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ABSTRACT
The volume of data moving through a network increases with new
scientific experiments and simulations. Network bandwidth require-
ments also increase proportionally to deliver data within a certain
time frame. We observe that a significant portion of the popular
dataset is transferred multiple times to different users as well as
to the same user for various reasons. In-network data caching for
the shared data has shown to reduce the redundant data transfers
and consequently save network traffic volume. In addition, overall
application performance is expected to improve with in-network
caching because access to the locally cached data results in lower
latency. This paper shows how much data was shared over the
study period, how much network traffic volume was consequently
saved, and how much the temporary in-network caching increased
the scientific application performance. It also analyzes data access
patterns in applications and the impacts of caching nodes on the
regional data repository. From the results, we observed that the
network bandwidth demand was reduced by nearly a factor of 3
over the study period.
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1 INTRODUCTION
The volume of data generated from new scientific experiments
and simulations is exponentially increasing, and the data access
for such projects drives up the network bandwidth demand and
time constraint data delivery requirements. These projects include
geographically distributed collaborations, such as the upcoming
high-luminosity upgrade of the Large Hadron Collider (LHC) and
Large Synoptic Survey Telescope (LSST) experiments. As the re-
search community builds large, one-of-a-kind instruments, the data
collected by these instruments are converted into scientifically rel-
evant data sets, which are then used by collaborations between sci-
entists across the world to generate discoveries. As breakthroughs
take place in algorithms or hardware and new theories are created,
years of older data from scientific instruments might be reprocessed,
leading to scientifically significant publications. As this cycle of
experiment, discovery, new research, and re-discovery repeats itself,
we observed that the popular datasets are delivered multiple times
to different users all focused on the same problem. In many cases,
the same dataset is delivered multiple times to the same user for
various reasons.

Given the cost of acquiring and maintaining long-term storage,
there are typically fewer locations that host data than locations
that can compute on the data to produce results. Additionally, the
research allocation for large-scale computing can be determined by
research allocation or availability of resources in a shared infras-
tructure. This encourages the same user or multiple users to move
data from a few canonical sources to multiple compute locations
or the same location, depending on when the compute resource
is available to that particular user. Now, if the data source and
compute location were to be the same for all users of a particular
dataset, sharing data may be possible by deploying large storage
on a customer site next to the analysis machines. However, sharing
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data among geographically distributed users, compute/analysis ma-
chines, and data storage centers can only be accommodated with
an infrastructure that allows frequent movement of data between
these locations. While many solutions have been created to enable
efficient movement of data over distances, there is significant time
spent by the scientist to ensure that the appropriate data is at the
right location before starting the actual analysis. Since this data is
typically stored on the disk allocated to the particular scientist, if
there are co-located researchers using the same popular dataset for
their analysis, multiple copies of that data would be downloaded
to each researcher’s private storage allocated at the same compute
location. However, sharing data among geographically distributed
users can be accommodated with some type of content-delivery
network.

One approach to increase data availability is to build an appli-
cation data cache at the location where the compute resource is
available. This local cache is useful in speeding up access to the
few popular datasets that might be used by multiple scientists at
the same location. However, the benefits may be limited [9, 18]
because they depend on the inadvertent intersection of multiple
factors, such as scientists with the same interest, computing access,
and dataset access at a particular location.

In-network caching also provides the unique capability for a
network provider to design data hotspots into the network topol-
ogy. The appropriate bandwidth resources and traffic engineering
techniques can then be deployed to manage traffic movement and
congestion. Even if the shared cache is in the regional resources,
accessing remote files may add extra delays to the application per-
formance. These delays would especially be incurred when the files
are located deep in the local campus infrastructure. An in-network
caching strategy in the middle of the region would reduce the data
access latency and increase the overall application performance.
For ESnet, which buys transatlantic connectivity to bridge its conti-
nental US and European footprints, utilizing in-network caching de-
creases bandwidth demands on the transatlantic links. In-network
caching provides huge cost savings, as subsea bandwidth capacity
is significantly more expensive than terrestrial capacity. This is
especially relevant to the High Energy Physics (HEP) community
because the LHC instrument is located at CERN in Switzerland,
while Tier-1 sites in the US for the ATLAS and CMS experiments
are located at Brookhaven National Laboratory in Upton, NY, and
Fermi National Accelerator Laboratory in Batavia, IL, respectively.

For this study, we collected data access measurements from the
Southern California Petabyte Scale Cache [8], where client jobs
requested data files for High-Luminosity Large Hadron Collider
(HL-LHC) analysis. We studied howmuch data is shared, howmuch
network traffic volume is consequently saved, and howmuch the in-
network data cache increases application performance. Additionally,
we analyzed data access patterns in applications and the impacts of
singular data caching nodes to the regional data repository. From
the results, we observed that the network traffic demand for the
dataset was reduced by a factor of nearly 3 over the observed period.
The data access load is balanced among each node in the regional
data cache repository, and the impact of a data cache is evenly
distributed to other nodes in the regional federated cache repository.
Understanding data access patterns and the characteristics of the
data access gives us insights into how the data or dataset can be

delivered and shared, as well as how the needed resources such as
compute, storage and network can be allocated.

2 BACKGROUND
2.1 High Energy Physics (HEP)
TheHEP community has long been one of the largest scientific users
of global R&E networks by volume. Its science depends on globally
unique instruments operated by collaborations across hundreds
of institutions in dozens of countries. Instruments such as ATLAS
and CMS at the LHC in Geneva, Switzerland are comprised of 100
Million electronic channels. They are designed to observe collisions
every 25 nanoseconds, i.e. a 40MHz rate of collisions.While complex
real-time decision logic, implemented via a mix of custom hardware
and software, brings the data rate down substantially, the annual
data volumes in 2018 per instrument reached tens of Petabytes.
The data volumes are expected to grow by more than an order
magnitude by 2028, as a result of detector and collider upgrades for
the so-called "High Luminosity LHC" (HL-LHC) science program.
This program is expected to last at least ten years, increasing the
integrated collision luminosity by at least a factor of 10.

The social structure of these globally unique science endeavors
is such that the required computing and storage infrastructure is
funded via global in-kind contributions by all participating coun-
tries that can afford to do so. In the past, the share of the single
largest national contributor has been roughly 30%. The global R&E
networks are thus an integral part of the cyberinfrastructure of
these science programs.

To prepare for a factor of ∼30 increase in annual data volume
between 2018 and 2028 [5], the LHC community is driven towards
making any and all data placement much more dynamic. To save
costs, data must spend less time on expensive active storage. A
conceptual design is being pursued that replicates data between
regional "Data Lakes" [7], and uses a mixture of remote access
and caching within those lakes. As Europe dominates the global
resource contribution, regional caches that span distances roughly
consistentwith the geography ofmajor EU countries, i.e. O(1000)km,
are attractive. A regional cache is expected to serve multiple com-
puting centers of varying sizes within that region. This is again
driven at least in part by the sociology of in-kind contributions.
Leading research universities worldwide host LHC cyberinfras-
tructure at their institutions, and the regional network POPs thus
become a natural location for cache placement.

2.2 XCache
The XRootD software suite [6] provides an ideal architecture for im-
plementing a "Data Lake" as a federated storage infrastructure [3]. It
implements tree-architecture, with storage devices as leaves, branch
points for data access, and a data discovery protocol that allows
for the automatic traversal of the tree, dynamically discovering the
physical location of objects or files in the logical namespace. The
tree-architecture is ideally suited for the kind of distributed storage
infrastructure that the LHC needs for the HL-LHC. XCache [4]
provides caching functionality as part of the tree. An XCache is its
own mini-tree, with a distributed set of cache servers that forms
a logical XCache and is connected to a single top level branch.
The top level branch is configured to cache a subset of the total



federated namespace. Different XCaches can thus serve (partially)
(non-)overlapping namespaces. Applications are expected to be di-
rected to a "regional" XCache via the configuration of their runtime
environment, e.g. via GeoIP as is done in the OSG Data Federa-
tion [9, 17, 18]. Cache misses are handled by XCache as simple
XRoot-client calls to the data federation that implements the data
lake. The XRoot data federation is thus the collection of storage
systems where data is explicitly placed top-down by "inserting"
data into the lake. Then, the role of the XCaches is to provide "low
enough" latency data access from the entire compute infrastructure
within a region. This allows for compute clusters at smaller insti-
tutions that are "stateless" and completely without storage. These
clusters are thus less costly to maintain and operate, as long as
there is a regional XCache nearby.

In principle, the aforementioned concepts maximize the range
of institutions that can provide useful in-kind computing resources
to the LHC program, thus maximizing the total size of resources
available to the program.

In the present paper we describe the caching behaviour observed
in a production pilot XCache system across California, USA. The
system has cache servers at the ESnet POP in Sunnyvale, at Caltech,
and at UCSD. We call it a "production pilot" because the system
was used by the CMS collaboration as part of the Caltech and
UCSD Tier-2 center production infrastructure, but it has failovers
in place such that we could take down the pilot at anytime. The
cache utilization and data access patterns measured are thus those
of real CMS data analysis for actual science publications, i.e. work
done by physicists who are blissfully unaware that they were part
of a cyberinfrastructure experiment.

2.3 Energy Sciences Network (ESnet)
The Energy Sciences Network (ESnet) is the US Dept of Energy
(DOE) Office of Science’s high-performance network user facil-
ity, delivering highly-reliable data transport capabilities optimized
for the requirements of large-scale science. ESnet is stewarded by
the Advanced Scientific Computing Research Program (ASCR) and
managed and operated by the Scientific Networking Division at
Lawrence Berkeley National Laboratory (LBNL). ESnet acts as the
primary data circulatory system for science by interconnecting
the DOE’s national laboratory system, dozens of other DOE sites,
and 150 research and commercial networks around the world. It
allows tens of thousands of scientists at DOE laboratories and aca-
demic institutions across the country to transfer vast data streams
and access remote research resources in real-time.

ESnet exists to provide the specialized networking infrastructure
and services required by the national laboratories, large science col-
laborations, DOE user facilities, and the DOE research community.
All together, ESnet provides a foundation for the nation’s scientists
to collaborate on some of the world’s most important scientific
challenges, including energy, biosciences, materials, and the origins
of the universe. Science data traffic across its network has grown
at around 60% each year, and traffic has exceeded an exabyte per
year since 2019.

3 EXPERIMENTAL SETUP
3.1 Dataset
Between May 2020 and Oct. 2020, measurements were collected
from the Southern California Petabyte Scale Cache repository. The
repository consists of 11 nodes at UCSD with 24TB of storage and
10Gbps network connectivity each, 2 nodes at Caltech with 180TB
of storage and 40Gbps network connectivity each, and 1 node at
ESnet with 44TB of storage and 40Gbps network connectivity. The
ESnet node is connected at Sunnyvale, CA and has about 10ms of
round trip time (RTT) from the rest of the regional cache. A single
node study with the ESnet node is done for the full data collection
period (May - Oct. 2020), while the cache utilization and data access
pattern study with all 14 nodes in the regional cache is done for the
months of June, July and August 2020. Due to monitoring issues
from late Aug. 2020 to Oct. 2020, these are the only three months
of data available for the study.

3.2 Monitoring data path
Every node in the cache is configured (configuration details in [10,
11]) to periodically send information about its data accesses via UDP
packets. An external collector aggregates these data and eventually
sends it to a database at CERN. A single collector at UCSD was
used for the entire XCache infrastructure across ESnet, Caltech,
and UCSD, and we performed an independent check to ensure that
record loss was negligible. When a user reads a given file, 3 types
of events are sent to the collector: 1. a file open, 2. one or more
read bytes requests, and 3. a file close. Each one of these events
has a unique identifier so the collector can relate them all later on.
When a file close event is received, the collector builds up a single
monitoring record that includes the name of file that was read,
information about the client (host and domain name), and the total
number of bytes read, among other details. Using the data analytics
infrastructure at CERN, we can then extract the monitoring records
described above and obtain historical data of the data accesses on
the cache.

4 ANALYSIS
4.1 Cache utilization and access patterns
The cache utilization study may show a few characteristics on data
management, data sharing, and data access patterns.

Table 1: Summary statistics for data accesses at the regional
caches from June to Aug. 2020

# of accesses data transfer
size (GB)

shared data
size (GB)

Percentage of
shared data

size

June 2020 1,804,697 532,037.7 818,956.9 60.62%
July 2020 1,426,585 354,452.8 764,351.3 68.32%
Aug 2020 995,324 249,583.5 586,188.8 70.14%
Total 4,226,606 1,136,074.0 2,169,497.0 65.63%

Daily average 48,029.61 12,909.93 24,653.37

Table 1 shows the basic statistics on the data access activities for
all caching nodes during the study period (from June to Aug. 2020).
The "data transfer size" column in Table 1 indicates the data volume
resulting from the "cache misses", when a data file was accessed for
the first time. For cache misses, the caching nodes in the region did



not have the data, resulting in a data transfer from the remote site to
one of the local caching nodes. The "shared data access size" column
refers to the data volume from the "cache hits", when the data file
was already in the cache and readily available for the application to
access. The shared data accesses count is for repeated accesses only
and correspond to the network traffic savings. The "Percentage of
shared data size" column indicates the percentage of the total data
access size that was shared rather than transferred. This percentage
is closely related to the network traffic demand reduction. As the
table shows, it is expected that the percentage of shared data size
increases with time. The percentage would stop increasing at a
certain level because the cache can only hold a set amount of the
popular dataset.

Figure 1: Daily total data access counts and proportion of
total accesses on each node in the regional cache

Figure 1 shows the daily total data access counts, combining
cache miss counts (i.e. data transfers) and cache hit counts (i.e.
shared data accesses). Two larger cache nodes have the cache sizes
of 7.5 times of the most smaller cache nodes, but the accesses do
not cover 7.5 times higher than the smaller caches, nor the shared
data ratio. It indicates that there is a limited relationship between
the cache size and the data access activities, and the access policy at
the regional gateway may also have an influence on the data access
activities on each node in the region. The figure also shows a few
down-times of the regional cache and individual cache nodes. In
the rest of the regional cache, the down-time of an individual cache
node causes an 54 fewer shared data accesses per hour on average
and 105 more data transfers per hour on average. Further study
could analyze how to minimize the impact of the node down-time
on the regional cache.

Figure 2: (a) daily cache miss counts and (b) cache hit counts
on each node in the regional cache

Figure 3: Daily proportion of cachemiss counts (orange area)
and cache hit counts (blue area) in the regional cache

Figure 2 shows the daily cache miss counts and cache hit counts
on each node in the regional cache that were separated from the
total data access counts in the Figure 1. There is a similar propor-
tional distribution of the counts on each node for both cache misses
and cache hits. The ratio of the cache hit counts proportional to
the cache misses gets higher as times goes on, shown in Figure 3.

(a) Daily (b) Hourly

Figure 4: Distribution of the number of users and the aver-
age data access counts

Figure 4 shows the distribution of the number of users and the
average total data access counts. The hourly distribution, Figure 4b,
shows a clear linear relationship between the number of users and
the average total data access counts (average total data access =

20.33 ∗ number of users − 24.09), and it indicates that the number
of total data accesses would be roughly doubled when the number
of users is doubled in the regional cache.

Figures 5a and 5b show the distribution of the hourly average
data transfer counts and hourly average shared data access counts
in terms of the number of users. A linear relationship can be found:

average hourly data transfer counts =
10.39 ∗ number of users - 68.4 (1)

average hourly shared data access counts =
10.6 ∗ number of users +21.48 (2)

The hourly number of the data transfers would be slightly more
than double when the number of users is doubled, and the hourly
number of the shared data accesses would be estimated slightly less
than double when the number of users is doubled. Figures 5c and
5d show the distribution of the hourly average data transfer volume
and the hourly average shared data volume in terms of the number



(a) # of users vs. # of data transfers (b) # of users vs. # of shared accesses

(c) # of accesses vs. data transfer size (d) # of accesses vs. shared data size

Figure 5: Distribution of the number of users, number of
data transfers, number of shared data accesses, hourly data
transfer volume, and hourly shared data volume

of data accesses. The figures show that the hourly shared data
volume increases more than the hourly data transfer volume when
the number of data accesses increases. The increase rate would be
expected to be maintained up to certain level where the proportion
of the shared data volume is stabilized in the cache utilization.

Table 2: Summary statistics for data accesses at the ESnet
cache node from May to Oct. 2020

# of accesses data transfer
size (GB)

shared data
size (GB)

Percentage of
shared data

size

May 2020 189,984 30,150.50 47,986.56 61.41%
June 2020 215,452 40,835.23 55,929.47 57.80%
July 2020 205,478 33,399.81 66,457.3 66.55%
Aug 2020 203,806 30,819.80 68,723.19 69.04%
Sep 2020 165,910 10,153.97 38,036.19 78.93%
Oct 2020 306,118 22,723.93 45,614.91 66.75%

Total 1,286,748 168,083.27 322,747.67 65.76%
Daily average 9,674.79 1,263.8 2,426.67

The cache utilization and data access patterns are further studied
for an individual cache node in the regional cache. Table 2 shows
the data access activity counts on the ESnet node during the study
period (from May to Oct. 2020). It shows that the percentage of
the data volume that is shared on the ESnet cache node roughly
corresponds to the percentage in the regional cache.

Figure 6: Number of the daily data access counts on ESnet
cache node

Figure 6a shows the number of daily total data accesses on the
ESnet cache node. Figure 6b shows the number of daily data trans-
fers on the ESnet node which corresponds to the cache misses and
the first time accesses. Figure 6c shows the number of daily shared
data accesses on the ESnet node which corresponds to the cache
hits and the repeated accesses. They all show similar data access
patterns to the regional cache, indicating that the regional cache
gateway runs the same policy for all cache node in the region, un-
less an anomalous behaviour occurs. As described earlier, a few
days in Aug. Sep. and Oct. show down-times, but they are due to
the monitoring issues. The analysis does not include those days
without collected measurements. Figure 6b shows a spike in the
number of data transfers towards the end of Oct. which is reflected
in the total number of data accesses.

Figure 7: Data transfer spike in Oct. 26, 2020 on ESnet cache
node

Figure 8: Number of repeated data transfers for ESnet cache
node in Oct. 26, 2020



As shown in Figure 7, the data transfer records on the ESnet
node between 12pm and 1pm in Oct. 26, 2020 show 15,058 transfer
operations for one user. While 3,295 transfers have 0 file transfer
size in 0 second, the other 11,763 transfers moved 6,547 unique
files in total 19.64GB. Figure 8 shows how many files of the 6,547
unique files have been transferred multiple times. 5,216 transfers
were repeated for reasons beyond the scope of this study. This kind
of anomalous behavior can be prevented by future policies in the
caching service.

Figure 9: Distribution of the number of shared data accesses
on ESnet cache node

Figure 9 shows the distribution of the number of shared data
accesses (repeated data accesses) for the ESnet node during the
study period. The total number of data accesses, including the first
access and repeated accesses, was 1,286,748 during the measured
period. Therewere a total of 490,944 shared data accesses for 198,940
unique files. While the majority of the data files was accessed only
once, 3 files were accessed 4,762 times.

Figure 10: Daily data file reuse rates on ESnet cache node

Figure 10 shows the daily file reuse rates on the ESnet node,
which is calculated by eqn. ( 3).

file reuse rate =
shared data access counts
number of unique files

=
cache hits

number of unique files
(3)

Note that the daily file reuse rates do not depend on the cachemisses
and indicate how many unique files are included in the cache hits.
The file reuse rate is closely related to the network traffic savings.

4.2 Network utilization
The cache utilization study may also show a few characteristics of
the network usage, where shared data directly contributes to the
network traffic savings.

Figure 11: Daily data transfer size and shared data size on
each node in the regional cache

Figure 11a shows the volume of the daily data transfers, and
Figure 11b shows the daily shared data size on each node in the
regional cache. They follow roughly similar patterns to the daily
number of data transfer counts and shared data access counts in the
regional cache. Larger caches again do not take a proportionally
larger load in the shared data volume, the same as with the data
access counts. It would be a further study point to optimize the
cache size for the data sharing and network traffic savings.

Figure 12: Daily proportion of data transfer size (orange
area) and shared data size (blue area) in the regional cache

As shown in Figure 3, the proportion of the daily number of
shared data accesses increases as time goes on, and Figure 12 shows
a similar pattern for the volume of the daily shared data in the
regional cache. The ratio of the volume of the data transfers to the
volume of the shared data also increases as time goes on.

Figure 13: Network demand reduction rate for each node in
the regional cache; (a) data transfer frequency demand, (b)
traffic demand

We have studied network utilization in two aspects: frequency,
indicating how many times data transfers occur regardless of the
data transfer size, and traffic volume, indicating how much data
is moved from remote sites to the local cache. Figure 13 shows



Figure 14: Network demand reduction rate in the regional
cache; (a) data transfer frequency demand, (b) traffic de-
mand

the daily network demand reduction rates for each node in the
regional cache. The network transfer frequency demand reduction
rates, calculated by the eqn. (4), are shown in Figure 13a. Each
node shows similar patterns to each other except for a few days in
Aug. where a few nodes in the regional cache show significantly
higher transfer frequency demand reduction rates. Those few days
correspond to the higher proportion of the shared data access counts
in early Aug. in Figure 3a. The network traffic demand reduction
rates, calculated by the eqn. (5) and shown in Figure 13b also follow
a similar pattern for those few days in early August where Figure
11a shows significantly higher traffic demand reduction rates.

network transfer frequency demand reduction rate =
(total shared access counts + total transfer counts)

(total transfer counts)
(4)

network traffic demand reduction rate =
(total shared data size + total transfer size)

(total transfer size)
(5)

Network transfer frequency demand reduction rates on the entire
regional cache, shown in Figure 14a, reflect a similar pattern on
each node in the regional cache. The network transfer frequency
demand was reduced by a factor of 2.62 on the average over the
study period. Network traffic demand reduction rates on the entire
regional cache, shown in Figure 14b, also follow similar patterns
to each node in the regional cache. Network traffic demand was
reduced by a factor of 2.91 on average over the study period.

The network utilization of an individual cache node in the re-
gional cache is expected to follow a similar pattern to the regional
cache. Figure 15 shows the network traffic volume on the ESnet
node during the study period.

Figures 15a and 15b show the total data access size from appli-
cations to the ESnet node cache. These include data sizes from the
first time and repeated time accesses to the files. Most of higher
hourly volumes shown on the Figure 15a are averaged out in the
daily volumes in Figure 15b. Figure 15c shows the data transfer
sizes from the remote sites to the local ESnet node cache upon the
first time application request for the data (cache misses). Figure
15d shows the shared data sizes on the ESnet cache node which
indicates the network traffic savings by the repeated data accesses
(cache hits). Network traffic demand on the ESnet node was reduced
by a factor of 2.92 on average over the study period.

Figure 15: Network traffic size on ESnet node; (a) hourly total
data access size, (b) daily total data access size, (c) daily data
transfer size, (d) daily shared data size

In summary, the utilization of the temporary in-network data
cache shows a reduction of redundant data transfers for scientific
jobs, which consequently saves the network traffic volume. From
our study on the ESnet cache node, the network demand is reduced
by a factor of 2.92. From the total of 1,286,748 data accesses mea-
sured on the ESnet node from May 2020 to Oct. 2020, we observed
the total of 490.831TB of client data accesses (first time reads and
repeated reads), with 168.08TB of data transfers (from remote sites
to the local cache), and 322.748TB of network traffic volume savings
from the repeated shared data reads.

5 RELATEDWORK
Delivering read-only scientific data from high energy physics ex-
periments and climate modeling over Named Data Networking
(NDN) [22] was studied [15]. Although many benefits are offered
in NDN by naming data entities rather than the network location
of the data, further studies are needed with different scientific use
cases to prove its worth. There have been many studies [1, 2, 12–
14, 16, 19–21] on Information Centric Networking (ICN), Content
Delivery Network (CDN), cloud storages, and network caching. Our
focus in this paper is on analyzing the data access patterns and
network traffic savings from using the in-network caching method
in the application of high energy physics.

6 CONCLUSION
We analyzed measurements from the in-network caching infras-
tructure for a large scientific experiment and studied the cache
utilization, network utilization, data access patterns, and impacts
of the data caching nodes to the regional data repository. About
65% of data was shared in the regional cache on the average during
the study period. The data access load is not linearly proportional
to the caching storage size, but larger caching storage contributes
to longer data holdings in the cache, resulting in less data access
latency for applications as time goes on. Consequently, the network
demand reduction rate increases as time goes on. One ESnet cache



node has a network traffic demand reduction rate of about 2.92 on
average over the 6 month period. The regional cache as a whole also
has the network traffic demand reduction rate of about 2.91 on the
average over the study period, with a network transfer frequency
demand reduction rate of about 2.62 on average during the study
period.

Further work could be done to study data utilization, the corre-
lation between network utilization and cache management, cache
optimization, and application performance efficiency. In particu-
lar, some data have shown to be transferred multiple times over
a period of time due to the limits on the caching space. We plan
to explore how cache misses affect application performance and
network performance, as well as how cache management would
help those performances under certain conditions and policies.
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