
Predicting Slow Network Transfers in Scientific Computing
Robin Shao

University of California
Berkeley, CA, USA

robin_shao@berkeley.edu

Jinoh Kim
Texas A&M University
Commerce, TX, USA
jinoh.kim@tamuc.edu

Alex Sim
Lawrence Berkeley National Laboratory

Berkeley, CA, USA
asim@lbl.gov

Kesheng Wu
Lawrence Berkeley National Laboratory

Berkeley, CA, USA
kwu@lbl.gov

ABSTRACT
Data access throughput is one of the key performance metrics
in scientific computing, particularly for distributed data-intensive
applications. While there has been a body of studies focusing on
elephant connections that consume a significant fraction of net-
work bandwidth, this study focuses on predicting slow connections
that create bottlenecks in distributed workflows. In this study, we
analyze network traffic logs collected between January 2019 and
May 2021 at National Energy Research Scientific Computing Center
(NERSC). Based on the observed patterns from this data collection,
we define a set of features to be used for identifying low-performing
data transfers. Through extensive feature engineering and feature
selection, we identify a number of new features to significantly
enhance the prediction performance. With these new features, even
the relatively simple decision tree model could predict slow con-
nections with a F1 score as high as 0.945.

CCS CONCEPTS
• Networks→ Network measurement; Network performance
analysis; Network monitoring; • Computing methodologies
→ Feature selection; Classification and regression trees.

KEYWORDS
network transfer, slow connection, prediction, machine learning,
scientific computing

ACM Reference Format:
Robin Shao, Jinoh Kim, Alex Sim, and Kesheng Wu. 2022. Predicting Slow
Network Transfers in Scientific Computing. In Proceedings of the Fifth
International Workshop on Systems and Network Telemetry and Analytics
(SNTA’22), June 30, 2022, Minneapolis, MN, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3526064.3534112

1 INTRODUCTION
Data access throughput is one of the key performance metrics in
scientific computing. Data-intensive scientific applications, such as
climate modeling [9], bioinformatics [13], and particle physics [1],

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
SNTA’22, June 30, 2022, Minneapolis, MN, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9315-7/22/06. . . $15.00
https://doi.org/10.1145/3526064.3534112

often exchange a large amount of data across geographically dis-
persed sites. For instance, a Large Hadron Collider (LHC) experi-
ment produces petabyte-scale data and distributes it to 160 comput-
ing facilities around the world [3]. Another example is the Sloan
Digital Sky Survey (SDSS), which creates a significant volume of
data used bymany astronomers from different continents [16]. Most
of these users would not have the storage resource to replicate the
whole dataset, so they rely on dynamic mechanisms to retrieve the
necessary data records [6].

To effectively support such remote data accesses in scientific
computing, we need to ensure appropriate networking and storage
resources are allocated as needed. For example, if it would be possi-
ble to predict traffic patterns at different times of a day, network
resources could be optimized to improve the overall quality of net-
work experiences [10]. In the research literature, there is a body
of publications on massive data flows, known as “elephant” flows,
which consume a significant fraction of network bandwidth over
a long period time [2, 5]. Such elephant flows have to be handled
appropriately, otherwise, they could easily fill up network buffers
causing heavy congestion, considerable queuing delay, and packet
losses.

At the same time, it is also important to identify “slow” connec-
tions that might be a symptom of a misbehaving network. Such slow
connections would also increase the time needed for data transfers
and cause unexpected delays in large scientific workflows, because
many workflows contain sequences of interdependent tasks [14].
In such applications, any delay in data accesses may lead to further
delays in subsequent tasks with compounding effects. Even for
a single independent application, the user may want to utilize a
reliable prediction to more efficient decide tasks such as reserv-
ing the required storage and networking resources along with the
necessary compute resource. Despite its importance, much less
attention has been given to the understanding and predicting of
low-performing communications. In this study, we explored various
properties of slow connections using a set of network traffic logs from
a scientific computing facility (NERSC1) and developed a prediction
mechanism to identify under-performing connections.

We explore and analyze five-month-long network traffic data
recorded by tstat [7]. In scientific facilities, data transfer nodes
(DTNs) are often defined as dedicated systems for data transfers
with the mission to improve network performance [8]. For instance,
NERSC maintains DTNs to facilitate data exchange with other sites

1https://www.nersc.gov/

https://doi.org/10.1145/3526064.3534112
https://doi.org/10.1145/3526064.3534112

Figure 1: Distribution of transfer size (> 1MB)

over a large-scale network. This study focuses on the network
data created by one of the DTNs (dtn01), collected from January
2021 through May. Based on the data exploration, we define a set
of features from recently completed data transfers. We will show
that the defined feature set is highly effective for predicting slow
connections in advance, with up to 0.945 prediction performance
(in F1 score) even with conventional tree-based learning algorithms
without intensive model optimizations.

The key contributions of this paper can be summarized as fol-
lows:

• We present a careful statistical study of a large set of network
traffic measurement. Our data exploration reveals several
interesting findings impacting data transfer performance,
including data size, retransmission rates, and geographical
locations (e.g., country codes and network domains) (Sec-
tion 2);

• We present our predictive model based on features known
before the start of a data transfer. These features include
information such as file size, source, and destination. To cap-
ture the state of the network between source and destination,
we extracted information from the most recently completed
data transfer between the same source and destination net-
works (Section 3);

• We optimize the prediction model and show that the ex-
tracted information from recently completed transfers is
effective in enhancing the prediction results. We are able
achieve an F1 score of 0.945 on the test data. Additionally, we
also show the relative importance of the individual features
(Section 4).

2 DATA DESCRIPTION AND EXPLORATION
2.1 Description of tstat Data
Tstat is a log format2, in which each row corresponds to a differ-
ent flow and each column is associated with a specific measure.
The columns are grouped according to Client-to-Server (C2S) and
Server-to-Client (S2C) traffic directions.

The dataset has 116 features among which we focused on the
set of features that contains the basic information for all TCP flows.
Our dataset provides both C2S and S2C data for the IP addresses, the
number of bytes transmitted in payload, number of retransmitted
time, first and last payload absolute time, flow duration, and all

2http://tstat.tlc.polito.it/measure.shtml

Figure 2: Distribution of transfer throughput (in bps)

Figure 3: Correlation between transfer size and throughput
(colored by country)

the round trip time (RTT) features. These are the basic features
we would use in the study. It is important to mention that most of
these data won’t be available before the transfers take place. We
only know the IP address and the number of transmitted bytes in
advance. With limited known information, a major challenge of
this study is to define new features to predict network performance.

The data we used to build this classification model is from dtn01
in 2021 which is the latest available data when we started the
research. This specific dataset alone has over 3 million logs. The
size of all the data could not even fit into the over 40 GB online
computing memory, so we applied divide-and-conquer to load all
the data from compressed files.

2.2 Data Exploration
The source of all the data used in this project is the DTNs at NERSC.
The dataset contains all tstat data for 4 DTN nodes from January
2019 to May 2021. We started from data within a single day in 2019
and eventually use all the data from 2021 to build the model. An
important and tricky fact of the tstat is that a lot of the features are
separated into two different entries, the client-to-server (C2S) and
server-to-client (S2C) parts. This is different from the origin and
the destination of the transfer. The destinations in our dataset are
all NERSC, but the NERSC can be either the client or the server. The

(a) By country (b) By network address
Figure 4: Impact of minimum RTT to throughput

origins of the transfers are different labs or even personal computers
from all over the world.

We have to either analyze the S2C and C2S separately or com-
bine them together and only care about which are the origins and
destinations of the connections. Since the number of S2C data is
significantly smaller in our observation than that of C2S data, and
the distributions of different features are similar, we decide to com-
bine these two different settings. We could distinguish S2C and C2S
by the entries available because only one of the fields is available
in a single log. In the rest of the paper, we will not mention C2S or
S2C which could create a lot of confusion. All the features follow
the direction from a distinguished origin to the NERSC, and S2C or
C2S is not a factor we consider in our model.

To understand the dataset better, a comprehensive exploratory
data analysis was done. The first few steps include deriving new fea-
tures that are crucial in network transfers but not directly recorded
in tstat, changing the units to more intuitive ones, and setting up
basic thresholds. We calculated throughput which is one of the
most important factors of network performance. We also calculated
retransmission rates and decoded the countries or labs from IP ad-
dresses. For the units, we changed millisecond to second, and byte
per second to bit per second. In the whole study, we only considered
transfers for files that are larger than 1 × 106 bytes because smaller
files won’t be so influential to the overall performance. We also got
rid of transfers with recorded minimum round trip time smaller
than 1 ms. These are either local transfers within NERSC or not
properly recorded. Neither of them are scenarios worth considering
under our research target.

The focus of our study is the long-lived and bandwidth-hog
connections. This type of connection is always relevant to the
transfers of relatively large files. Also, there is a clear gap around
1×106 in the histogram of transfer size in the sampled transfers from
both 2019 and 2021 data. The transfer smaller than this threshold
may be acknowledgements or code transfers. As a result, we only
consider transfers for files that are larger than 1 × 106 bytes. The
smaller transfers will not be included in any part of the study. In

the transfer size histogram in Figure 1, it shows the distribution of
transfer size in a log scale.

Talking about network performance, throughput is the most
direct variable measuring the bandwidth of a transfer. Throughput
tells you how much data was transferred from a source at any given
time. However, throughput is not directly given in tstat, so we
calculated the throughput of a transfer by dividing the payroll size
by the duration of the transfer. The transfers with lower throughput
could be considered low-performance generally. In Figure 2, we
show the distribution of throughput in log scale. The left tail of the
distribution can naturally be our definition of low performance as
the majority of the transfers are exponentially larger in throughput
performance.

Retransmission is another mechanism that is relevant to per-
formance theoretically. Retransmission is the resending of packets
that have been either damaged or lost. It could slow down the
overall transfer efficiency. The retransmission size is given, but
we need the retransmission rate which more directly determines
how unstable the transfer is. The retransmission rate’s correlation
coefficient with throughput is 4 times that of retransmission size.
Intuitively, we should not ignore a retransfer in a small transfer as a
larger transfer going through the same path may experience similar
damage or loss which could lead to more influential retransmission.
We considered using retransmission as part of our definition of
low-performance in our study. This is discussed in the next section.

Previously, we have discussed the importance of the transfer size
in network transfers. The only other accessible feature before the
transfer is the IP address. If one-hot encoding is directly applied to
IP addresses, it could create so many features and thus may cause
significant overfitting. We decided to convert the IP addresses to
the countries and the institutions that they are assigned. We used
GeoIP2 database to find the respective countries. From the scatter
plots shown in Figure 3, we use the most important two variables,
and the country code gives us a general idea of how the transfers
from each major countries perform. Intriguingly, the majority of
the slow transfers are from the US. We explored if there are any

(a) By country (b) By network address
Figure 5: Correlations between transfer size and duration

specific problematic network flows to NERSC. We found most of
them are from random locations which could be a personal laptop
at a work-from-home scenario, while the large computing facilities
are not the origin of those low-performance transfers.

While exploring the important features, we also confirmed the
relationship between RTTs and the distances of the transfers. We
calculated the correlations of three different RTT variables with
the throughput. The minimum RTT has the highest correlation
coefficient of -0.45, and the slope for the fitted linear regression is
−5 × 106. As shown in Figure 4, the scatter plot of minimum RTT
is colored by country and IP information described in the previous
paragraph. It is expected that all the transfers with short minimum
RTTs are from the US and Canada which are geographically closer
to NERSC. On the other hand, the European sites all have the
minimum RTT in a certain range between 130 and 200 milliseconds.
The Figure 4 (b) has its x-axis in log scale because the US RTTs
are concentrate on the smaller values. The cluster to the far right
has a much higher minimum RTT may be due to the VPN usage.
In the scatter plot of transfer duration vs transfer size in Figure 5,
there is a weak positive trend that meets the expectation. We could
understand the vertical lines representing the files of similar or the
same sizes, but the horizontal lines representing concentrations of
similar or same duration are unexpected. They could be caused by
time limitations set by the particular institutions.

3 PREDICTION METHODS
3.1 Slow Connections
To achieve the goal of predicting the low-performance network
flows, we determined the threshold for low-performance. We de-
cided to use the throughput of 1 megabit per second as the thresh-
old for the low-performance based on the observed performance
at NERSC, real-life data transfer experience, and clues from data
visualizations like the ones shown above. Under this threshold
for the low performance, 15.5% of the transfers are categorized as
low-performance transfers. We decided not to add features that

are dependent on throughput to keep the definition clean and ad-
justable. We have found a negative linear relationship between
retransmission rate and throughput even though the retransmis-
sion size is not so relevant. A high retransmission rate could be a
good indicator of low performance. In fact, there could be a scien-
tifically more rigorous way to define the low-performance, but we
would use the relatively intuitive definition using only throughput
as it is not the main focus of this study.

3.2 Feature Engineering
As discussed before, we calculated transfer throughputs, retrans-
mission rates, and generated country and institution features based
on IP addresses. The other newly created features are features de-
rived from previous transfers. Since we do not have the access to
important measurements of a transfer like duration, throughput,
and retransmission rate before the transfer, we use these features of
the most recent transfer from the same subnet. The transfers from
a similar location and host should have similar behaviors. These
features are used in model building and testing. In addition, we
added the ratio between the current transfer size and the previous
transfer size. This could be helpful as it measures the difference
between current and previous transfers. The other added feature
is the gap between the previous transfer and the current transfer.
The larger the gap is, the less relevant the two transfers may be.

The low-performance transfers we defined are those below 1
megabit per second. However, to check the effectiveness of the
model and provide broader prediction information, we also created
labels for transfers under 100 kilobits per second and 10 megabits
per second. Then, we applied one-hot encoding for countries so
that they can be fitted into the models we plan to use. We also
standardized all the numerical features so that they have equal
weight in the model and reduce the bias created by specific features
with relatively large absolute sizes. The other features were directly
used after basic data cleaning.

As the only two features entirely based on the information from
the current transfer, the importance of transfer size and country

Table 1: Features defined for prediction
Feature Description
prev_tput Latest throughput measured between the same source and destination networks (“a.b.c.0”)
prev_size Latest transfer size (in bytes) between the same source and destination networks (“a.b.c.0”)
size_ratio Ratio between the latest transfer size (prev_size) vs. current transfer size
prev_durat Latest transfer duration (in msec) between the same source and destination networks (“a.b.c.0”)
prev_min_rtt Latest minimum RTT between the same source and destination networks (“a.b.c.0”)
prev_rtt Latest average RTT between the same source and destination networks (“a.b.c.0”)
prev_max_rtt Latest maximum RTT between the same source and destination networks (“a.b.c.0”)
prev_retx_rate Latest retransmission rate between the same source and destination networks (“a.b.c.0”)
time_gap Time gap from the latest transfer to the current transfer between the same source and destination networks (“a.b.c.0”)

derived from IP address (country) are explained in the data explo-
ration section. Theywould be considered as potential features in our
models. Meanwhile, the majority of the features used are derived
from the previous transfers. While Table 1 shows the summary
of the defined variables in this study, the basic idea and intuition
about the selection of the features are as follows.

Since the performance is categorized based on the throughput,
the previous throughput (prev_tput) is the most direct measure
of the performance in the previous transfer and could be indica-
tive of the current transfer’s performance. Size could influence the
throughput as larger transfers tend to have higher efficiency. We
would include both previous transfer size (prev_size) and the ra-
tio of the current size to previous size (size_ratio) to capture the
relationship between transfers. Also, we include the other part of
throughput which is the duration. In general, transfers with longer
duration tend to have smaller throughputs. Duration is included as
previous duration (prev_durat). The other important aspect of a
transfer is its round trip time (RTT). We include all three features:
previous minimum round trip time (prev_rtt_min), previous aver-
age round trip time (prev_rtt), and previous maximum round trip
time (prev_rtt_max). MinimumRTT is themost accurate reflection
of the distance of the transfer, while the average and the maximum
are also influenced by the condition of the network. Retransmission
rate is also clearly influential to the performance, so we include the
previous retransmission rate (prev_retx_rate). The transfers with
high retransmission rates tend to be less stable and could create a
lot of extra work. In addition to size_ratio, we come up with another
measurement of the relevance of the current and previous transfer.
The time length of the gap between two transfers (gap) could reflect
if the previous transfer features are particularly relevant.

To confirm the effectiveness of features, we visualize the distri-
bution differences between normal and low-performance transfers
for different features. We show the six most representative plots
in Figure 6. Size is the most important feature based on our model.
It obviously has the most noticeable difference in the distribution.
The difference in the gap is the least obvious, and as expected, it is
not included in the top feature combinations for the classification
model. Even though this is not a direct indicator of the effectiveness
of features, it gives us some insights into potential choices.

In the context of the study, we did train-test-split and only used
the training data for the model building phase and the testing data
for evaluation and testing. We would test the model on more recent
data when they are available.

3.3 Prediction Algorithms
After setting up all the features and labels, we build binary clas-
sification models to predict the low-performance transfers from
different data origins to NERSC. We could use the size, country,
previous transfer features (prev_tput, prev_size, size_ratio,
prev_durat, prev_rtt_min, prev_rtt, prev_rtt_max,
prev_retx_rate, gap) to predict the binary label of whether the
transfer is a low-performance one.

We build a few classification models, including decision trees,
random forests, SVM, XGBoost, and neural networks. Tree-based
models could be particularly effective because the number of fea-
tures is not too large and the dependencies among features can
be expressed. Decision tree is the most simple model and is the
basis for the other two tree-based models. We started from the de-
cision tree and found out that it is the best model. More details are
in the Section 4. Random forest is the decision tree with bagging.
It essentially trains multiple decision trees and lets each of them
predict a result. The majority would be considered the prediction
result. Since our binary label is not separated equally, the extra
bagging may not be effective. We expected that the XGBoost would
improve the performance from the decision tree as it is considered
one of the most effective supervised learning methods. [4] We also
tried the relatively simple decision boundary method, SVM. It is not
very suitable in this case, but it could be more time efficient than
other tree models. Neural networks can achieve more complicated
decision boundaries, but they are harder to train and may create
overfitting. We used the basic fully connected neural network, but
the more advanced deep learning methods like LSTM and RNN
may be effective and would be explored in future work.

4 EVALUATION
4.1 Experimental Setting
The data we used to build this classification model is from dtn01
in 2021. The dataset has 116 features and over 3 million logs. We
only used data in 2021 because it is the latest data and thus best
represents the behaviors of NERSC transfers right now. We didn’t
expand the training data span because one year is a very natural
chronological cycle. The functionalities, performance, and usages
of NERSC change over years, so a model trained on data from
years before would not be ideal for predicting current network
performance. Also, we don’t want tomake the cycle even smaller (eg.
a month) because we have already achieved respectful performance
on yearly basis. We only used dtn01 because it is the first DTN for

Figure 6: Distribution differences of critical features divided by transfer performance (slow vs. non-slow)

users to remember without specific instructions. It has the most
transfers for both low-performance and overall.

As mentioned in the previous section, we did a train-test-split
to use the existing data to build the model and test its performance.
We use the data from January 2021 to April 2021 as the training set
and the May 2021 data as the testing set. When all the 2021 data
are available, we’ll train our model on a whole year basis.

To measure the prediction performance, we basically refer to the
conventional confusion matrix for binary classification, consisting
of TP (True Positive), FP (False Positive), FN (False Negative), and
TN (True Negative). Intuitively, the fraction of slow connections is
small, while the majority of connections would perform normally.
Hence, reporting the simple accuracy measure may misguide the
audience. We measure the prediction performance using F1 score,
a harmonic mean of Precision = 𝑇𝑃

𝑇𝑃+𝐹𝑃 and Recall = 𝑇𝑃
𝑇𝑃+𝐹𝑁 . The

metric of F1 score is defined as: F1 score = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 . A

greater F1 score indicates a better performance in prediction.

4.2 Prediction Performance
The performance of models is evaluated based on the data from
the test set. We compare the models numerically with the accuracy,
precision, recall, and F1 score. We also visualize the results from
the best-performing model to ensure the predictions make intuitive
sense.

We start with a baseline model. Intuitively, the previously mea-
sured throughput information should have a strong correlation
with the current transfer rate. Therefore, to predict the label created
based on the throughput of the transfer, the most intuitive model
would be the decision tree with the previous transfer’s throughput
as the only variable without any hyperparameters tuning. Again,
the previous transfer refers to the closest previous transfer from
the same subnet IP address. In Figure 7, the clear linear relationship
is shown between the previous throughput and current throughput,
which confirms the effectiveness of prev_tput. The baseline model
creates a hard linear decision boundary solely based on the previous
performance. We observed that the prediction using this dummy
model does not go beyond 0.77 (in F1 score). Even though it would
be better than a random guess, this prediction performance is far
from a perfect model and unacceptable in practice.

Figure 7: Correlation between previous vs. current transfer
throughput: The result shows the clear linear relationship
is shown between previous throughput vs current through-
put but the baseline model solely relying on the previous
throughput information is limited to 0.77 as the prediction
performance.

Table 2: Prediction performance with different threshold for
slow connections

Threshold % of low-performance F1 score
< 100 Kbps 4.9% 0.938
< 1 Mbps 15.5% 0.913
< 10 Mbps 26.7% 0.945

From the baseline model, we improve the decision tree model
by selecting the most effective feature combination and applying
hyperparameter tuning. With all the features provided in tstat and
extra features mentioned in previous sections, we exhaustively
tried all the feature combinations. We cover the feature selection in
more detail in the next part. We then do hyperparameter tuning us-
ing the GridSearchCV. The best parameters are min_samples_split
= 3, min_samples_leaf = 2, and max_depth = 10. The F1 score is

Figure 8: Impact of feature combinations with different
threshold ranges for defining slow transfers (100 Kbps, 1
Mbps, and 10 Mbps)

improved to 0.913. We create two other labels using different thresh-
olds to confirm our model is applicable and effective in other set-
tings. As shown in Table 2, the other two thresholds actually create
better performance. We are then more confident with our model
and feature choices.

Moreover, we confirmed the necessity and effectiveness of our
feature engineering and selection. We have proved it to be better
than the naive model with only one important feature. The model
with only variables provided in tstat which are size and country
can only achieve an F1 score of 0.826. Our model boosts it by 0.087,
which means our extra features generated from the latest transfer
improve the performance substantially. On the other hand, the
model with all the features we created can only achieve an F1 score
of 0.891. It is a lot worse than our best model after feature selection.
Those are features truly influential features.

The xgboost model has similar performance as the decision tree,
but it is computationally more costly and takes significantly more
time. Try-all feature search is not possible in the gradient boost
model, so we only tried the top feature combinations from the
decision tree feature selection. We still used GridSearchCV hyper-
parameter tuning. The F1 score is slightly worse than that from the
decision tree at 0.913. This is unexpected as xgboost is considered
one of the most effective tree-based model. One explanation is the
decision tree has already created one of the best models, and it
is hard to improve from it using a gradient method when it has
already been close enough to the optimum. From Figure 8, we can
see that all the top 2000 combinations create respectful results with
any of the three thresholds. This is the same problem that makes the
random forest to be even worse. Random forest generates some pre-
dictions with high precision but extremely low recall. The resulting
F1 score never goes above 0.3.

We also tried some non tree-based methods. SVM is not effective
in this case because this classification problem is too complex to be
expressed by a single boundary. The features are dependent and
have higher order relationships. The F1 score is not close to that
of the decision tree models. We also tried fully connected neural
network. With moderate efforts on constructing the most fitted
model, we did not find a structure that has a clear potential for
better performance than the tree based models.

Figure 9: Distribution of prediction result: the blue points
under the borderline are correctly predicted, and vice versa.
Similarly, the orange points located above the border line are
correctly predicted.

Figure 10: Number of occurrence of the features in Top-100
feature combinations: The transfer size is the essential fea-
ture as it appears in all of the 100 best combinations, while
the duration and throughput features follow and show their
importance.

We found that the model with the best performance and time
efficiency is the relatively simple decision tree model with trans-
fer size, previous throughput, previous minimum round trip time,
previous transfer size, and size ratio. Figure 9 shows the tput vs
size scatter plot of the test set data. All the blue dots above the red
line and all the orange dots below the red line are the misclassified
ones. There are only a few of them and mostly concentrated in the
area close to the red line which represents the boundary we used to
determine if a transfer should be labeled as low-performance. This
shows our prediction model is valid.

4.3 Impact of Features
Feature selection has been an active research topic over the past
decade for identifying higher priority features by eliminating less
essential ones [12]. Feature selection is an important aspect of
the study not only because it helps improve the performance of
the prediction models but also because it brings insights into the
factors influencing the performance of network transfers. From
the exhaustive feature search, Top-100 feature combinations were
selected with the best F1 scores in the decision tree model.

In Figure 10, it presents the number of occurrence of top features
in Top-100 combinations. Among them, we find that the transfer
size is the essential feature as it appears in all of the 100 best com-
binations. All the features should be considered important factors
influencing the performance of network transfer in our experiment
settings.

5 RELATEDWORK
Monitoring network traffic is one of the essential tasks in network
operations and management. It is also crucial in scientific comput-
ing to support ever-increasing data-intensive scientific exploration
and computing. In particular, identifying elephant flows has been a
critical problem as the flows consume significant amounts of net-
work capacity. A study in [2] introduced an algorithm estimating
the traffic volume of individual flows, which is used to detect ele-
phant flows’ total byte count. The authors define two hash tables
recording a counter representing the volume of the flow with the
associated flow ID from the packet trace, which is then used to
detect elephant flows showing a pre-defined threshold. In [5], the
authors tackled the problem of the classification between elephant
(large transfer) flows and mice (small) flows. This previous study
takes an unsupervised learning approach and the presented clus-
tering scheme (using GMM/EM) produces two clusters (one for
elephant flows and the other for mice flows) from the NetFlow
data. While highly important to identify elephant flows, our study
focuses on predicting slow connections that significantly impact
data-intensive scientific applications.

There have been several studies analyzing tstat data. In [15],
the authors presented a classification mechanism to detect the low
throughput time intervals. The classification mechanism consists
of two phases, the first phase assigning binary classification labels
for each time window (either anomalous or not), and the second
phase performing actual classification by constructing a supervised
learning model using the assigned label information. Another study
in [11] performed the evaluation of deep learning models, includ-
ing Multilayer perceptron (MLP), Convolutional Neural Network
(CNN), Gated Recurrent Unit (GRU), and Long Short-Term Mem-
ory (LSTM), in order to predict throughput for each time interval.
While these studies focused on analyzing tstat data based on time
windows, our study focuses on the connection-level prediction.

6 CONCLUSIONS
This study explores tstat logs collected on data transfer nodes
at NERSC. Our exploration of the network measurement data re-
veals several interesting findings that could impact to data transfer
performance. Based on the findings, we defined a set of features
that could be easily computed before start of a file transfer. These
features are based on the latest completed transfer between the
same source and destination networks, rather than considering
the entire historical information that could be highly burdensome
to keep track of. In addition, we performed feature selection to
uncover better combinations of features and improve prediction
performance. With even relatively simple prediction models, we
are able to achieve F1 score above 0.91 for three different thresholds
from 100 Kbps to 10 Mbps. When the threshold is set to 10 Mbps,
our prediction model achieved 0.945 F1 score.

In this study, we chose lightweight predictors (conventional tree-
based learning algorithms) with a minimal computational require-
ment so as to focus on feature engineering. It would be interesting
to explore more advanced prediction algorithms such as some deep
learning techniques. Another interesting direction for future explo-
ration is to explore additional features including statistics about
recently completed transfers, such as, average and standard devia-
tion.

ACKNOWLEDGMENTS
This work was supported by the Office of Advanced Scientific
Computing Research, Office of Science, of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231, and also used
resources of the National Energy Research Scientific Computing
Center (NERSC).

REFERENCES
[1] A Alekseev, A Kiryanov, A Klimentov, T Korchuganova, V Mitsyn, D Oleynik, A

Smirnov, S Smirnov, and A Zarochentsev. 2020. Scientific Data Lake for High
Luminosity LHC project and other data-intensive particle and astro-particle
physics experiments. In Journal of Physics: Conference Series, Vol. 1690. 012166.

[2] Ran Ben Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. 2017. Optimal
elephant flow detection. In IEEE INFOCOM 2017-IEEE Conference on Computer
Communications. IEEE, 1–9.

[3] Thomas Beermann, Olga Chuchuk, Alessandro Di Girolamo, Maria Grigorieva,
Alexei Klimentov, Mario Lassnig, Markus Schulz, Andrea Sciaba, and Eugeny
Tretyakov. 2021. Methods of Data Popularity Evaluation in the ATLAS Experi-
ment at the LHC. In EPJ Web of Conferences, Vol. 251. EDP Sciences, 02013.

[4] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD
’16). Association for Computing Machinery, New York, NY, USA, 785–794.

[5] Anshuman Chhabra and Mariam Kiran. 2017. Classifying elephant and mice
flows in high-speed scientific networks. Proc. INDIS (2017), 1–8.

[6] Bjoern Enders, Debbie Bard, Cory Snavely, Lisa Gerhardt, Jason Lee, Becci Totzke,
Katie Antypas, Suren Byna, Ravi Cheema, Shreyas Cholia, et al. 2020. Cross-
facility science with the superfacility project at LBNL. In 2020 IEEE/ACM 2nd
Workshop on Extreme-scale Experiment-in-the-Loop Computing (XLOOP). 1–7.

[7] Alessandro Finamore, Marco Mellia, Michela Meo, Maurizio M Munafo, Politec-
nico Di Torino, and Dario Rossi. 2011. Experiences of internet traffic monitoring
with tstat. IEEE Network 25, 3 (2011), 8–14.

[8] Rajkumar Kettimuthu, Zhengchun Liu, Ian Foster, Peter H Beckman, Alex Sim,
Kesheng Wu, Wei-keng Liao, Qiao Kang, Ankit Agrawal, and Alok Choudhary.
2018. Towards autonomic science infrastructure: Architecture, limitations, and
open issues. In Proceedings of the 1st International Workshop on Autonomous
Infrastructure for Science. 1–9.

[9] Zhenlong Li, Qunying Huang, Yuqin Jiang, and Fei Hu. 2020. SOVAS: a scalable
online visual analytic system for big climate data analysis. International Journal
of Geographical Information Science 34, 6 (2020), 1188–1209.

[10] Albert Mestres, Alberto Rodriguez-Natal, Josep Carner, Pere Barlet-Ros, Eduard
Alarcón, Marc Solé, Victor Muntés-Mulero, David Meyer, Sharon Barkai, Mike J
Hibbett, et al. 2017. Knowledge-defined networking. ACM SIGCOMM Computer
Communication Review 47, 3 (2017), 2–10.

[11] M Nakashima, A Sim, and J Kim. 2020. Evaluation of Deep Learning Models for
Network Performance Prediction for Scientific Facilities. In Proceedings of the 3rd
International Workshop on Systems and Network Telemetry and Analytics. 53–56.

[12] Makiya Nakashima, Alex Sim, Youngsoo Kim, Jonghyun Kim, and Jinoh Kim.
2021. Automated feature selection for anomaly detection in network traffic data.
ACM Transactions on Management Information Systems (TMIS) 12, 3 (2021), 1–28.

[13] Taylor Reiter, Phillip T Brooks, Luiz Irber, Shannon EK Joslin, Charles M Reid,
Camille Scott, C Titus Brown, and N Tessa Pierce-Ward. 2021. Streamlining
data-intensive biology with workflow systems. GigaScience 10, 1 (2021), giaa140.

[14] Oleg Sukhoroslov. 2021. Toward efficient execution of data-intensive workflows.
The Journal of Supercomputing 77, 8 (2021), 7989–8012.

[15] Astha Syal, Alina Lazar, Jinoh Kim, Alex Sim, and Kesheng Wu. 2019. Automatic
detection of network traffic anomalies and changes. In Proceedings of the ACM
Workshop on Systems and Network Telemetry and Analytics. 3–10.

[16] Benjamin A Weaver, Michael R Blanton, Jon Brinkmann, Joel R Brownstein, and
Fritz Stauffer. 2015. The Sloan digital sky survey data transfer infrastructure.
Publications of the Astronomical Society of the Pacific 127, 950 (2015), 397.

	Abstract
	1 Introduction
	2 Data Description and Exploration
	2.1 Description of tstat Data
	2.2 Data Exploration

	3 Prediction Methods
	3.1 Slow Connections
	3.2 Feature Engineering
	3.3 Prediction Algorithms

	4 Evaluation
	4.1 Experimental Setting
	4.2 Prediction Performance
	4.3 Impact of Features

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

