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ABSTRACT
The XRootD system is used to transfer, store, and cache large

datasets from high-energy physics (HEP). In this study we focus on

its capability as distributed on-demand storage cache. Through ex-

ploring a large set of daily log files between 2020 and 2021, we seek

to understand the data access patterns that might inform future

cache design. Our study begins with a set of summary statistics

regarding file read operations, file lifetimes, and file transfers. We

observe that the number of read operations on each file remains

nearly constant, while the average size of a read operation grows

over time. Furthermore, files tend to have a consistent length of

time during which they remain open and are in use. Based on this

comprehensive study of the cache access statistics, we developed a

cache simulator to explore the behavior of caches of different sizes.

Within a certain size range, we find that increasing the XRootD

cache size improves the cache hit rate, yielding faster overall file

access. In particular, we find that increase the cache size from 40TB

to 56TB could increase the hit rate from 0.62 to 0.89, which is a

significant increase in cache effectiveness for modest cost.

CCS CONCEPTS
• Information systems→ Information lifecycle management;
Hierarchical storage management; • Computing methodolo-
gies→Model development and analysis.
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1 INTRODUCTION
Scientific researches are increasingly relying on substantial data

for analysis [7, 10]. In high-energy physics (HEP), a majority of

data is stored, transferred, and cached via the XRootD system [4, 5].

Like many scientific research communities, the HEP community

collectively has generated a very large volume of data that is widely

used by individual researchers around the globe [2, 14]. To effec-

tively distribute the data to the community, there is a hierarchy of

shared sites to replicate the commonly used subsets of data [1, 2].

Alongside of this tiered storage system, there is also a collection of

distributed data caches to further bring the data closer to the end

users [3, 18]. This is a study of one of the regional caches to under-

stand the data access patterns and effectiveness of these distributed

storage caches.

Distributed storage caches is widely used for large-scale scientific

research [16], as well as internet businesses [11, 13, 19]. These

storage cache systems bring remote data content closer to the users,

which reduces the data access time and reduces the demand on the

internet backbone. In scientific research, these distributed caches

allow scientists to access large amounts of community data without

investing in significant storage resources. It is an important strategy

to democratize large-scale data-intensive scientific research.

As many scientific communities are considering installing such

storage caches, it is important to understand how they could be

effectively provisioned [8]. In this work, we study the usage of

currently deployed storage caches in California, USA for the local

HEP community. Based on a study of nearly one-year’s history

of data access through this cache, we propose a cache simulator

to explore resource provisioning options. More specifically, we

investigate the relationship between cache size and cache hit rate.

The currently deployed cache size is 40TB. Our simulation finds

that increasing the cache size to 56TB could increase the cache hit

rate from 0.62 to about 0.89. This is a significant increase in cache

effectiveness for a relatively modest cost.

The remainder of this paper is organized as follows. In Sec-

tion 2, we provide more detailed background information about

the HEP applications and the XRootD software system used for

the distributed storage cache system. This section also provides

an overview of the log file used for our work. In Section 3, we

describe the access patterns from the current installation of the

storage caches. This also provides the basis for our cache simulation

https://doi.org/10.1145/3526064.3534111
https://doi.org/10.1145/3526064.3534111
https://doi.org/10.1145/3526064.3534111


work in Section 4. A concrete objective of the cache simulator is

to explore the resources required for future caches. We provide a

discussion of the statistics and cache simulation results in Section 5.

We conclude this paper with a brief summary in Section 6.

2 BACKGROUND
2.1 High Energy Physics
The High Energy Physics (HEP) community is among the largest

users of global scientific research and engineering networks. This

community depends on unique instruments operated by collabora-

tions across hundreds of institutions around the globe. Instruments

such as ATLAS and CMS at the LHC in Geneva, Switzerland could

be thought as high-speed camera with 100 Million pixels capable of

capturing many millions of pictures per second [7]. With complex

real-time decision logic, implemented via a mix of custom hard-

ware and software, these instruments only retain a small fraction of

the most interesting data records, known as HEP collision events.

Even after this substantial data reduction, the data volume captured

per year is still reaching many petabytes per instrument. The data

volumes are expected to grow by more than an order magnitude by

2028, as a result of detector and collider upgrades for the so-called

"High Luminosity LHC" (HL-LHC) science program [1].

To prepare for this significant increase in data volumes, the LHC

community is driven towards making any and all data placement

much more dynamic. A conceptual design under investigation is to

replicate data to regional "Data Lakes" and use a mixture of remote

access and caching with those lakes [2, 6]. These computing and

storage resources are provided by participating countries, typically

as in-kind contributions to the collaborations. In Europe, these "Data

Lakes" are less than 1000KM away, where the network latency is

low enough that data sharing among the regional institutions is

effective. In the US, "Data Lakes" are under active investigation

to improve application performance. This work is a part of this

exploration.

2.2 XRootD System
The XRootD software suite is a key software in the HEP community

and also contains tools for implementing a "Data Lake" as a feder-

ated storage cache infrastructure [2, 5]. In particular, the StashCache

service based on XCache is used by a number of institutes [3, 8, 18].

It interacts with a tiered data distribution framework, provides stor-

age devices as disk caches, supports distributed data access, and

implements a data discovery protocol for dynamic discovering the

physical location of objects or files in the logical namespace[8, 9].

Overall, this distributed caching follows a tree-like architecture

where each XCache installation could be thought of as a part of the

tree [3]. AnXCache installationmay have a distributed set of servers

forming a logical data cache connected to a higher level branch.

Each top level branch of the XCache hierarchy is responsible for

a subset of the federated namespace. Applications are expected to

connect to a "regional" cache via the configuration of their runtime

environment, e.g. the OSG Data Federation [9, 17, 18]. Cache misses

are handled by XCache as XRoot-client calls to the data federation.

Thus, the StashCache service provides relatively low latency data

access to the large data collection located far away. This allows

physicists around the word to conduct their data analyses on "small"

computer clusters with very limited storage resources, as long as

there is a regional XCache nearby.

2.3 Server Logs and Programming Tools Used
In this paper we describe the patterns of the data lifecycle observed

in one of the XCache nodes at ESnet in Sunnyvale, CA from the

Southern California Petabyte Scale Cache [8] for US CMS which

is a part of the Caltech and UCSD Tier-2 center infrastructure.

This XCache node has a total cache size of 40TB. The XCache

node, running xrd version v5.1.1, produces daily server logs, which

contain information regarding various operations on the cache

data. The bulk of the XRootD server logs analyzed in this paper

are from the time period between January 2021 and September

2021. The sizes of the daily server logs vary substantially; some

are a few hundred megabytes, while others are upwards of 60

Gigabytes. The server logs were processed and analyzed using the

NERSC Jupyter system, running on Cori. Using the standard Python

library, we parsed each log, searching for keywords or keyphrases

denoting specific operations. Lines denoting the desired operation

were processed to extract information about the operation, such as

the file being operated upon, the size of the operation, and so-forth.

We used this extracted information to compute summary statistics

regarding file operations and cache behavior. This work provides a

comprehensive descriptive analysis of XCache behavior throughout

2021, and hints at changes to the XRootD caching protocol that can

improve performance.

3 FILE ACCESS PATTERNS AND FILE
LIFECYCLES IN DISTRIBUTED CACHES

This section details our findings with respect to file read operations,

file lifetimes, and file transfers.

3.1 Statistics of File Reads
File read operations are denoted in XRootD server logs by two

keyphrases: fh=0 readV and req=read. The first keyphrase denotes
a readV operation, which extracts a specified number of bytes from

a file, beginning at a specified byte offset. The second keyphrase

denotes a standard read operation. If a server log line contains

either of these keyphrases, then a read operation is being performed

during the corresponding timestamp. By parsing the logs while

searching for these keywords, it is possible to count the total number

of read operations issued in a given time frame. We seek to map

these read operations to specific files.

The server logs also indicate the name of the file that each read re-

quest is issued towards. For lines that include the phrase req=read,
the filename can be extracted directly from the same line of the

server log. Lines that include the keyphrase fh=0 readV do not

have the filename included, but we can identify the filename by

extracting the thread ID and user ID from these lines and matching

them with a file open request. File open operations do include the

filename, so we can identify the filename corresponding to readV

operations by examining their file open operations. Thus, it be-

comes possible to count the total number of read operations issued

to each individual file in the span of the analysis time frame.

Our procedure for counting file read operations begins by pars-

ing the XRootD logs corresponding to the analysis time frame. It



Figure 1: Mean number of read operations issued per-file for
Jan 2021–Sep 2021. Global mean = 1562.46

Figure 2: Distribution of monthly read operations per-file
for Jan 2021-Sep 2021

matches readV operations with the appropriate file name using the

process outlined above. It then counts the number of read opera-

tions issued to each file, using a dictionary to map file names to

their read request totals. Once the procedure has finished parsing

the server logs, it calculates the mean number of read operations

per file by iterating through the dictionary and computing the mean

of the set of values in the dictionary. The results of running this

procedure for each month in the range January 2021-August 2021

are summarized in Figure 1. We modified the procedure to allow it

to compute and plot the distribution of total monthly read opera-

tions per-file, in addition to the mean. Figure 2 depicts the complete

range of the distribution, and Figure 3 depicts a finer-grained view

of a subset of the distribution. Additionally, the total number of

read operations issued among all files per-month are depicted in

Figure 4.

Figure 3: Zoomed-in, finer-grained distribution of total
monthly read operations per-file for Jan 2021-Sep 2021. Peaks
are at 25 and 150 read operations.

Figure 4: Monthly total size of file reads for Jan 2021-Aug
2021.

Read operations and readV operations appear in the server logs

in the form "NNN@MMM", where "NNN" is an integer denoting the

number of bytes the user wishes to read from a file, and "MMM" is
an integer denoting the byte offset where the user wishes to begin

reading bytes from the file. We developed a procedure that parses

XRootD server logs, searching for this pattern where it appears

in the same line as a read operation or a readV operation. When

the procedure locates an instance of this pattern, it extracts the

integer representing the size of the read operation, and it extracts

the integer representing the offset of the read operation, adding each

to a separate running total. This procedure returns the total number

of bytes read from files, the mean read operation size, and the mean

read operation offset size. The results of running this procedure

for XRootD logs spanning Jan 2021 - Aug 2021 are summarized in

Figures 4, 5, and 6.



Figure 5: Mean size of file read operations for Jan 2021-Aug
2021. Global mean = 154,632B

Figure 6: Mean offset size for read operations from Jan 2021-
Aug 2021. Global mean = 1.52GB

3.2 File Lifetimes
It is better for files to remain in the XRootD cache only for as long

as they remain in use by users. If files stay in the cache for too

long, they unnecessarily clog the cache, and if they are evicted from

the cache too soon, they must be transferred back from the data

sources upon further access. Thus, it is beneficial to know how

long files tend to remain open. Knowledge regarding file lifetimes

can enable the development and implementation of cache eviction

policies superior to the Least Recently Used (LRU) policy. [12, 15].

To model file lifetimes, we use a standard Python dictionary

to map filenames to lists of tuples (𝑡𝑠 , 𝑡𝑒 )𝑖 , where 𝑡𝑠 denotes the

timestamp corresponding to the file’s first open request in lifetime

𝑖 , and 𝑡𝑒 denotes the timestamp corresponding to the file’s latest

close request in lifetime 𝑖 . Therefore, the length of an arbitrary file

lifetime is 𝑡𝑒 − 𝑡𝑠 . A file lifetime is defined as a period of time during

which a file is issued an open request at least once every 1.2 days. In

other words, if a file goes more than 1.2 days without being opened,

its lifetime is considered over. If a file is accessed after the 1.2 day

Figure 7: Mean XRootD file lifetimes from Jan 2021-Sep 2021
for threshold points from 1-10 days The global mean of 𝑋 =

28.78 hours or 1.2 days is used as the threshold for the lifetime
experiment.

< 1 Hour < 5 Hours < 10 Hours

54.6% 78% 83.8%

Table 1: Percentages of file lifetimes falling under certain
thresholds

threshold, it is considered the start of a new lifetime. The 1.2 day

threshold was computed by modeling file lifetimes across a range

of different threshold points (1 day to 10 days), taking the mean

lifetime produced by each threshold, and taking the mean of this

set of resulting means. Figure 7 summarizes these results.

File open requests are denoted in XRootD server logs by the

keyphrase "open rat" or the keyphrase "open r". File close re-
quests are denoted by the keyphrase "prefetch score". Server
log lines that contain these keyphrases also include the timestamp

of the operation and the file name. Thus, these lines provide all

the information needed to populate our dictionary. Our procedure

parses XRootD server logs while searching for these keyphrases,

populates the dictionary with key-value pairs of the form outlined

above, and iterates through these pairs to compute the mean file

lifetime across all measured lifetimes. Figure 8 shows the results of

running this procedure once for each month in the span of January

2021-September 2021. The mean file lifetime across all months in

this span is 0.968 days. Figure 9 shows a histogram summarizing

the distribution of file lifetimes across the same time range. Figure

10 shows a closer view of a subset of the lifetime distribution. This

subset of the distribution roughly follows a power-law distribution,

so Figure 10 also includes the plot of a power law function fitted to

the curve. This equation can be seen in Eq. 1, and the values of its

parameters can be seen in Table 2.

𝑓 (𝑥) = 𝑎𝑥𝑏 + 𝜖 (1)



𝑎 𝑏 𝜖

15227.387 -1.031 -995.488

Table 2: Parameter values for Eq. 1 plotted in Figure 10

Figure 8: Mean XRootD file lifetimes from Jan 2021-Sep 2021
using a threshold of 1.2 days. Global mean = 23.23 hours.

Figure 9: Distribution of file lifetimes for Jan 2021-Sep 2021.

3.3 Data Transfer Size
File transfers to the cache are denoted by the keyphrase

"successfuly read size from info file = NNNNN", where
NNNNN is an integer that denotes the byte-size of the file being trans-

ferred to the cache
1
. By parsing XRootD server logs while searching

for this keyphrase, it is possible to compute the total amount of data

transferred to the cache during a given time frame. Our procedure

parses each line in a set of XRootD logs while searching for the

1
The misspelling of the world "successfuly" is intentional, and accurately reflects the

contents of the server logs

Figure 10: Zoomed-in, finer-grained distribution of file life-
times for Jan 2021-Sep 2021.

Figure 11: Total amount of data transferred to the cache for
Jan 2021-Sep 2021

keyphrase. Upon finding a line with the keyphrase, it extracts the

size of the file from the line and adds it to a sum 𝑠 . At the end

of the procedure, 𝑠 is the total amount of data transferred to the

cache within the specified time frame of analysis. The results of

running this procedure for a timeframe of Jan 2021-Sep 2021 are

summarized in Figure 11.

4 DISTRIBUTED CACHE NODE SIMULATION
The procedures described in Section 3 opened up the possibility of

developing a tool with the ability to simulate the behavior of an

XRootD cache node on an access cycle corresponding to an arbitrary

contiguous set of XRootD server logs. In order to simulate a cache

node, we need to know what files are transferred to the cache, as

well as how large these files are. The first requirement is satisfied

by a procedure described in the following section. The second is

covered by the procedure described in Section 3.3. The ability to

simulate cache behavior opens up a wide range of potential avenues



for exploration. This section describes the various insights gained

from this cache simulator.

4.1 Simulator Design and Implementation
The behavior of an XRootD cache node is simulated by employing

an LRU eviction policy. The core design element of the simulator

is an ordered dictionary with relative paths to a file as keys and

values as objects corresponding to a file instance. These file objects

include the file size, file name, and the timestamp corresponding to

the file’s first access
2
.

To simulate cache behavior for a given access cycle, the start and

end date of an access pattern need to be specified along with the

cache’s capacity.

From there, the software retrieves the XRootD logs correspond-

ing to each day in the analysis timeframe. The keyphrase

"successfuly read size from info file = NNNNN" corre-

sponds to a file transfer into the cache where NNNNN is an integer

that denotes the byte-size of the file being transferred. Server log

lines that include this keyphrase contain information regarding the

total number of bytes transferred into the cache for a given file,

as well as the file path
3
. These lines denote cache misses. Upon

encountering one of these lines, the simulator creates a new file

object instance, and adds it to the front of the ordered dictionary,

using the file path as the key. The simulator then checks to see if

the total size of all the files in the ordered dictionary exceeds the

cache size. If the cache size is exceeded, it evicts the last element

in the ordered dictionary. When the simulator encounters read

operations or readV operations, it uses a similar process as the one

described in 3.1 to match these operations with file paths. If the file

path is contained in the ordered dictionary, then the corresponding

element is moved to the front of the ordered dictionary, and the

operation is counted as a cache hit. Otherwise, the operation is

counted as a cache miss. The total number of file read operations is

also counted. This cache simulator has three modes of operation.

Each are described in their respective subsections below.

4.2 Hit Rate
The first mode of operation calculates what the hit rate ℎ of a

cache with a given capacity would be for a given access cycle. The

procedure described in the previous section is run, and the number

of cache hits is divided by the total number of file read operations,

returning the hit rate. We ran the simulator in this mode on an

access cycle spanning August 1st, 2021–August 31st, 2021. The

results of this run are summarized in Figure 12. We observe that

increasing the cache size from 40TB to about 56TB increase the

cache hit rate from about 0.62 to 0.89. This means the fraction of

file accesses that require data transfer over wide-area network is

reduced from 38% to 15%, a more than 2.5X reduction in the demand

on the wide-area network. Correspondingly, this would also reduce

the data access time for the end users and improve the effectiveness

of the overall storage cache system.

2
The first access timestamp was used only for debugging purposes

3
This information is elsewhere in a server log line that includes the keyphrase

Figure 12: Simulated cache hit rates for a range of cache sizes
(40TB-60TB) based on file access patterns of August 2021.
Note that as cache size varies from 40TB to 54TB, the cache
hit rate goes from 0.62 (observed) to 0.89.

4.3 Cache Content Modeling
The second mode of operation calculates the byte-size of a cache’s

contents and the total size of evicted data as a function of time 𝑡

and the hit rate ℎ. The pseudo-code for this mode of operation can

be seen in Algorithm 1. The values of the "access_rates" and

"file_size" parameters were both computed using XRootD ac-

cess data. The "size_params" parameter and the "rate_params"
parameter are both arrays of random scalar values ranging from -2.0

to 2.0. The range of [-2.0, +2.0] was chosen to ensure sufficient de-

viation from the values of the "access_rates" and "file_size"
parameters in both directions. At each time step, a random element

𝑠𝑡 is extracted from size_params, and a random element 𝑟𝑡 is ex-

tracted from rate_params. 𝑠𝑡 and 𝑟𝑡 are multiplied by file_size
and access_rates respectively, and the products are used to com-

pute the final cache size for the time step. The purpose of the

random parameters is to introduce variances in the file size and file

access rates, as this more closely models the real-world behavior. In

addition, the "access_rates" and "file_size" parameters are

both constant across timesteps, so variance is necessary to prevent

the simulation from simply depicting linear growth. Once the cache

is filled up, the simulator begins measuring the amount of data

evicted from the cache. It should also be noted that at each time

step, the hit rate ℎ increases by a small amount. We would expect

a cache’s hit rate to improve as the cache fills up, as more data

in a cache means there’s a higher chance of a cache hit. Thus, we

increase ℎ as our simulated cache’s contents grow in size. We ran

the simulator in this mode for a span of 2 months. The results of

this experiment are summarized in Figure 13.

4.4 Cache Fill Up Times
The third mode of operation calculates how long it takes to fill up

caches of various sizes. The procedure described previously is run

for a large access cycle. When the total contents of the cache equal

to the cache size, the simulation is terminated, and the time stamp



Algorithm 1 Cache Size as a Function of Hit Rate and Time

1: procedure modelCache(𝑠𝑡𝑎𝑟𝑡_𝑑𝑎𝑡𝑒, 𝑒𝑛𝑑_𝑑𝑎𝑡𝑒 , 𝑠𝑖𝑧𝑒_𝑝𝑎𝑟𝑎𝑚𝑠 ,

𝑟𝑎𝑡𝑒_𝑝𝑎𝑟𝑎𝑚𝑠)

2: access_rates← 7000

3: file_size← 200, 000, 000

4: 𝑡 ← 𝑠𝑡𝑎𝑟𝑡_𝑑𝑎𝑡𝑒 − 𝑒𝑛𝑑_𝑑𝑎𝑡𝑒
5: ℎ𝑖𝑡_𝑟𝑎𝑡𝑒 ← 0.1

6: for 𝑖 in 0 : 𝑡 do
7: 𝑠𝑖𝑧𝑒_𝑝𝑎𝑟𝑎𝑚 ← 𝑠𝑖𝑧𝑒_𝑝𝑎𝑟𝑎𝑚𝑠 [𝑟𝑎𝑛𝑑𝑜𝑚_𝑖𝑛𝑑𝑒𝑥]
8: 𝑟𝑎𝑡𝑒_𝑝𝑎𝑟𝑎𝑚 ← 𝑟𝑎𝑡𝑒_𝑝𝑎𝑟𝑎𝑚𝑠 [𝑟𝑎𝑛𝑑𝑜𝑚_𝑖𝑛𝑑𝑒𝑥]
9: 𝑣𝑎𝑙 ← (𝑎𝑐𝑐𝑒𝑠𝑠_𝑟𝑎𝑡𝑒 ∗ 𝑟𝑎𝑡𝑒_𝑝𝑎𝑟𝑎𝑚) ∗ (1 − ℎ𝑖𝑡_𝑟𝑎𝑡𝑒) ∗
(𝑓 𝑖𝑙𝑒_𝑠𝑖𝑧𝑒 ∗ 𝑠𝑖𝑧𝑒_𝑝𝑎𝑟𝑎𝑚)

10: if ℎ𝑖𝑡_𝑟𝑎𝑡𝑒 < 0.6 then
11: ℎ𝑖𝑡_𝑟𝑎𝑡𝑒 ← ℎ𝑖𝑡_𝑟𝑎𝑡𝑒 + 𝛿 ⊲ 𝛿 is a constant

12: end if
13: 𝑟𝑒𝑠𝑢𝑙𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑣𝑎𝑙)
14: end for

return 𝑟𝑒𝑠𝑢𝑙𝑡

15: end procedure

Figure 13: Cache hit rate as a function of time and varying
hit rates (Cache size=40TB)

of the final file transfer is recorded. This time stamp is compared

with the beginning time stamp of the access cycle to compute the

total amount of time it took to fill the cache. We ran this mode of

operation on a range of cache sizes from 40TB to 280TB, processing

an access cycle spanning May 1st, 2021–August 31st, 2021. The

results are summarized in Figure 14.

5 DISCUSSION
5.1 File Access Patterns
Figure 1 demonstrates that the mean number of file read opera-

tions issued towards a single file varies substantially from month-

to-month. The mean peaks in March 2021 at around 3500 read

operations, and the mean is at its lowest in February 2021, at ap-

proximately 800 read operations. Figure 2 demonstrates that despite

Figure 14: Time it takes to fill caches of sizes 40TB-280TB

the relatively large global mean of 1562.46, the bulk of files are is-

sued fewer than 500 read operations in a given month. Figure 3

further demonstrates that the majority of files are issued fewer than

200 read operations throughout the course of a month. Note that

Figure 3 roughly follows a bimodal distribution, with peaks at 25

and 150 read operations.

Figures 4, 5, and 6 provide more information regarding file read

operations. Figure 4 shows that the total amount of data read from

files differs greatly from month-to-month. June has the highest

total, at approximately 139 Terabytes, while May has the smallest

total, coming in at around 36.5 Terabytes. There is also a minor

positive trend with respect to the total. Figure 5 demonstrates that

there is a strong positive trend from month-to-month with respect

to the mean size of a file read operation. This indicates that as

the year progresses, read operations become larger. Figure 6 has

the smallest spread of any figure in this paper. There is very little

change in the mean file offset size from month to month, which

indicates that read offsets tend to be consistent.

From Figure 8, the mean file lifetime is 0.968 days, or 23.23 hours.

However, Figure 9 demonstrates that the distribution of file lifetimes

is right-skewed, so this mean is inflated by the small number of

large lifetimes. Figure 10 and Table 1 further support this idea,

as they show that the majority of file lifetimes are less than 10

hours, despite the much higher global mean. Therefore, if using file

lifetimes to inform caching policy, it would be best to look to the

distribution of lifetimes instead of the mean.

5.2 Cache Simulation
Figure 12 shows a clear pattern with respect to cache hit rates as

a function of the cache size. The hit rate ℎ starts at ≈ 0.626 for a

cache size of 40TB. ℎ gradually scales with the cache size, with a

slightly larger-than-normal jump between 48TB and 50TB. The rate

at which ℎ increases begins to flatten after 54TB. This indicates

that a cache size of 52TB eliminates the majority of capacity misses,

leaving primarily compulsory and conflict misses. Figure 11 further

supports this argument, as it demonstrates that in August 2021

(the month the simulation was run for), approximately 60 TB were



transferred into the cache due to cache misses, which is close to

the cache size beyond which we no longer see hit rate increases.

The observed cache hit rate for a 40TB XCache node in August

2021 is 59.3. This is lower than the hit rate produced by the simu-

lation for the same cache size. The difference can be explained by

two factors. First, the simulator employs an LRU eviction policy,

which does not necessarily reflect the behavior of the real XCache.

Second, the simulator assumes that the XCache is fully associative.

This assumption in particular could significantly contribute to the

larger hit rate, as fully associative caches tend to have higher hit

rates than n-way associative caches.

Figure 14 also shows a clear pattern. As one would expect, the

time it takes to fill up a cache scales with respect to the cache

size. From cache sizes of 40TB-240TB, the increase in fill-up time

between cache sizes is more or less consistent, but from 240TB-

280TB, the increase is much more than anything else observed in

Figure 14.

Figure 13 shows what would be expected. As time goes on, the

amount of data in the cache gradually increases, until eventually

the cache fills up entirely. At this point, the amount of data evicted

from the cache begins to grow at an essentially consistent rate.

Additionally, as the hit rate increases, the total amount of data in

the cache increases less between time steps. This is expected, as a

higher hit rate would mean that fewer data accesses bring new data

into the cache. Also of note, the cache fills up after approximately

30 days, which is the same amount of time Figure 14 indicates is

necessary to fill up a cache of 40TB.

6 SUMMARY & NEXT STEPS
To inform the design choices of XRootD caches, we studied the

operational logs to understand the cache usage patterns. This pa-

per provides insights into file read operations, file lifetimes, and

how various changes to a cache node affect its behavior. We find

that increasing the XRootD cache size improves the cache hit rate,

yielding faster overall file access. Additionally, increasing the cache

size nearly linearly increases the time to fill the cache.

This work could be expanded upon in a number different ways.

First, the cache simulator described in Section 4 could be expanded

to model different eviction policies, while the current simulator is

limited to the LRU eviction policy. Additionally, future work will

attempt to refine the cache simulator so that it is able to simulate

hit rates that would be achieved by different file read rates. This

work could also be expanded upon by developing machine learning

models that can predict when a certain file is likely to be evicted

from the cache. Such models have been shown to be effective in

creating more precise and detailed file lifetime data [15]. A more

effective model could inform design choices for better distributed

storage caches.
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