of distributions.

ratio of the original size to the compressed size. Here X1,
X2, and X4 are exchangeable in the sense that we could rep-
resent any of them with each other. Therefore, the more
similar random variables there are, the higher compression
ratio we can achieve.

Kolmogorov-Smirnov Test
In order to design a working algorithm, we have to answer a
question: how to measure similarity? Based on a given sim-
ilarity measure, our compression procedure can determine
whether X

i

is similar to other random variables and then
proceed to encode the block of data for compression.

Since Kolmogorov-Smirnov test (KS test) is the most pop-
ular test for the similarity of time series we know of [27, 21,
17], we have decided to use KS test as the first similarity
measure. Technically, KS test is a non-parametric statis-
tical hypothesis testing method that can test whether two
underlying one-dimensional probability distributions of ran-
dom variables di↵er or not [16, 9]. In addition to being
widely used, KS test is also much easier to compute than
related statistical tests such as Anderson-Darling test [9].
By choosing KS test, we aim for a relatively inexpensive
compression method.

Since the KS test is non-parametric, it can compare two
random variables from any arbitrary distributions without
specifically assuming parametric distributions.2 In particu-
lar, the maximum distributional distance (gap) D

ni,nj be-
tween two random variables X

i

and X

j

is defined by

D

ni,nj = sup
x

|F
Xi,ni(x)� F

Xj ,nj (x)|, (1)

where F
Xi,ni(·) and F

Xj ,nj (·) are empirical (cumulative) dis-
tribution functions of X

i

and X

j

; n
i

and n

j

are the numbers
of samples for X

i

and X

j

respectively; sup is the supremum.
Fig. 3 shows an example of two empirical distributions where
we can clearly see a distributional distance between them.
The distance (1) is also called the test statistic, which is
subsequently standardized with respect to n

i

and n

j

as fol-
lows:

D

ni,nj

r
n

i

n

j

n

i

+ n

j

. (2)

This standardized distance (2) converges to the inverse of the
Kolmogorov distribution. As the standardized distance (2)
grows, the value of the complementary cumulative distribu-
tion function (ccdf) regarding the Kolmogorov distribution
yields a smaller value, which is dubbed the p-value [24].

The p-value is interpreted as the probability of obtain-
ing a result equal to or more extreme than what was actu-
ally observed, assuming that the null hypothesis, i.e., two

2We employ the two-sample KS test.

0.8

0.6

1

0.4

0.2

0
0 2 4 6 8 10 12 14 16

Figure 3: An example of two empirical distributions
in blue and red colors. The gap (distributional dis-
tance) is visible in the middle. The maximum dis-
tance, defined by (1), ranges between zero and one.

random variables are from the same distribution, is true.
Therefore, a small p-value indicates that the null hypothesis
is more likely to be wrong, which automatically supports its
logical complement, i.e., two random variables are not from
the same distribution.

In practice, a threshold ↵ is specified by the user.3 If a
p-value is less than or equal to a chosen ↵, we reject the
null hypothesis, supporting its logical complement. How-
ever, this does not necessarily mean the logical complement
of the null hypothesis is true. In other words, we cannot
assure that two random variables are not from the same dis-
tribution, because there is also a small chance of the null
hypothesis being true despite high improbability.

Therefore, with the chosen ↵, we can only say the Type
I error rate is at most ↵, which is the incorrect rejection
of a true null hypothesis, i.e., false positive. IDEALEM in-
terprets this ↵ as a threshold for similarity, so as to remove
redundancy from original data. This does not directly assert
whether two random variables are from the same distribu-
tion or not; rather, it is a way of identifying similar random
variables from the perspective of data compression.

Sensitivity with Number of Samples
We can observe that the scaling factor

p
n

i

n

j

/(n
i

+ n

j

) in
the standardized distance (2) grows with increasing num-
bers of samples. For instance, this factor is simply

p
n/2

when n

i

= n

j

= n. Therefore, large n

i

and n

j

can yield
the same standardized distance (2) with a small D

ni,nj . In
other words, we become more confident about the identity of
two underlying probability distributions with large samples.
This in turn means more sensitivity in deriving the p-value
with a given D

ni,nj .
Fig. 4 shows the plot of the p-value versus the test statistic

(1) with various n’s (n
i

= n

j

= n). Given a gap D

n,n

,
a larger n leads to a smaller p-value. Thus even a small
gap with a large n could lead to a small p-value. In other
words, the same p-value may correspond to di↵erent test
statistics depending on n. This sensitivity obviously a↵ects
compression performance, as discussed in Section 5.

4. DESIGN OF IDEALEM
IDEALEM is targeted for the compression of time series

data in floating-point values. Therefore, IDEALEM cur-
rently handles data in IEEE 754 double precision floating-

3This value is also called the significance level.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−3

10−2

10−1

100

Dn,n

p−
va

lu
e

n=8
n=16
n=32
n=64
n=128
n=256

Figure 4: E↵ects of numbers of samples on the p-
value and corresponding test statistics (distances)
Dn,n, where the y-axis is drawn in log scale. Six
di↵erent cases were synthetically generated, where
each has n sample points for two random variables.
As n grows, it becomes more di�cult to exchange
random variables due to lower p-values for a given
distance.

point format which is 8 bytes long. The design of IDEALEM
can be explained with Fig. 2. The main idea is to store only
⇥

j

that is distinct from previous ⇥
j

’s, according to the sim-
ilarity measure discussed in Section 3.

4.1 Key Parameters
IDEALEM has three key parameters that a↵ect its op-

eration. First, block length n determines the number of
samples in an individual sequence. An incoming time se-
ries is broken down into blocks with each of them having
n elements. The block length has an e↵ect on compres-
sion performance, due to the sensitivity of KS test shown in
Fig. 4.

Second, number of bu↵ers b controls how many ⇥
j

’s are
stored in memory for comparison, where each bu↵er holds
one ⇥

j

. The number of bu↵ers plays an important role in
compression performance: more bu↵ers in general promise
higher compression ratios because there is a higher chance
of finding a similar ⇥

j

stored in bu↵ers when we encounter
new X

i

. However, increasing b also has drawbacks. We
cannot simply store too many bu↵ers at the same time in
memory, especially if IDEALEM is to be used on resource-
limited devices such as µPMU. Besides, a new data block
is compared against each ⇥

j

to compute the p-value. Thus
the more bu↵ers we keep, the more KS tests are performed,
which increases execution time.

Third, threshold ↵ explained in Section 3 is the threshold
for similarity when comparing newX

i

to ⇥
j

stored in bu↵ers
via the KS test. Thus, a lower ↵ results in a higher compres-
sion ratio, allowing more X

i

’s to be declared exchangeable.
On the other hand, lowering the bar for similarity impairs
the reconstruction quality, as it would also include not-so-
similar sequences under the same ⇥

j

.

4.2 Encoded Stream Structure
Fig. 5 illustrates an example of encoded stream struc-

ture by IDEALEM, where there are three bu↵ers. The first
data sequence in an input stream is outputted as is, along

FF0 1Θ0 Θ1 1 1 2 Θ2 0 Θ0 1

index distribution

Figure 5: An example of encoded stream structure
by IDEALEM, where b = 3. A dotted box repre-
sents an index in 1 byte; a solid box with gradation
represents a distribution ⇥j whose size is 8n bytes.
Seven sequences in total are shown here. Note that
0xFF denotes a special marker for overwriting signal.

with the corresponding index which precedes the sequence.4

Note that this data sequence is also stored in a bu↵er as the
distribution ⇥0. Here, each bu↵er occupies 8n bytes.

Then, the second sequence is encountered and compared
against the first sequence. In this example, it is not ex-
changeable, so the sequence is written on the encoded stream
as well as the corresponding index. It is also stored in a
bu↵er as the distribution ⇥1. The third sequence is com-
pared with ⇥0, but not exchangeable. It is next compared
with ⇥1, and found to be exchangeable. So the index 1 is
solely outputted, where each index takes up 1 byte. The
fourth sequence is exchangeable with ⇥1 as well.

The fifth sequence is not exchangeable with any of two
stored distributions. So it is again written on the encoded
stream as is with the corresponding index. And this se-
quence also occupies the last remaining bu↵er as the dis-
tribution ⇥2. The sixth sequence is compared with three
bu↵ers, but not exchangeable with any of them. Therefore
this distribution should be stored in a bu↵er, which is not
immediately possible since all three bu↵ers are occupied.
IDEALEM currently discards the oldest bu↵er and replaces
⇥0 with this distribution, hence in first-in-first-out (FIFO)
manner.

This overwriting should be signaled on the encoded stream
so that the decoder can recognize it. To this end, IDEALEM
uses a special marker 0xFF, which automatically limits the
number of bu↵ers b to a maximum of 255. This marker
is first outputted, and then the index and the sequence is
written on the encoded stream. The seventh sequence is
compared with from ⇥0 and finally exchangeable with ⇥1.
(Comparison with ⇥2 is not necessary.) So only the index 1
is written on the encoded stream.

Single Buffer Case
When there is only a single bu↵er, i.e., b = 1, spending
1 byte on the index would waste a stream length, as an index
would always have 0 for its value. Furthermore, frequent
overwriting would lead to numerous 0xFF’s each of which
takes up 1 byte as well. Therefore, IDEALEM handles this
single bu↵er case specially.
Fig. 6 shows an example of encoded stream structure in

the single bu↵er mode, which is the same scenario presented
in Fig. 5. However, the stream structure shown in Fig. 6
is di↵erent from the structure in Fig. 5: indices are now
replaced by hit counts and the positions of the solid box
and the dotted box are exchanged. Since there is only one

4Counting starts from 0.

0Θ Θ 2 Θ 0 Θ 0

hit count distribution

Θ

Figure 6: An example of encoded stream structure
in the single bu↵er mode, which is the same scenario
as in Fig. 5. A dotted box represents a hit count
in 1 byte; a solid box with gradation represents a
distribution ⇥ whose size is 8n bytes.

bu↵er, a hit count records how many consecutive blocks are
exchangeable with the previous distribution.5

In Fig. 6, the third and the fourth sequences are exchange-
able with the previous distribution. Therefore, the hit count
is 2 for these sequences. In contrast, the seventh sequence
is no more exchangeable in this single bu↵er case. So this
sequence is outputted as is.

Each hit count occupies 1 byte, allowing up to 255 repe-
titions to be represented by a single hit count.6 However,
while the hit count increases, the encoder cannot release it
on the encoded stream, because the encoder has not encoun-
tered a dissimilar sequence yet. This phenomenon could
happen especially when an input stream is monotonous,
which indefinitely delays the decoding process in an online
streaming environment. In order to prevent this, IDEALEM
has a maximum count parameter that controls the latency
of decoding. A smaller maximum count enables faster oper-
ation of IDEALEM in online streaming. On the other hand,
it could also lengthen the encoded stream by using extra
bytes for many repetitions.

4.3 Decoding
The encoded stream explained in Section 4.2 is in turn

an input to the decoder of IDEALEM. The decoder recon-
structs streaming data from learned probability distribu-
tions during the encoding process. This is accomplished with
⇥

j

’s and corresponding indices j’s in the encoded stream;
and in the single bu↵er case, with ⇥’s and corresponding
hit counts. In Fig. 5 and Fig. 6, data sequences that initiate
new distributions are written on the stream as is. There-
fore, even though we could generate new data sequences out
of these distributions, it is better to retain original data se-
quences for these initiating sequences during reconstruction.

On the other hand, it is impossible to reconstruct the same
data sequence as the original for an exchangeable case after
the initiating sequence is reconstructed. Thus new data se-
quences should be generated from learned distributions for
these cases, which means the orders of data sequences are
no longer preserved. Since a stored distribution ⇥

j

or ⇥ is
non-parametric, a random number generation from this dis-
tribution is equivalent to taking a random uniform sample
from stored data samples. This sampling is done without
replacement to avoid choosing any data sample more than
once, which is fundamentally a random permutation. With
the random permutation, we can also avoid any artificial

5Thus, a hit count 0 denotes that there is no repetition after
a specific data sequence.
6More than 255 repetitions can be represented with another
hit count, and so on.

patterns generated during reconstruction.

4.4 Fundamental Limit on Achievable Com-
pression Ratio

With the encoded stream structure discussed in Sec-
tion 4.2, we inevitably set the maximum compression ratio
we can achieve with a given block length n. We can show
this theoretical upper bound by the following proposition.

Proposition 1. Given a block length n, the maximum
achievable compression ratio of IDEALEM encoder with
multiple bu↵ers is 8 · n.

Proof. Without loss of generality, suppose we are com-
pressing simple streaming data all of which can be repre-
sented with a single distribution ⇥. In other words, there
is a single source of distribution that governs the generation
of data in this random process. Then ideally we can repre-
sent the entire data stream (except the beginning part that
composes ⇥) with many repetitions of the same index each
of which takes up 1 byte.

Assuming there are i such repetitions, the original data
size (in bytes) can be represented by 8n + 8ni, where 8n
is the size of the beginning part for ⇥; 8ni is the size of
the entire data stream excluding the beginning part. On
the other hand, the compressed data size is represented by
1+8n+i, where 1 and 8n are the sizes of the initial index and
⇥; i is the size of repeating indices. If continuous streaming
of data is assumed, the compression ratio is given by

lim
i!1

8n+ 8ni
1 + 8n+ i

= 8 · n. (3)

The compression ratio (3) is the maximum achievable
compression ratio, because in a scenario where the exchange-
ability is not guaranteed, we would eventually have frequent
overwriting of ⇥, which no longer allows us to use the con-
stant term 8n and 1 + 8n in (3).

A similar claim can be also made in the case where strea-
ming data is composed of multiple bounded sources of distri-
butions. Since this can be covered with ⇥

j

’s and correspond-
ing indices j’s in the encoded stream, we can use a bounded
number of constant terms for the compression ratio, which
would again result in 8 · n.

Corollary 2. For the single bu↵er case, the maximum
achievable compression ratio of IDEALEM encoder with a
maximum count c is 8 · cn.

Proof. Again, suppose we are compressing simple strea-
ming data all of which can be represented with a single dis-
tribution ⇥. Then we can represent the entire data stream
(except the beginning part that composes ⇥) with many hit
counts each of which can record up to c repetitions.

Assuming there are i such repetitions, the original data
size can again be represented by 8n+8ni. On the other hand,
the compressed data size is represented by 8n+di/ce, where
8n is the size of ⇥; di/ce is the size of hit counts. Assuming
continuous streaming of data, the compression ratio is given
by

lim
i!1

8n+ 8ni
8n+ di/ce = 8 · cn. (4)

The compression ratio (4) is the maximum compression
ratio and can be achievable if and only if there is a bounded
number of distribution changes (including no change) in
streaming data.

Proposition 1 indicates that a large n potentially increases
compression ratio. However, a large n also increases the
di�culty of passing the KS test due to the sensitivity dis-
cussed in Section 3. In practice, we cannot have ideal strea-
ming data whose data sequences are nearly identical in the
maximum distributional distance (1). Thus it is di�cult
to achieve the compression ratio of 8 · n in real-world data,
which is presented in Section 5.

Corollary 2 pushes this compression ratio even further: it
can be as high as 2040 · n with c = 255. This condition
is obviously more di�cult to achieve in reality, as we have
to check the exchangeability with the previous distribution
alone.

4.5 Text Input/Output Support
IDEALEM supports text as well as binary representation

of floating-point data as input/output of the encoder and the
decoder. Since IDEALEM is targeted for floating-point data
compression, not for universal data as general compression
schemes such as gzip handle [1], it is more e�cient to rep-
resent floating-point data in binary representation: 8 bytes
representation in binary typically needs more bytes in text
representation.7 ZFP also requires input/output of encoder
and decoder to be entirely in binary representation.

On the other hand, the text representation has its own
merits. First, it is common for an input stream to have
text representation such as comma-separated values (CSV)
format, which is a popular data exchange format across all
platforms. Second, parsing of compressed data without de-
coding is made possible when the encoded stream explained
in Section 4.2 is written in text representation, since the
encoded stream structures shown in Fig. 5 and Fig. 6 are
straightforward to interpret using text-processing software.
To this end, IDEALEM supports CSV input for the encoder
and CSV output for the decoder.8 In addition, the encoded
stream, which is the output of the encoder and also the input
of the decoder, can be written in text representation.

5. EVALUATION
The performance of IDEALEM can be assessed with vari-

ous criteria. Some of common criteria are compression ratio
and reconstruction quality. Since the reconstruction quality
of IDEALEM cannot be directly assessed using a conven-
tional measure such as MSE and SNR, as discussed in Sec-
tion 2.1, we visually represent reconstruction results with
various compression ratios, comparing them with original
data. Here it is especially important not to lose significant
patterns in the original data, which could be abnormal or
singular such that they need attention of data analysts.

In terms of computational complexity, execution time and
the memory usage of encoder and decoder are noteworthy,
since IDEALEM is an online algorithm that handles strea-
ming data. Furthermore, it can run on the sources of strea-
ming data themselves, which could be resource-limited de-
vices. We here employ a set of power grid monitoring data
from µPMUs installed on-site at Lawrence Berkeley National
Laboratory (LBNL) for experiments. The execution time

7For instance, representing a single floating-point value in
CSV format would result in 14 bytes: 12 bytes for significant
digits, 1 byte for the decimal-point character, and 1 byte for
the newline.
8It is also possible to have binary output for the decoder
despite the CSV input for the encoder.

(a) original (b) compression ratio 7.5

02:46 05:05 07:24 09:43 12:02 14:2195

100

105

110

115

120

Time

Va
lu
e

(c) compression ratio 9.14

Figure 7: Scatter plots of power grid electricity data from µPMU (5,300,001 samples) and compression results
using ZFP. ZFP was invoked with options (b) -a 1 and (c) -a 8. Reconstruction quality is visibly poor in (c).

0 50 100 150 200 2500

50

100

150

200

Number of buffers

C
om

pr
es

si
on

 ra
tio

BlkLen 8
BlkLen 16
BlkLen 32
BlkLen 64
BlkLen 128
BlkLen 256
BlkLen 512

(a) ↵ = 0.01

0 50 100 150 200 2500

20

40

60

80

100

120

Number of buffers

C
om

pr
es

si
on

 ra
tio

BlkLen 8
BlkLen 16
BlkLen 32
BlkLen 64
BlkLen 128
BlkLen 256
BlkLen 512

(b) ↵ = 0.05

0 50 100 150 200 2500

10

20

30

40

50

60

70

80

90

Number of buffers

C
om

pr
es

si
on

 ra
tio

BlkLen 8
BlkLen 16
BlkLen 32
BlkLen 64
BlkLen 128
BlkLen 256
BlkLen 512

(c) ↵ = 0.1

Figure 8: Compression ratios of IDEALEM with µPMU data shown in Fig. 7a. Maximum compression ratios
are (a) 189.29, (b) 111.08, and (c) 86.91, respectively.

and the memory usage become crucial factors if data com-
pression schemes have to run on such devices.

5.1 ZFP Floating-Point Compression
We first discuss the performance of the best-known

floating-point compression method ZFP [15, 3]. ZFP is
a lossy compression method. In numerous performance
tests [15, 3], ZFP was found to outperform all other com-
pression methods, particularly for scientific simulation data
in 3D arrays. On these 3D arrays, ZFP was shown to achieve
compression ratios of 100 without noticeable information
loss in visualization.

However, these outstanding results are largely at-
tributable to strong correlation among three dimensions. It
has been studied that full utilization of correlation yields
better compression ratios than partial utilization does [14,
13]. On 1D arrays, though ZFP performs significantly better
than other methods, its compression ratios are lower than
on 3D arrays, as shown in Fig. 7. In this regard, our objec-
tive is to develop a compression method that is as e↵ective
on 1D arrays as ZFP on 3D arrays.

Fig. 7a shows floating-point time series data captured
from a µPMU deployed at LBNL, which are measurements
of power grid electricity [23, 26]. In Fig. 7b and Fig. 7c,
ZFP compresses the original data with di↵erent accuracies.9

9The fixed-accuracy mode (option -a) was used [3], which
specifies the maximum absolute di↵erence between an un-

With a coarser accuracy tolerance, more information loss is
tolerated, which leads to a higher compression ratio. This
trend is clearly illustrated in Fig. 7. If we further increase
the accuracy tolerance, eventually all reconstructed data val-
ues are set to zero and the corresponding compression ratio
reaches 21.3.

5.2 Compression Ratios of IDEALEM
In Section 4.1, we noted the three key parameters of

IDEALEM that a↵ect performance. Using the same data
that we used for ZFP in Fig. 7, we present compression ratios
of IDEALEM with respect to various key parameter combi-
nations.10 Fig. 8 shows results for three di↵erent thresholds
↵’s, where compression ratios are shown with varying block
length n and number of bu↵ers b for each ↵.

The maximum compression ratio in Fig. 8 is nearly 200.
In particular, the maximum compression ratios of Fig. 8a
and Fig. 8b are close to the fundamental limits 8 · n shown
in Proposition 1. Overall, we see that the compression ratios
are high with a smaller ↵, which permits more data blocks
to be declared as similar by the KS test. This threshold
↵ is directly related to the reconstruction quality as well.
Another clear trend we see is that the compression ratios

compressed value and a reconstructed value (tolerance pa-
rameter).

10We use input data in binary representation, which reduces
the size of original data in text representation.

increase as b increase, and the maximum compression ratios
are always achieved with b = 255.

However, the relationship between the compression ratio
and the block length n is somewhat unclear. The maximum
compression ratios are achieved with n = 16 in Fig. 8b and
Fig. 8c; while the maximum compression ratio is achieved
with n = 32 in Fig. 8a. Although the compression ratio
should increase with n in principle, it becomes also di�-
cult to pass the KS test as n grows, which can be identified
with Fig. 4 where a large n decreases the p-value for a given
distance. Therefore, a large n could rather degrade the com-
pression ratio.

It also seems that results with large n’s could show higher
compression ratios if we allowed b > 255, as their curves keep
increasing up to b = 255. However, the current implementa-
tion of IDEALEM spends 1 byte for an index and it would
need 2 bytes for the index to represent the corresponding
distribution after 255 bu↵ers, which in turn leads to a drop
of the maximum achievable compression ratio from 8 · n to
4 · n.

In Fig. 8, it is obvious that more bu↵ers mean higher com-
pression ratios. However, more bu↵ers entail more memory
usage at the same time. As explained in Section 4, each
bu↵er of IDEALEM occupies 8n bytes. Therefore, the pri-
mary memory usage of IDEALEM, for both encoder and
decoder, can be calculated as 8bn bytes.11 For instance,
with n = 32 and b = 255, the memory usage of IDEALEM
is merely 65.28 KB, which is an acceptable amount for
resource-limited devices.

We are also interested in the reconstruction quality of
IDEALEM with these compression ratios. For this, recon-
structed data are shown in Fig. 9, where we select the pa-
rameter combination of the maximum compression ratio and
another combination of a compression ratio around 10. In
Fig. 9, we can see the reconstruction quality of IDEALEM is
excellent even in the case of the maximum compression ratio
shown in Fig. 9c, where all the notable shapes of Fig. 9a are
retained.

5.3 Preserving Patterns in Data
In Fig. 9, we have seen that IDEALEM preserves all

the notable shapes (peaks and valleys) in the original data,
even when a compression ratio is high. However, streaming
data may contain significant patterns which may last for a
very brief duration. Fig. 10 exhibits how IDEALEM cap-
tures these significant patterns in the original data shown
in Fig. 11a with respect to di↵erent parameter combina-
tions. Fig. 11a is a longer record of time series data shown
in Fig. 7a, which now shows significant patterns, i.e., sudden
increases and decreases in value, in the beginning and the
ending parts.

Since IDEALEM has three tunable parameters, we adjust
one parameter at a time while two others are fixed. However,
the significant patterns that only persist for very short pe-
riods in Fig. 11a cause di�culties for capturing them. As a
result, IDEALEM generally loses some of the significant pat-
terns as a compression ratio increases. It is also interesting
to note that in some cases IDEALEM introduces artifacts
in reconstructed data and produces duplicate patterns. The

11Currently, the encoder of IDEALEM stores a sorted ver-
sion of a data sequence for each stored distribution, so as to
accelerate the computation of KS test. Thus the memory
usage is doubled (16bn bytes) for the case of the encoder.

interplay among the three parameters is so complex that
there is no general principle (other than the compression ra-
tio) that can explain the behavior of IDEALEM to capture
significant patterns or to introduce artifacts.

In fact, this is attributable to the insensitivity of the
KS test to detecting di↵erences in the tails of distribu-
tions [9], which correspond to sudden increases and decreases
of values for a very brief duration. For instance, the recon-
structed data in Fig. 10d (n = 8, b = 255, and ↵ = 0.05) do
not capture a downward spike in the dotted box which exists
in the original data in Fig. 11a. Fig. 11b shows the magni-
fied plot of the original data and the reconstructed data that
correspond to the location of the downward spike, where we
can see that during reconstruction IDEALEM found a sim-
ilar distribution previously stored in the bu↵er that could
pass the KS test. Two empirical (cumulative) distributions
from these data samples are shown in Fig. 11c, where the
test statistic (distance) is 0.625, but the p-value calculated
from the standardized distance (2) is 0.087 > ↵. Therefore,
we can deduce that if we had used a higher ↵ or a large n,
we could have captured this downward spike.

5.4 Performance with Large Data
We here use a large data set from two di↵erent µPMUs

(A6BUS1 and BANK514), which contains about half a
month records of power grid monitoring data. Each µPMU
monitors three-phase measurements (1, 2, 3) of voltages (L)
and currents (C), where the measurements, also known as
phasors, are composed of the magnitude (MAG) and the
phase angle (ANG) of sine waves in electricity [23, 26].12

Thus a data set from each µPMU comprises 12 time series,
and each time series occupies nearly 1 GB in binary repre-
sentation.

Although direct comparison is rather unconvincing, we
present the results of the compression ratio and the execu-
tion time of IDEALEM along with the results of gzip [1]
and ZFP [3], for reference. In particular, gzip is a popu-
lar lossless coding scheme that is based on the combination
of LZ77 and Hu↵man coding [28, 20], which can handle
general data types. On the other hand, ZFP is specifically
designed to handle the floating-point data type and currently
the most advanced lossy coding scheme [15], as discussed in
Section 5.1.

5.4.1 Compression Ratio Comparison
Table 1 shows the compression ratios of three compression

schemes for µPMU data. As gzip provides nine di↵erent
compression levels for a trade-o↵ between the compression
ratio and the execution time,13 we selected three di↵erent
levels among them. It is interesting to note that the best
compression ratio is achieved with the compression level -9
for magnitudes; but with the compression level -5 for phase
angles, which means a higher compression level does not
always promise a better compression ratio.

We also show the compression ratio of ZFP in Table 1,
where we selected four di↵erent tolerance parameters in the
fixed-accuracy mode (option -a) [3]. In particular, we lim-
ited the tolerance parameter to 8, because we thought re-
construction quality was unacceptable beyond this point, as

12For instance, ‘A6BUS1C1MAG’ denotes the magnitude of
current on phase 1 measured by a µPMU named A6BUS1.

13The reconstruction quality does not play a role here, since
gzip adopts the lossless compression.

(a) original (b) compression ratio 9.35 (c) compression ratio 189.29

Figure 9: Scatter plots of µPMU data (5,300,001 samples) in Fig. 7a and reconstructed data from IDEALEM
compression. Results from IDEALEM were obtained with (b) n = 8, b = 4, and ↵ = 0.1; (c) n = 32, b = 255,
and ↵ = 0.01.

(a) ↵ = 0.01, CR: 118.21 (b) ↵ = 0.05, CR: 95.19 (c) ↵ = 0.1, CR: 69.7

(d) n = 8, CR: 61.4 (e) n = 32, CR: 69.7 (f) n = 64, CR: 30.61

(g) b = 8, CR: 14.02 (h) b = 64, CR: 42.52 (i) b = 128, CR: 74.01

Figure 10: Scatter plots of reconstructed data from IDEALEM compression of Fig. 11, showing the compres-
sion ratio (CR) when one parameter is adjusted, while two others are fixed: (a)-(c) n = 16 and b = 255;
(d)-(f) b = 255 and ↵ = 0.05; (g)-(i) n = 16 and ↵ = 0.05.

(a) original

0 2 4 6 850

60

70

80

90

100

110

120

130

140

Sample

Va
lu

e

original
reconstructed

(b) magnified

40 60 80 100 120 1400

0.2

0.4

0.6

0.8

1

x

F
X

i,
8(
x
)

original
reconstructed

(c) empirical distributions

Figure 11: Scatter plot of µPMU data (8,423,880 samples) that is a longer record of Fig. 7a and the magnified
plot (8 samples) of a downward spike in the dotted box, shown together with the reconstructed result in
Fig. 10d. Empirical distributions of original and reconstructed data samples are also shown.

Table 1: Compression Ratios
(a) gzip (b) ZFP (c) IDEALEM

Data -1 -5 -9 -a 1 -a 2 -a 4 -a 8 #1 #2 #3 #4 #5
A6BUS1C1MAG 2.21 2.31 2.45 7.89 8.59 9.26 9.99 11.41 48.40 125.1 127.0 242.3
A6BUS1C2MAG 2.22 2.32 2.45 7.76 8.47 9.13 9.85 11.09 49.21 125.2 126.8 242.8
A6BUS1C3MAG 2.21 2.32 2.44 7.75 8.46 9.13 9.85 11.05 45.64 124.1 126.4 241.9
A6BUS1L1MAG 2.99 3.14 3.22 5.43 5.78 6.09 6.40 4.34 16.47 76.05 103.6 120.0
A6BUS1L2MAG 2.99 3.14 3.21 5.42 5.78 6.09 6.40 4.38 16.78 77.66 104.6 122.0
A6BUS1L3MAG 3.00 3.15 3.22 5.44 5.79 6.09 6.40 4.26 16.12 75.03 103.3 118.6
BANK514C1MAG 2.18 2.29 2.39 5.61 6.16 6.79 7.50 22.53 53.34 124.1 127.3 248.4
BANK514C2MAG 2.17 2.28 2.39 5.61 6.15 6.79 7.50 17.10 53.49 125.2 127.3 250.0
BANK514C3MAG 2.18 2.29 2.39 5.58 6.12 6.76 7.46 23.32 54.89 125.7 127.6 250.4
BANK514L1MAG 3.01 3.22 3.30 6.74 7.11 7.53 8.00 6.60 27.88 103.1 114.3 156.5
BANK514L2MAG 3.00 3.22 3.30 6.74 7.11 7.53 8.00 6.81 28.44 104.0 113.4 155.2
BANK514L3MAG 3.00 3.22 3.30 6.74 7.11 7.53 8.00 6.81 29.97 106.0 115.4 163.2
A6BUS1C1ANG 2.35 2.42 2.39 7.04 7.65 8.20 8.76 2.08 2.11 1.44 1.48 2.04
A6BUS1C2ANG 2.36 2.42 2.40 7.08 7.66 8.20 8.77 1.96 1.99 1.38 1.42 1.99
A6BUS1C3ANG 2.35 2.42 2.39 7.06 7.66 8.20 8.77 2.03 2.06 1.42 1.46 2.04
A6BUS1L1ANG 2.44 2.45 2.40 7.25 7.72 8.21 8.78 1.00 1.01 1.07 1.11 1.68
A6BUS1L2ANG 2.44 2.45 2.40 7.24 7.71 8.21 8.77 1.00 1.01 1.07 1.11 1.68
A6BUS1L3ANG 2.44 2.45 2.40 7.25 7.72 8.22 8.78 1.00 1.01 1.07 1.11 1.68
BANK514C1ANG 2.32 2.39 2.37 6.97 7.59 8.17 8.76 2.41 2.45 1.63 1.68 2.45
BANK514C2ANG 2.32 2.39 2.37 6.91 7.54 8.14 8.75 2.38 2.42 1.62 1.67 2.60
BANK514C3ANG 2.31 2.37 2.36 6.89 7.53 8.14 8.75 2.62 2.67 1.79 1.90 2.83
BANK514L1ANG 2.44 2.45 2.41 7.24 7.72 8.21 8.78 1.03 1.04 1.07 1.12 1.69
BANK514L2ANG 2.44 2.45 2.41 7.24 7.72 8.21 8.78 1.03 1.04 1.07 1.12 1.69
BANK514L3ANG 2.44 2.45 2.41 7.25 7.72 8.21 8.78 1.03 1.04 1.08 1.12 1.69

shown in Fig. 7. The compression ratios of ZFP shown in
Table 1 are clearly higher than the results of gzip; but they
do not exceed 10.

Table 1 also shows the compression ratio of IDEALEM,
where we selected five parameter combinations: (#1) n = 8
and b = 4, (#2) n = 8 and b = 16, (#3) n = 16 and b = 64,
(#4) n = 16 and b = 128, and (#5) n = 32 and b = 255, all
with ↵ = 0.01.

We can see that compression ratios reach close to the
maximum achievable compression ratios for magnitude mea-
surements (MAG) when the numbers of bu↵ers are large
enough. However, for phase angle measurements (ANG),
IDEALEM does not show competitive results. This is be-
cause the phase angle data are mainly composed of smoothly

increasing parts, as shown in Fig. 12. Data of this kind are
not easily compressible with the current implementation of
IDEALEM that uses the KS test and the limited number of
bu↵ers.

5.4.2 Execution Time Comparison
We also measured the execution time of each compression

scheme using the same parameters as in Section 5.4.1. Ex-
periments were conducted on a server equipped with Intel
Xeon X3450 (2.66 GHz) CPU, 8 GB RAM, and 256 GB
SSD, which runs Ubuntu 10.04.4 LTS (Linux kernel 2.6.32-
57-server). Average execution time of both encoder and de-
coder was measured for each scheme. Since the three-phase
measurements all showed similar results as the compression

Table 2: Execution Time (s) for Three-Phase Group
(a) gzip (b) ZFP (c) IDEALEM

Data -1 -5 -9 -a 1 -a 2 -a 4 -a 8 #1 #2 #3 #4 #5

E
n
co
d
in
g

A6BUS1CMAG 27.75 52.93 1001 12.03 11.42 10.68 10.73 14.37 20.12 36.75 69.64 80.31
A6BUS1LMAG 22.59 40.01 591.6 13.40 13.57 12.71 12.54 17.99 22.97 36.73 64.66 93.81
BANK514CMAG 28.49 53.12 855.5 13.52 13.17 12.76 11.98 14.18 19.78 35.48 56.09 79.12
BANK514LMAG 23.42 40.58 615.5 11.91 11.82 11.44 11.42 16.40 21.74 38.69 67.47 93.94
A6BUS1CANG 25.15 46.70 889.0 11.84 11.69 11.32 10.85 19.72 34.44 75.30 130.6 181.9
A6BUS1LANG 27.28 48.91 1045 12.40 11.81 11.53 10.96 26.78 47.40 81.42 145.3 170.7
BANK514CANG 29.25 47.95 906.2 12.32 11.16 10.79 11.00 20.13 32.15 70.51 123.0 149.0
BANK514LANG 26.84 48.83 1038 12.02 11.21 11.41 11.10 27.03 46.85 81.07 148.4 169.7

D
ec
o
d
in
g

A6BUS1CMAG 19.25 19.27 19.77 12.78 13.95 17.50 12.52 25.09 22.32 18.91 20.23 17.13
A6BUS1LMAG 19.85 19.73 22.10 14.98 15.58 17.76 13.91 21.58 23.41 19.63 19.33 19.16
BANK514CMAG 22.12 21.85 19.79 15.95 17.29 15.91 13.59 22.60 20.50 19.56 18.74 17.22
BANK514LMAG 24.11 19.55 18.42 14.04 16.44 13.54 12.64 23.09 22.83 19.51 19.58 18.09
A6BUS1CANG 16.23 18.79 21.84 13.83 13.91 15.88 11.53 21.21 18.42 16.19 17.35 15.76
A6BUS1LANG 19.01 18.90 22.93 13.50 13.42 16.36 11.95 18.45 17.58 16.65 16.87 18.45
BANK514CANG 20.45 22.29 18.73 13.98 13.91 13.29 11.70 21.95 21.32 18.93 19.26 18.25
BANK514LANG 20.58 20.80 17.67 13.76 13.81 11.69 11.08 16.68 18.36 15.81 15.22 17.52

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 104

−50

0

50

100

150

200

250

300

350

400

Sample

Va
lu

e

Figure 12: Scatter plot of first 50,000 samples of
A6BUS1C1ANG. Other phase angle measurements
show similar shapes.

ratios in Table 1 showed similar results for all three phases,
we group them together and present average time measure-
ments. For instance, ‘C1,’ ‘C2,’ and ‘C3’ are grouped into
‘C.’

Table 2 shows the execution time of gzip, ZFP, and
IDEALEM, measured in seconds. Here the encoding time is
shown at the top and the decoding time is shown at the bot-
tom. In Table 2, the encoding of gzip with the compression
level -9 takes very long time compared with other two lev-
els, whereas the decoding time is similar for all three levels.
This is because gzip is based on the dictionary-based cod-
ing and a higher compression level entails longer dictionary
searching.

A similar tendency for IDEALEM can be identified in Ta-
ble 2, where large numbers of bu↵ers for IDEALEM demand
longer execution time. But the decoding time does not de-
pend on the number of bu↵ers, as in the case of gzip. The
encoding time of IDEALEM is faster than gzip in the worst
case. It should be noted that for IDEALEM, the results of
phase angles (ANG) show longer execution time than those
of magnitudes (MAG). This is directly related to the fact

that the current implementation of IDEALEM cannot ef-
ficiently compress the data of phase angle measurements:
IDEALEM searches its bu↵ers to find a similar distribution
every time it encounters a new data sequence, but its at-
tempts generally fail after a full search. On the other hand,
encoding the magnitude measurements is faster than encod-
ing the phase angle measurements especially with large num-
bers of bu↵ers, since IDEALEM easily finds a similar distri-
bution stored in the bu↵ers and this search finishes quickly.

Results of ZFP shown in Table 2 are the fastest among
three schemes. Note that ZFP is fast for both encoding and
decoding. And encoding is in general faster than decoding.
Furthermore, the results of ZFP do not vary across four
di↵erent parameters, because ZFP is not based on dictionary
or bu↵er searching.

6. CONCLUSIONS
In this work, we report our design and implementation of

a novel data reduction technique named IDEALEM based
on statistical similarity. The key feature that distinguishes
this method is that it permits data blocks to be compared
without regard to the relative positions of the values in in-
coming data. This method breaks an incoming data stream
into blocks of the fixed size and represents similar blocks
with a one that appears earlier in the data. Instead of mea-
suring the similarity of two blocks based on traditional mea-
sures such as the Euclidian distance, we use a statistical tool
known as Kolmogorov-Smirnov test (KS test). Through a
careful design of the compression algorithm, we are able to
keep distinctive features in a dataset, while significantly re-
ducing the size needed to keep common and uninteresting
data records. On a set of data from power grid, IDEALEM
can compress many of the variables by more than 100-fold,
while capturing important features in the data such as volt-
age sags and current spikes at the same time. This clearly
demonstrates the usefulness of our new compression method.

An immediate plan for additional work on IDEALEM is
to quantify how the distinctive features are kept. We want
to exercise the property that allows analysis without de-
compression to perform some advanced feature detection
techniques. As one might expect, our tests also show that

IDEALEM is not e↵ective in some cases. In the test data
set, the variables that smoothly vary over time are hard for
IDEALEM to compress. It would also be interesting to mod-
ify the compression scheme to adopt features of known com-
pression methods to improve the e↵ectiveness of IDEALEM
on such smoothly varying data records. Clearly KS test is
only one possible similarity measure IDEALEM could use,
and we can explore alternative similarity measures.

7. ACKNOWLEDGMENTS
The authors gratefully acknowledge helpful discussions

with Emma Stewart, Sean Peisert, Chuck McParland, Rein-
hard Gentz, Mahdi Jamei, Ciaran Roberts, and Sebastian
Ainslie. This work was supported by the O�ce of Ad-
vanced Scientific Computing Research, O�ce of Science, of
the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231. This work was also supported by Ba-
sic Science Research Program through the National Re-
search Foundation of Korea (NRF) grant funded by the
Ministry of Science, ICT & Future Planning (MSIP) (NRF-
2014R1A1A1002662, NRF-2014M2A8A2074096).

8. REFERENCES
[1] The gzip home page. http://www.gzip.org.
[2] IDEALEM. http://datagrid.lbl.gov/idealem.
[3] zfp & fpzip: floating point compression.

http://computation.llnl.gov/projects/
floating-point-compression.

[4] M. Burtscher and P. Ratanaworabhan. FPC: a
high-speed compressor for double-precision
floating-point data. IEEE Trans. Comput.,
58(1):18–31, January 2009.

[5] M. D. Cao, T. I. Dix, L. Allison, and C. Mears. A
simple statistical algorithm for biological sequence
compression. In Proc. Data Compression Conf. (DCC
’07), pages 43–52, 2007.

[6] X. Chen, S. Kwong, and M. Li. A compression
algorithm for DNA sequences and its applications in
genome comparison. In Proc. Int’l Conf. Comput. Mol.
Biol. (RECOMB ’00), page 107, 2000.

[7] X. Chen, M. Li, B. Ma, and J. Tromp. DNACompress:
fast and e↵ective DNA sequence compression.
Bioinform., 18(12):1696–1698, December 2002.

[8] J. Choi, K. Hu, and A. Sim. Relational dynamic
Bayesian networks with locally exchangeable
measures. Technical Report LBNL-6341E, Lawrence
Berkeley National Laboratory, July 2013.

[9] S. Engmann and D. Cousineau. Comparing
distributions: the two-sample Anderson-Darling test
as an alternative to the Kolmogorov-Smirno↵ test. J.
Appl. Quant. Methods, 6(3):1–17, September 2011.

[10] J. Iverson, C. Kamath, and G. Karypis. Fast and
e↵ective lossy compression algorithms for scientific
datasets. In Proc. Int’l Conf. Parallel Process.
(Euro-Par ’12), pages 843–856, 2012.

[11] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky,
R. Latham, R. Ross, and N. F. Samatova.
Compressing the incompressible with ISABELA:
in-situ reduction of spatio-temporal data. In Proc.
Int’l Conf. Parallel Process. (Euro-Par ’11), pages
366–379, 2011.

[12] D. Lee and J. Choi. Low complexity sensing for big
spatio-temporal data. In Proc. Int’l Conf. Big Data
(BigData ’14), pages 323–328, 2014.

[13] D. Lee, J. Choi, and H. Shin. A scalable and flexible
repository for big sensor data. IEEE Sensors J.,
15(12):7284–7294, December 2015.

[14] D. Lee, J. Ryu, and H. Shin. Scalable management of
storage for massive quality-adjustable sensor data.
Computing, 97(8):769–793, August 2015.

[15] P. Lindstrom. Fixed-rate compressed floating-point
arrays. IEEE Trans. Vis. Comput. Graphics,
20(12):2674–2683, December 2014.

[16] F. J. Massey Jr. The Kolmogorov-Smirnov test for
goodness of fit. J. Am. Stat. Assoc., 46(253):68–78,
March 1951.

[17] C. Quinsac, A. Basarab, J.-M. Girault, and
D. Kouamé. Compressed sensing of ultrasound images:
sampling of spatial and frequency domains. In Proc.
Int’l Workshop Signal Process. Syst. (SiPS ’10), pages
231–236, 2010.

[18] I. E. Richardson. The H.264 Advanced Video
Compression Standard. John Wiley and Sons, second
edition, 2010.

[19] A. Sampson, J. Nelson, K. Strauss, and L. Ceze.
Approximate storage in solid-state memories. In Proc.
Int’l Symp. Microarchitecture (MICRO ’46), pages
25–36, 2013.

[20] K. Sayood. Introduction to Data Compression. Morgan
Kaufmann, fourth edition, 2012.

[21] J. Seabra and J. Sanches. Modeling log-compressed
ultrasound images for radio frequency signal recovery.
In Proc. Int’l Conf. Eng. Med. Biol. Soc. (EMBC ’08),
pages 426–429, 2008.

[22] T. Srisooksai, K. Keamarungsi, P. Lamsrichan, and
K. Araki. Practical data compression in wireless
sensor networks: a survey. J. Netw. Comput. Appl.,
35(1):37–59, January 2012.

[23] E. M. Stewart, S. Kiliccote, C. McParland,
C. Roberts, R. Arghandeh, and A. von Meier. Using
micro-synchrophasor data for advanced distribution
grid planning and operations analysis. Technical
Report LBNL-6866E, Lawrence Berkeley National
Laboratory, July 2014.

[24] R. L. Wasserstein and N. A. Lazar. The ASA’s
statement on p-values: context, process, and purpose.
Am. Stat., 2016. doi: 10.1080/00031305.2016.1154108.

[25] T. A. Welch. A technique for high-performance data
compression. Computer, 17(6):8–19, June 1984.

[26] M. H. Wen, R. Arghandeh, A. von Meier, K. Poolla,
and V. O. Li. Phase identification in distribution
networks with micro-synchrophasors. In Proc. Power
& Energy Soc. Gen. Meet. (PES-GM ’15), pages 1–5,
2015.

[27] J. Yu, S. Ongarello, R. Fiedler, X. Chen, G. To↵olo,
C. Cobelli, and Z. Trajanoski. Ovarian cancer
identification based on dimensionality reduction for
high-throughput mass spectrometry data. Bioinform.,
21(10):2200–2209, May 2005.

[28] J. Ziv and A. Lempel. A universal algorithm for
sequential data compression. IEEE Trans. Inf. Theory,
23(3):337–343, May 1977.

