
Access Trends of In-network Cache for Scientific Data
Ruize Han

University of California, Berkeley
Berkeley, CA, USA
hrz98@berkeley.edu

Alex Sim, Kesheng Wu
Lawrence Berkeley
National Laboratory
Berkeley, CA, USA
{asim,kwu}@lbl.gov

Inder Monga, Chin Guok
Energy Sciences Network

Berkeley, CA, USA
{imonga,chin}@es.net

FrankWürthwein, Diego Davila
University of California, San Diego

La Jolla, CA, USA
{fkw,didavila}@ucsd.edu

Justas Balcas, Harvey Newman
California Institute of Technology

Pasadena, CA, USA
{jbalcas,newman}@hep.caltech.edu

ABSTRACT
Scientific collaborations are increasingly relying on large volumes
of data for their work and many of them employ tiered systems
to replicate the data to their worldwide user communities. Each
user in the community often selects a different subset of data for
their analysis tasks; however, members of a research group often
are working on related research topics that require similar data
objects. Thus, there is a significant amount of data sharing possi-
ble. In this work, we study the access traces of a federated storage
cache known as the Southern California Petabyte Scale Cache. By
studying the access patterns and potential for network traffic re-
duction by this caching system, we aim to explore the predictability
of the cache uses and the potential for a more general in-network
data caching. Our study shows that this distributed storage cache
is able to reduce the network traffic volume by a factor of 2.35
during a part of the study period. We further show that machine
learning models could predict cache utilization with an accuracy of
0.88. This demonstrates that such cache usage is predictable, which
could be useful for managing complex networking resources such
as in-network caching.

CCS CONCEPTS
• Networks→ Network performance analysis; • Computing
methodologies→ Distributed computing methodologies.

KEYWORDS
network cache, resource utilization, data pattern, prediction, xcache

ACM Reference Format:
Ruize Han, Alex Sim, Kesheng Wu, Inder Monga, Chin Guok, Frank Würth-
wein, Diego Davila, and Justas Balcas, Harvey Newman. 2022. Access Trends
of In-network Cache for Scientific Data. In Proceedings of the Fifth Interna-
tional Workshop on Systems and Network Telemetry and Analytics (SNTA’22),
June 30, 2022, Minneapolis, MN, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3526064.3534110

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SNTA’22, June 30, 2022, Minneapolis, MN, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9315-7/22/06.
https://doi.org/10.1145/3526064.3534110

1 INTRODUCTION
The increasing volume of data from scientific experiments and sim-
ulations requires a vast amount of resources to store and distribute
to geographically distributed users. Many collaborations such as
the Large Hadron Collider (LHC) utilize tiered systems to replicate
the data in a few places, and the users could access their nearby
storage sites. However, with the increasing cost of managing stor-
age resources and the limited number of replicas, the large number
of user accesses still create considerable demand on the wide-area
network that increases the cost of data analyses, and could cause
large-scale network traffic congestion [3, 6].

Inmany cases, we observe that a significant portion of the dataset
is transferred multiple times over the network for various rea-
sons. To take advantage of this resue, the High-Energy Physics
(HEP) community has established a number of regional storage
caches [6, 7, 13]. Analyses show that these caches could signifi-
cantly reduce the data access latency as well as the traffic on the
internet backbone [4].

In the example of the HEP community, the largest data source
is the LHC instrument at CERN in Switzerland. The main collab-
orations involved in generating and analyzing these data, known
as ATLAS and CMS. Their Tier-1 storage sites in the US are at
Brookhaven National Laboratory and Fermi National Accelerator
Laboratory respectively. The wide-area network traffic for retriev-
ing and replicating their data is primarily carried on the Energy
Science Network (ESnet), one of the key components of the internet
backbone especially designed for our nation’s science and research
communities. Because the data lakes have demonstrated their ef-
fectiveness in reducing the load on the internet backbone, we are
interested in exploring the predictability of their impact and the
potential for providing a more general distributed storage caching
strategy known as in-network caching [11, 12, 18].

More specifically, our work starts with a study of data access
trendswith one of the data lakes named Southern California Petabyte
Scale Cache (SoCal Repo) [7]. We examine the trends of network
traffic volume and establish a machine learning model to predict
the future network bandwidth requirement for the regional data
cache.

The key contributions of this paper can be summarized as follows:
(1) our study finds find that the SoCal Repo was able to reduce the
traffic by 23% over the study period, and by 57% under normal usage;
(2) this network traffic reduction is stable and predictable by LSTM,

https://doi.org/10.1145/3526064.3534110
https://doi.org/10.1145/3526064.3534110

with 88.4% accuracy; (3) because of the network traffic reduction, we
recommend a general in-network cache to supplement the existing
data lakes from HEP to benefit all science user communities.

2 BACKGROUND
Southern California Petabyte Scale Cache (SoCal Repo) [7] is a
regional "Data Lake" [6, 13] based on XCache [2, 7, 19]. XRootD
system is the bases for the XCache, and supports unique capabilities
for data distribution and access, especially for large collaborations
such as the Large Hadron Collider (LHC) [1, 5]. SoCal Repo consists
of 24 data cache nodes at Caltech, UCSD, and ESnet with approxi-
mately 2.5PB of storage capacity, supporting client computing jobs
for High-Luminosity Large Hadron Collider (HL-LHC) analysis in
Southern California. In this cache installation, there are 11 nodes at
Caltech with storage sizes ranging from 96TB to 388TB; 12 nodes
at UCSD with 24TB each node; one node at an ESnet endpoint at
Sunnyvale, CA with 44TB of storage. The two southern California
sites are within 200 km from each other and have a round trip time
(RTT) of less than 3 milliseconds (ms) from each other, while the
ESnet node is about 700 km away from UCSD, with an RTT of about
10ms. One node at Caltech is designated for NANOAOD and all
other cache nodes are for MINIAOD [14].

When a user’s computing job needs a file from SoCal Repo,
the system first looks up the location of the file using the "Trivial
File Catalogue" (TFC) [8, 9]. Following the established convention
for the tiered storage system, the data files are grouped into the
namespace for the local cache nodes and the TFC points to a "lo-
cal redirector" in XRootD where the "local redirector" knows all
regional caches. If one of the cache nodes has the file, the redirector
routes the application request to the node. If none of them has the
file, one of them is told to invoke an XRootD client to fetch the file.
The XRootD client is configured to get the file from the national
XRootD data federation to the local cache node. Local cache nodes
do not connect to another cache node but always connect to the
higher tier of the federation. In CMS collaboration, data federation
is hierarchical where the US is one flat layer and the rest of the
world is another flat layer. By design, each file available to the
CMS collaboration has at least a copy somewhere in the US. Thus
it is possible to find a copy of any file needed for analysis even
though the lookup mechanism in TFC does not always guarantee
to recommend a replica in the US.

Most of the file reads in CMS based on XRootD are vectors of
byte ranges, and a cachemiss leads to a vector of byte ranges getting
fetched. When new cache nodes have been added to the local cache
nodes, all cache misses go to the new cache nodes first, so that the
distributed cache nodes avoid deletions of old data as long as there
is a new space to fill. It means that cache nodes that have been
around for some time will tend to have data that is not of interest
to as many users, and those data will eventually get deleted when
running out of space. Adding more cache nodes to an already full
distributed cache invariably leads to skewed distributions of data
access patterns. This happened around Aug. 26, 2021 when 7 new
nodes at Caltech (xrd 3-8, 11) are added to the system, and around
Sep. 30, 2021 when 2 new nodes at Caltech (xrd 9-10) are added to
the system. The new cache nodes get the new data. The new data
is of more interest and leads to more accesses. Old data does not

get deleted as there is still space on the new nodes. At some point,
it will resolve itself, but may take some time to resolve.

3 DATA ACCESS TRENDS
Our work is based on monitoring information collected from the
SoCal Repo between July 2021 and January 2022. The collected in-
formation includes the following attributes about every data access
request: user id, file id, file path, file size, the data transmission
start time, the data transmission finished time, the total size of the
transmission, whether the data request is a data transfer (cache
miss) or data share (cache hit), which cache node the request is
sent to, whether the transmission is successful, and so on. A total
of about 7.5 million data access requests are included in this study.

Table 1: Summary statistics for data accesses

of Accesses
Data Transfer
Size (TB)

Shared Data
Size (TB)

Net Traffic
Reduction

July 2021 1,182,717 385.78 519.25 57.37%
Aug 2021 1,078,340 206.94 313.46 60.23%
Sep 2021 1,089,292 206.96 257.18 55.41%
Oct 2021 1,058,071 412.18 141.91 25.61%
Nov 2021 878,703 649.30 82.67 11.29%
Dec 2021 983,723 1,257.89 130.03 9.37%
Jan 2022 1,207,332 2,238.59 148.26 6.21%

Total 7,478,178 5,357.67 1,592.79 22.91%
Daily Average 35,441.60 25.51 7.55 22.83%

Table 1 shows the basic statistics about the data accesses to all
cache nodes during the study period (from July 2021 to Jan. 2022).
If an "access" could be satisfied with a file in a cache, then it is
a cache hit. On the other hand, if the requested file needs to be
retrieved from a remote storage site, then it is a cache miss. Cache
miss would require a data file to be transferred from a remote site
over the wide-area network. The "Data Transfer Size" in the table is
the total volume of data transferred to satisfy the cache misses. The
"Shared Data Size" refers to the total volume from the cache hits.
The "Net Traffic Reduction" is the percentage of network traffic
reduction by the cache system, calculated monthly by (shared data
size) / (total access size).

Table 1 shows the net traffic reduction was about 60% during
the first three months of the observation, but dropped to as low as
6% in January 2022. This drop is due to a usage change among the
physicists in the region, as some users are streaming data through
the caching system.

Figure 1: Legend for each node in the regional cache

Figure 1 indicates the color for each node in all the following
plots unless specified otherwise.

The monitoring system had troubles on Nov. 24, 2021, and from
Dec. 15, 2021 to Dec. 18, 2021. So there are no data during these
periods, showing gaps in the following daily plots during these
periods.

Figure 2a shows the daily total data access counts, combining the
number of date shares (i.e. cache hits) and data transfers (i.e. cache

(a) Daily

(b) Weekly

Figure 2: Total data access counts in the regional cache. The
number of access is relatively stable during the time period
of this study.

(a) Daily

(b) Weekly

Figure 3: Total data access sizes in the regional cache

misses), and the distribution among the cache nodes. Figure 2b
shows the weekly total data access counts and distribution among
the cache nodes.

The number of total accesses is fairly consistent throughout the
study period, fluctuating around 31,000 per day. Each cache node
evenly receives file requests before September 2021. When new
cache nodes have been added to the regional cache, many of the
cache accesses have been sent to the new cache nodes evenly with
the previously described reason in Section 2.

Figure 3a shows the daily total data access sizes, combining
shared data sizes (i.e. cache hits) and transferred data sizes (i.e.
cache misses) on each cache node. Figure 3b shows the weekly
total data access sizes among cache nodes. The total access size
is increasing over the study periods indicating that the requested
data size grows while the number of accesses remains about the
same each month. When traffic is relatively small, the daily traffic
volume is about 21TB per day. After new cache nodes have been
added to the regional cache, many of the data access traffic have

(a) Daily

(b) weekly

Figure 4: Average data size per access in the regional cache

(a) Daily

(b) Weekly

Figure 5: Total sizes of the cache hits in the regional cache

been sent to the new cache nodes, and it is expected by the policy
described in Section 2.

Figure 4a shows the average data sizes per access, calculated daily
by (𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎 𝐴𝑐𝑐𝑒𝑠𝑠 𝑆𝑖𝑧𝑒)/(𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎 𝐴𝑐𝑐𝑒𝑠𝑠 𝐶𝑜𝑢𝑛𝑡𝑠). Figure
4b shows the weekly average data sizes per access. The upper parts
of both daily and weekly plots show the average data size per access
for each node, and the lower parts show the average data size per
access of all nodes combined. The average data size per access of
all cache nodes gradually decreases since Nov 2021. Overall, the
average data size per access is increasing during the study period,
consistent with the increases in the total access size while the data
access counts remain about the same each month.

Figure 5a and 5b show the daily and weekly total shared data
sizes among the cache node respectively. The total shared data size
shows a big drop since mid Sept. 2021, with only a few occasional
hikes. After new cache nodes have been added to the regional cache,
most of the cache hits have been sent to new cache nodes as the
new nodes have recent data of more interest.

Figure 6 shows the proportion of the daily total data size of the
cache misses. The sudden drop in the daily proportion of cache
hit sizes and the gradually increasing cache miss sizes are due

Figure 6: Daily proportion of cache miss sizes (orange area)
and cache hit sizes (blue area) in the regional cache. The
cache hit rate reduces after October 2021 because of a usage
pattern change.

j
Figure 7: Daily network traffic demand reduction. The av-
erage reduction rate is 2.35 before October 2021 and 1.11
afterward.
to changes in the access trend that several users are constantly
streaming data.

The network traffic demand reduction rates, calculated by the
eqn. (1), are shown in Figure 7 with the red line indicating the
7-day moving average of the network traffic demand reduction rate.
The traffic demand reduction rate is the ratio of data volume users
access and the volume transferred over the backbone network. It
shows that the network traffic demand reduction rate experiences a
sudden drop since Oct. 2021 when the user access trends changes to
streaming many new data files. The average network traffic demand
reduction rate is 1.30 during the study period, while the average
rate from July 2021 to Sep. 2021 is 2.35 before the user access trends
change. The average rate drops to 1.11 from Oct. 2021 to Jan. 2021,
as user streaming data have a great negative impact on the statistics
of the caching system.

network traffic demand reduction rate =
(total cache hit size + total cache miss size)

(total cache miss size)
(1)

Figure 8a shows the daily total data reuse size for all nodes in the
regional cache. Data reuse means the re-access of the same data file
without transferring within the same day (i.e. successive cache hits
on the same data without a cache miss on that data during one day.
Data reuse indicates the network traffic savings on files that are
accessed multiple times. The total data reuse size is the total size
of data reused in a single day. Figure 8b shows the daily total data
reuse size of 7-day moving average in the regional cache. Prior to
Oct. 2021 before the user behavior changes, the total data reuse size
generally follows the access size. Since then, the total data reuse
size is relatively stable with a few spikes in the middle.

(a) Daily total data reuse size

(b) Daily total data reuse size with 7-day moving average

Figure 8: Daily total data reuse size in the regional cache

(a) Daily data reuse rate

(b) Daily data reuse rate with 7-day moving average

Figure 9: Daily data reuse rate. Despite the significant volume
of data being streamed through this cache, there are still
significant amount of reuse of files in cache.

Figure 9a shows the daily data reuse rates for all nodes in the
regional cache. The data reuse rate is the number of times that the
files have been reused in a single day, calculated by
(𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎 𝑅𝑒𝑢𝑠𝑒𝑑 𝐶𝑜𝑢𝑛𝑡)/(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑈𝑛𝑖𝑞𝑢𝑒 𝑅𝑒𝑢𝑠𝑒𝑑 𝐹𝑖𝑙𝑒𝑠).
Figure 9b shows the daily data reuse rate of the 7-day moving
average for all nodes in the regional cache. It’s measuring how
well the caching system saves the traffic on files that are accessed
multiple times. The daily data reuse rate increases gradually from
July 2021 to mid Nov. 2021, and decreases a bit since then. The daily
data reuse is not affected much by the behavior changes of several
users’ streaming data.

4 MODELING AND PREDICTING CACHE
UTILIZATION

To further understand the trends of cache utilization and explore
the potential effectiveness of a more general caching mechanism
in addition to the dedicated caching system for the specific user

community, we next attempt to build machine learning models to
investigate the predictability of common cache utilization trends.
We model these cache utilization measures as a time series and plan
to employ a well-established recurrent neural network (RNN) [16].
More specifically, we use a version of RNN known as Long-Short
Term Memory (LSTM) in this work [10, 16].

4.1 LSTM on the Daily Data
Weanticipate thismodeling effort to be used in an advanced software-
defined networking environment for possible resource allocation
of a series of in-network caches. In this context, one useful time
frame for considering possible resource allocation might be a few
hours or a day. With this in mind, this work aggregates the cache
utilization statistics into daily records. To construct this daily time
series, we need to generate meaningful daily summaries along with
other useful features that might support the prediction task. The
daily summary of cache statistics includes the following features:
(a) access counts, (b) access sizes, (c) cache hit counts, (d) cache
hit sizes, (e) cache miss counts, (f) cache miss sizes, (g) data reuse
counts, and (h) data reuse sizes.

Figure 10 shows the distribution of these daily summaries. Since
these features have widely varying values, we plan to normalize
these values before giving them to LSTMmodels. As there are many
extreme values in the data, we have selected to use the z-score
normalization [15] instead of the more commonly used min-max
normalization.

Due to the limited number of data points available, We allocate
the data of the first 80% of the study period to be the training data,
and the data of the last 20% of the study period to be the test data.
The model selection would be based on how the model performs
on the test data. The train dataset covers from July 1, 2021 to Dec.
16, 2021, and the test dataset covers from Dec. 19, 2021 to Jan. 29,
2022.

We prepared two different models, one with the abovementioned
eight features and the second one with one additional feature, day-
of-the-week. Because most workplaces follow the workweek sched-
ule, we anticipate seeing a weekly trend and the day-of-the-week
feature might improve the prediction accuracy. The day-of-the-
week information is processed by one-hot encoding.

The input of the daily LSTM model is a vector of size 8 or 14,
depending on whether day-of-the-week information is added. The
first 8 are the normalized features of 𝑁𝑡ℎ day, and the features
include data access count, data access size, cache hit count, cache
hit size, cache miss count, cache miss size, data reuse count, data
reuse sizes. The last 6 are used for one-hot encoding representation
of the day-of-the-week information, indicating whether of 𝑁𝑡ℎ day
is Monday to Saturday. If 𝑁𝑡ℎ day is Sunday, then it’s represented
as not Monday to Saturday.

The output of the LSTM model is a vector of size 8, the predicted
normalized features of (𝑁 + 1)𝑡ℎ day, and the features include data
access count, data access size, cache hit count, cache hit size, cache
miss count, cache miss size, data reuse count, and data reuse sizes.
The loss function is the root mean squared error (RMSE). All values
in output vectors are given equal weights in calculating the loss.

Table 2 shows the 3360 combinations of hyper-parameters ex-
plored for tuning the daily LSTM model. As we have a limited

Table 2: Hyper-parameters for Daily LSTM model
parameter values

of first layer LSTM unit 16, 32, 64, 128, 256
of second layer LSTM unit 0, 16, 32, 64, 128, 256
first layer activation function tanh, relu

second layer activation function tanh, relu
dropout rate 0, 0.04, 0.1, 0.15
of epochs 5, 10, 15, 25, 50, 75,100

Table 3: hyper-parameter of the daily LSTM model
of LSTM unit activation function dropout rate # of epochs

values 128 tanh 0.04 50

Table 4: RMSE of Daily LSTM model with and without using
weekday information

Without day-of-the-week With day-of-the-week Acc.
Train RMSE Test RMSE Train RMSE Test RMSE

Access Count 3,861.14 4,944.34 3,492.61 4,220.19 0.93
Access Size 2,480.61 16,621.57 2,612.90 16,571.21 0.85

Cache Hit Count 2,459.72 3,158.99 2,179.03 2,917.99 0.95
Cache Hit Size 1,425.66 2,144.92 1,375.42 2,154.87 0.85

Cache Miss Count 2,261.62 2,954.13 2,302.29 2,970.10 0.91
Cache Miss Size 1,265.84 17,324.68 1,298.15 16,426.95 0.90
Data Reuse Count 2,224.82 3,066.91 2,063.65 2,646.69 0.93
Data Reuse Size 1,135.80 1,482.21 1,099.14 1,466.38 0.73

number of data points, the explored models have a maximum of 2
LSTM layers, and each LSTM layer has a maximum of 256 LSTM
units. The structure of the daily LSTM is shown in Figure 11a. When
the number of the second layer LSTM unit is 0, the second LSTM
layer does not exist; in this case, the daily LSTM is shown in Figure
11b. The hyper-parameter of the final daily LSTM model is chosen
by the RMSE between the predicted test set values and the true test
set values. The final model with the lowest RMSE for the test set is
a 1-layer LSTM model shown in Figure 11b; its hyper-parameters
are shown in table 3.

Figure 12 shows how the daily LSTM model fits the daily access
data. The model performs well when there are no extreme values,
but as shown in Figure 12b, 12d, 12f, and 12h, the model does not
fit and predict extreme values well. The gray shaded area is the
predicted variance, defined as 2 standard deviations of the predicted
values. If the actual value is within the predicted variance of the
predicted value, we consider it as accurate. The overall accuracy is
0.884, and the accuracies for daily count data are all over 0.9.

Table 4 shows the RMSE of the Daily LSTM model on each daily
data, along with the accuracy of the prediction. Note that the RMSE
shown in this table is measured on the scale of the original values,
not the normalized values. The overall accuracy is 0.884. The differ-
ence between the train RMSE and test RMSE on the size features
is due to the model’s inability to fit on extreme values. When the
day-of-the-week feature is added to the model for training, the
model performance is improved on the daily counts, while the per-
formance improvement in predicting daily sizes is minimal. The
extreme values in the daily sizes make it hard to fit the daily sizes
well; thus, adding day-of-the-week information can only improve
the performance on the daily counts. This suggests that there might
be a weekly seasonality in the daily data.

4.2 LSTM on the Daily Data with 7-Day Moving
Average (MA LSTM Model)

In the previous study, we speculated that LSTM models perform
poorly on the size feature because of the extreme values. To verify

(a) Access counts (b) Access sizes (c) Cache hit counts (d) Cache hit sizes

(e) Cache miss counts (f) Cache miss sizes (g) Data reuse counts (h) Data reuse sizes

Figure 10: Distribution of daily features

(a) (b)

Figure 11: (a) 2-layer LSTM (b) 1-layer LSTM

Table 5: hyper-parameter of the MA LSTM model
of LSTM unit activation function dropout rate # of epochs

values 128 tanh 0.00 100

this claim, we have smoothed the daily summaries with a 7-day
moving average.

The input and output of theMALSTMmodel are a vector of size 8,
the normalized features of 𝑁𝑡ℎ day and (𝑁 + 1)𝑡ℎ day respectively,
and the features include data access count, data access size, cache
hit count, cache hit size, cache miss count, cache miss size, data
reuse count, and data reuse sizes. The loss function is the root mean
squared error (RMSE). All values in the output vectors are given
equal weights in calculating the loss.

The same 3360 combinations of hyper-parameters shown in
Table 2 are explored in the MA LSTM model. The model selection
process is the same as the selection process for the daily LSTM
model. The model with the lowest test RMSE is the 1-layer LSTM
model shown in Figure 11b; its hyper-parameters are shown in
Table 5. The hyper-parameters and constructions of the daily LSTM
model and the MA LSTM model are very similar as they only differ
in the dropout rate and the number of training epochs. This is due
to the high similarity between the daily data and the daily data
with 7-day moving average, and the limited number of available
data points.

Figure 13 shows how the MA LSTM model fits the 7-day moving
average on daily data. The model still deviates a lot on the extreme
values in Figure 13f, but the model works well in general. The gray
shaded area indicates the predicted variance, which is much smaller
compared to the daily LSTM model.

Table 6: Explored Hyper-parameters for MA LSTM model

Train RMSE Test RMSE Accuracy
Test RMSE reduction

compare with daily LSTM

Access Count 1,122.15 2,169.72 0.93 48.6%
Access Size 744.56 7,729.04 0.83 53.4%

Cache Hit Count 829.23 2025.21 0.88 30.6%
Cache Hit Size 223.00 1,573.72 0.91 27.1%

Cache Miss Count 1,127.30 781.83 0.86 73.0%
Cache Miss Size 612.94 9616.83 0.77 58.5%
Data Reuse Count 808.80 1,228.71 0.87 53.6%
Data Reuse Size 208.27 812.33 0.92 44.6%

Table 6 shows the RMSE of the MA LSTM model, along with the
prediction accuracy. Overall accuracy is 0.873. Although accuracy
is less than 0.01 lower than the daily LSTM model, the predicted
variance of the MA LSTM model is much smaller, so the prediction
of the MA LSTM model is closer to the actual value. Compared to
the RMSE of the daily LSTM model, the MA LSTM model performs
much better overall in terms of the test set RMSE;

This shows that the LSTM model fits the daily data with 7-day
moving average better than the daily data, which confirms that the
extreme values severely affect the LSTM performance.

4.3 Seasonality
Day-of-the-week information improves the performance of the
daily the LSTM model, which suggests some weekly seasonality
in the daily time series data. We investigate the seasonality using
periodograms [17].

Figure 14 shows the periodogram of daily data. All columns show
relatively strong, if not strongest, seasonal effects of 7 day period,
confirming that there exists a weekly seasonal effect.

5 CONCLUSIONS
In this paper, we studied the access trends of the Southern Cal-
ifornia Petabyte Scale Cache operated by teams of high-energy
physicists in California. Our analysis shows that the SoCal Repo
was able to reduce the network traffic by 57% for a large portion of
the period of the study. However, some periods of study show ac-
cess patterns of streaming data which is an inefficient way of using

(a) Access counts (b) Access sizes

(c) Cache hit counts (d) Cache hit sizes

(e) Cache miss counts (f) Cache miss sizes

(g) Data reuse counts (h) Data reuse sizes

Figure 12: Daily LSTM model Train and Test result vs True Value

(a) Access counts (b) Access sizes

(c) Cache hit counts (d) Cache hit sizes

(e) Cache miss counts (f) Cache miss sizes

(g) Data reuse counts (h) Data reuse sizes

Figure 13: MA LSTM model Train and Test result vs True Value

(a) Access counts (b) Access sizes (c) Cache hit counts (d) Cache hit sizes

(e) Cache miss counts (f) Cache miss sizes (g) Data reuse counts (h) Data reuse sizes

Figure 14: Periodogram of daily data. All eight features show the same peaks at 31 days and 62 days.

the caching system, and impacts the performance of the backbone
network. Through this study, we developed a number of machine
learning models to further explore the predictability of the cache
utilization statistics. Because the regional storage cache could pre-
dictably reduce the network utilization, we anticipate that a more
general caching mechanism could benefit many more scientific
communities beyond the specific physics community studied.

The study also reveals a number of unexpected characteristics
worth further investigation. For example, the cache hit rates de-
crease significantly during the most recent months of the study,
and a need for a larger dataset to train LSTM models.

ACKNOWLEDGMENTS
This work was supported by the Office of Advanced Scientific
Computing Research, Office of Science, of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231, and also used
resources of the National Energy Research Scientific Computing
Center (NERSC). This work was also supported by the National Sci-
ence Foundation through the grants OAC-2030508, OAC-1836650,
MPS-1148698, PHY-1120138 and OAC-1541349.

REFERENCES
[1] L Bauerdick, D Benjamin, K Bloom, B Bockelman, D Bradley, S Dasu, M Ernst,

R Gardner, A Hanushevsky, H Ito, D Lesny, P McGuigan, S McKee, O Rind, H
Severini, I Sfiligoi, M Tadel, I Vukotic, S Williams, F Würthwein, A Yagil, and
W Yang. 2012. Using Xrootd to Federate Regional Storage. Journal of Physics:
Conference Series 396, 4 (2012), 042009.

[2] L. Bauerdick, K. Bloom, B. Bockelman, D. Bradley, S. Dasu, J. Dost, I. Sfiligoi, A.
Tadel, M. Tadel, F. Wuerthwein, A. Yafil, and the CMS collaboration. 2014. XRootd,
disk-based, caching proxy for optimization of data access, data placement and
data replication. Journal of Physics: Conference Series 513, 4 (2014).

[3] Ben Brown, Eli Dart, Gulshan Rai, Lauren Rotman, and Jason Zurawski. 2020.
Nuclear Physics Network Requirements Review Report. University of California,
Publication Management System Report LBNL-2001281. Energy Sciences Net-
work. https://www.es.net/assets/Uploads/20200505-NP.pdf

[4] E. Copps, H. Zhang, A. Sim, K. Wu, I. Monga, C. Guok, F. Wurthwein, D. Davila,
and E. Fajardo. 2021. Analyzing scientific data sharing patterns with in-network
data caching. In 4th ACM InternationalWorkshop on System and Network Telemetry
and Analysis (SNTA 2021). ACM, ACM.

[5] A. Dorigo, P. Elmer, F. Furano, and A. Hanushevsky. 2005. XROOTD - A highly
scalable architecture for data access. WSEAS Transactions on Computers 4, 4
(2005), 348–353.

[6] X. Espinal, S. Jezequel, M. Schulz, A. Sciabà, I. Vukotic, and F. Wuerthwein. 2020.
The Quest to solve the HL-LHC data access puzzle. EPJ Web of Conferences 245
(2020), 04027. https://doi.org/10.1051/epjconf/202024504027

[7] E. Fajardo, A. Tadel, M. Tadel, B. Steer, T. Martin, and F. Würthwein. 2018. A
federated Xrootd cache. Journal of Physics: Conference Series 1085 (2018), 032025.

[8] Edgar Fajardo, Derek Weitzel, Mats Rynge, Marian Zvada, John Hicks, Mat
Selmeci, Brian Lin, Pascal Paschos, Brian Bockelman, Andrew Hanushevsky,
FrankWürthwein, and Igor Sfiligoi. 2020. Creating a content delivery network for
general science on the internet backbone using XCaches. EPJ Web of Conferences
245 (2020), 04041. https://doi.org/10.1051/epjconf/202024504041

[9] Fajardo, Edgar, Tadel, Matevz, Balcas, Justas, Tadel, Alja, Würthwein, Frank,
Davila, Diego, Guiang, Jonathan, and Sfiligoi, Igor. 2020. Moving the California
distributed CMS XCache from bare metal into containers using Kubernetes. EPJ
Web Conf. 245 (2020), 04042. https://doi.org/10.1051/epjconf/202024504042

[10] Klaus Greff, Rupesh K Srivastava, Jan Koutník, Bas R Steunebrink, and Jürgen
Schmidhuber. 2016. LSTM: A search space odyssey. IEEE transactions on neural
networks and learning systems 28, 10 (2016), 2222–2232.

[11] Anshuman Kalla and Sudhir Kumar Sharma. 2016. A constructive review of
in-network caching: A core functionality of ICN. In 2016 International Conference
on Computing, Communication and Automation (ICCCA). 567–574.

[12] Yanhua Li, Haiyong Xie, Yonggang Wen, and Zhi-Li Zhang. 2013. Coordinating
In-Network Caching in Content-Centric Networks: Model and Analysis. In 2013
IEEE 33rd International Conference on Distributed Computing Systems. 62–72.
https://doi.org/10.1109/ICDCS.2013.71

[13] Ruth Pordes, Don Petravick, Bill Kramer, Doug Olson, Miron Livny, Alain Roy,
Paul Avery, Kent Blackburn, Torre Wenaus, Frank Würthwein, Ian Foster, Rob
Gardner, Mike Wilde, Alan Blatecky, John McGee, and Rob Quick. 2007. The
open science grid. Journal of Physics: Conference Series 78, 1 (2007), 012057.

[14] Rizzi, Andrea, Petrucciani, Giovanni, and Peruzzi, Marco. 2019. A further reduc-
tion in CMS event data for analysis: the NANOAOD format. EPJ Web Conf. 214
(2019), 06021. https://doi.org/10.1051/epjconf/201921406021

[15] C Saranya and G Manikandan. 2013. A study on normalization techniques
for privacy preserving data mining. International Journal of Engineering and
Technology (IJET) 5, 3 (2013), 2701–2704.

[16] Alex Sherstinsky. 2020. Fundamentals of recurrent neural network (RNN) and
long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena 404
(2020), 132306.

[17] Shumway, Robert H and Stoffer, David S. 2017. Time Series Analysis and Its
Applications: With R Examples (4 ed.). Springer International Publishing AG.
166–172 pages.

[18] Alex Sim, Ezra Kissel, and Chin Guok. 2022. Deploying in-network caches in
support of distributed scientific data sharing. https://doi.org/10.48550/ARXIV.
2203.06843

[19] Derek Weitzel, Marian Zvada, Ilija Vukotic, Rob Gardner, Brian Bockelman, Mats
Rynge, Edgar Hernandez, Brian Lin, and Mátyás Selmeci. 2019. StashCache: A
Distributed Caching Federation for the Open Science Grid. PEARC ’19: Proceedings
of the Practice and Experience in Advanced Research Computing on Rise of the
Machines (learning), 1–7. https://doi.org/10.1145/3332186.3332212

https://www.es.net/assets/Uploads/20200505-NP.pdf
https://doi.org/10.1051/epjconf/202024504027
https://doi.org/10.1051/epjconf/202024504041
https://doi.org/10.1051/epjconf/202024504042
https://doi.org/10.1109/ICDCS.2013.71
https://doi.org/10.1051/epjconf/201921406021
https://doi.org/10.48550/ARXIV.2203.06843
https://doi.org/10.48550/ARXIV.2203.06843
https://doi.org/10.1145/3332186.3332212

	Abstract
	1 Introduction
	2 Background
	3 Data Access Trends
	4 Modeling and Predicting Cache Utilization
	4.1 LSTM on the Daily Data
	4.2 LSTM on the Daily Data with 7-Day Moving Average (MA LSTM Model)
	4.3 Seasonality

	5 Conclusions
	Acknowledgments
	References

