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ABSTRACT

Automated network intrusion detection systems (NIDS) continu-
ously monitor the network traffic to detect attacks or/and anomalies.
These systems need to be able to detect attacks and alert network
engineers in real-time. Therefore, modern NIDS are built using
complex machine learning algorithms that require large training
datasets and are time-consuming to train. The proposed work shows
that machine learning algorithms from the RAPIDS cuML library
on Graphics Processing Units (GPUs) can speed-up the training
process on large scale datasets. This approach is able to reduce
the training time while providing high accuracy and performance.
We demonstrate the proposed approach on a large subset of data
extracted from the Aegean Wi-Fi Intrusion Dataset (AWID). Mul-
tiple classification experiments were performed on both CPU and
GPU. We achieve up to 65x acceleration of training several machine
learning methods by moving most of the pipeline computations to
the GPU and leveraging the new cuML library as well as the GPU
version of the CatBoost library.
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1 INTRODUCTION

In today’s interconnected world, when Internet is becoming an
important tool for all communication aspects of almost everyone,
cyberattacks are extending and becoming more diverse and sophisti-
cated. Cyberattacks affect not only big businesses and organizations,
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but also target individual people and the digital services they use
including social interactions, internet banking, online education,
shopping, and e-health [18]. Malicious activities including illegal
data access, stolen credential, impersonation, data alteration are
spreading all over the cyber world at an alarming rate.

Due to rapid spreading of cyberattacks, automated NIDSs are
integrated in most computer network systems. Security analysts
are using machine learning to automatically monitor their organi-
zations’ systems in order to prevent cyberattacks. Correctly identi-
fying malicious network transfers is just the first step of providing
reliable, high quality, uninterrupted network services. As cyber-
attacks are becoming more sophisticated and cyber criminals are
developing powerful machine learning based malware, improving
the NIDS is an urgent necessity.

Even if machine learning models have been proven successful to
automate the attack detection [4, 10, 11, 14, 20, 21] the size, high-
dimensionality and non-linearity characteristics made the process
harder. Training efficient and performant machine learning models
requires large, labeled datasets [13, 22]. Furthermore, intrusion
detection models are usually evaluated using labeled datasets that
contain normal and attack network traffic patterns. Old intrusion
datasets quickly become outdated because of evolving attack tactics
and models have to be updated very often. The datasets used for
training must contain instances of the mosr recent types of attacks
as well as genuine network traffic to enhance the detection accuracy
of NIDS. The adaptability of ML techniques to a new environment
is a useful characteristic for security applications.

NIDS systems monitor the passive measurements extracted from
existing network traffic. Captured network packets or information
collected using networking software systems such as Netflow [9],
Wireshark [19] or tstat [15] could all be used to build intrusion
detection datasets. These datasets are usually noisy, contain missing
values, include features that are highly correlated and are highly
imbalanced.

The volume size has a direct impact on the training time, meaning
that very large datasets may become unfeasible to train if we do
not find and apply scalable strategies. For this reason, we present
in this work a study exploring the large-scale implementation of
multiple classification algorithms available in the open GPU data
science library named RAPIDS Al This package provides efficient
implementations of classification algorithms that run on NVIDIA
GPUs. Using the RAPIDS Al implementations, we are able to train
classification algorithms over large intrusion detection datasets up
to 65x faster than conventional CPU versions.

Data scientists build machine learning pipelines using sets of dif-
ferent tools. Usually, one set of tools is employed for data extraction,
cleaning and preprocessing and another one for training models,
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visualizations and post-processing. Scikit-learn [16] is one of the
open source libraries that integrates tools for all the steps in a ma-
chine learning pipeline. The newer RAPIDS Al cuML open source
library implements many of the machine learning algorithms part
of the Scikit-learn library as accelerated versions for the GPUs. This
library provides the tools to extend the GPU’s computing power
to the traditional machine learning tasks by using massive paral-
lelization. Now, complete pipelines, including datasets integration,
preprocessing, feature engineering, machine learning modeling,
inference, and visualization can be moved and ran faster on GPUs.

This paper includes the following sections. Section 2 presents a
short literature review on NIDS research approaches using machine
learning and compares our approach with previous work. Section
3 provides an overview of the AWID datasets. Section 4 describes
the classification methodology for the GPU. Section 5 thoroughly
discusses and compares the experiments performed on CPU using
Scikit-learn with the experiments performed on GPU using RAPIDS
cuML. Last section 6 draws conclusions and highlights possible
future developments of this work on NIDS.

2 BACKGROUND

The Aegean WiFi Intrusion Dataset (AWID), an intrusion detection
datasets, comprises of WLAN traffic in flow format including both
malicious and normal data records, collected from a real network
environment. In a small office simulated setting, Kolias et al. [12]
performed sixteen popular types of network attacks to collect a se-
ries of large datasets. In the AWID datasets, each instance includes
155 features plus the class label, and the attributes have mostly
numerical values. The AWID datasets are described in details in
the paper [12] that also reports the accuracy results of classifying
attacks using several machine learning algorithms. Manually per-
forming feature selection and reducing the number of attributes
from 155 to 20, resulted in an increased accuracy and precision
for most classifiers. Their experiments show "impersonation” and
“flooding” attacks are harder to classify in comparison to the "injec-
tion” attack instances.

An intrusion detection survey focusing on Random Forest (RF)
models was described by Resende in [17]. The RF ensemble type
algorithm is a good choice to implement NIDS because of it’s ability
to overcome overfitting and to perform well on imbalanced datasets,
with missing values and with large number of attributes. However,
the main limitation of the RF algorithm is the high computational
complexity, especially when using a large number of trees.

Using the same AWID dataset, Bhandari et al. [1] showed that
by selecting a subset of important features of size 10% of the ini-
tial set, the training time can be reduced by 4x, while improving
the discriminating ability to identify attack instances. This study
employed the SHAP method for feature selection and concluded
that by selecting a small subset of the most important features, the
algorithm is able to important patterns to discriminate between the
“attack” instances and the “normal” instances.

A hybrid method combining principal component analysis (PCA)-
firefly based machine learning method with the gradient boosting
algorithm XGBoost was proposed in [2] with the goal to classify
intrusion detection system (IDS) datasets. The hybrid PCA-firefly
algorithm is used to perform dimensionality reduction and select

Table 2: Accuracy Metrics for CPU Experiments

Training | Prediction
Naive Bayes O(np) O(p)
KNN - O(np)
Linear SVM O(p®n+n3) O(nsyp)
RF O(nzpntrees) O(pnrees)
Gradient Boost | O(npntrees) | O(pnirees)

a subset of features. The XGBoost algorithm is trained on the re-
duced dataset for classification. The method was demonstrated on
a dataset with 43 features and 125,973 instances and ran on Google
Colab using GPUs, but no training times or comparison with the
CPU timings were reported in this paper.

Our approach is similar to other previous approaches using
traditional and tree-based machine learning methods. However, in
this work we compare the training performance of these algorithms
on CPU and GPU. We show that the training on the GPU can provide
a speed-up between 2x and 65x depending on the algorithm.

3 AWID DATASET

The AWID publicly available collection of datasets, contain both
normal and attack real network flows [12]. There is a full dataset
and a reduced dataset. Both full and reduced sets data are divided
into two subsets one called training (AWID-CLS-F-Trn, AWID-CLS-
R-Trn) and one called testing (AWID-CLS-F-Tst, AWID-CLS-R-Tst).
for this paper we combined two files part of the AWID-CLS-F-Tst set
to obtain a new dataset with over 8,000,000 instances. For this new
dataset, the distribution of the 4 classes is shown in Table 1. Same
as for the reduced AWID dataset, the ratio between the number
of "normal” and “attack” instances is 14:1. The high ratio between
normal and attack instances signifies the dataset is highly imbal-
anced, fact that makes it hard to classify especially when using
small training sets.

Table 1: Data Distribution in Terms of Type of Attacks

Normal | Injection | Impers. | Flooding
Large AWID | 8,336,139 84,741 461,707 10,134

3.1 Data Preprocessing

The AWID datasets contain 154 features and the class. The ma-
jority of features are of numeric data type, with different value
ranges. Therefore, the scaling step is one of the most important
pre-processing steps and can significantly improve the performance
of any kind of machine learning algorithms. Training dataset sizes
were set as powers of 2, ranging between 2!2 and 223, The test
dataset was fixed at 213 We ran the experiments in a loop based on
the training dataset size. Inside the loop, first the data was divided
into training and testing, second scaling was applied to both train-
ing and testing, third the model was trained and last prediction
was done on the testing dataset to evaluate the model and get the
accuracy.



4 METHODS

4.1 Multinomial Naive Bayes, K-Nearest
Neighbor Classification and Random Forest
Methods

Multinomial Naive Bayes is the baseline classification method for
our experiments. Naive Bayes classifiers are considered simple
"probabilistic classifiers" that assume statistical independence be-
tween the features. They are among the simplest models, but can
achieve high accuracy levels for certain problems. This algorithm
is implemented in both Scikit-Learn and cuML.

K-Nearest Neighbor (KNN) classification is another very simple
classification method that involves no training step. An test instance
is directly classified by the majority vote of its neighbors, with the
instance classified to the class most common among its neighbors.

Support vector classification (SVC) [6] is a set of supervised learn-
ing methods, based on a quadratic optimization problem, that only
uses a subset of training points to build the decision function. The
kernel trick is used to transform the data into a high-dimensional
space. The assumption is that in the high-dimensional space the
data becomes linearly separable and therefore easier to classify.

The Random Forest RF algorithm [3] is based on combining the
predictions of many small decision trees using the bagging method
for better performance. The small sub-trees, part of the model,
are trained on smaller random sub-sampling of the initial training
dataset. Only randomly selected subsets of features are used for
calculating the information gain to split the nodes, hence the name
of the algorithm. Because RFs are built on many small decision
trees, is easy to rank the features in terms of their importance.

4.2 Gradient Boosting Algorithms

The gradient boosting algorithms are improvements over the clas-
sical decision trees (DT) based on ensemble methods. They are
implemented on the idea of selecting the best feature based on
some impurity measure, usually calculated as the information gain,
and splitting the node for that feature. The only difference between
algorithms consists in the objective function, that is minimized
during gradient descend part of the algorithm.

Standard gradient boosting methods solve the over-fitting prob-
lem of DT, but not very efficiently. To overcome gradient tree boost-
ing shortcomings, Chen [7] proposed the XGBoost algorithm, an
optimized gradient boosting algorithm. XGBoost uses LASSO and
Ridge regularization techniques to improve the optimization part.
These improvements allow XGBoost to be faster and more robust
during training compared to DT and RF algorithms.

CatBoost [8], another gradient boosting implementation, in-
cludes a step of processing categorical features using permutation
techniques and target-based statistics. CatBoost successfully han-
dles categorical features during training time and eliminates the
need of converting them before training. The algorithm uses a new
schema for calculating leaf values when selecting the tree structure,
that also reduces overfitting.

4.3 Algorithm Complexity

The upper bound complexity of the machine learning algorithms
described above, for training and prediction, is shown in Table 2.

Table 3: Accuracy Metrics for CPU Experiments

Acc. | Prec. | Recall F1
MultinomialNB | 53.67 | 41.29 26.67 | 20.87
KNN - - - -
SvVC 100 100 100 100
RF 95.70 | 35.72 48.9 | 39.45
XGBoost 100 100 100 100
CatBoost 100 100 100 100

Table 4: Accuracy Metrics for GPU Experiments

Acc. | Prec. | Recall F1
MultinomialNB | 69.72 | 45.51 29.15 | 24.98
KNN 93.38 | 27.12 48.46 | 28.13
SvC 100 100 100 100
RF 97.51 | 42.92 49.30 | 45.53
XGBoost 100 100 100 100
CatBoost 100 100 100 100

In this table n is the number of training instances, p is the number
of features, nsyess is the number of trees and ng, is the number of
support vectors. It is clear that the SVC method is the has the most
computational expensive training step. This can be observed on
Figure 1, that shows we could only train SVC on less than 500,000
instances.

5 EXPERIMENTS AND RESULTS
5.1 Hardware and Software Infrastructure

Our experiments were performed on computing nodes at the Ohio
Supercomputer Center [5]. These computing nodes have 48 CPU
cores, 384 GB of memory, and 2 NVIDIA Volta V100 GPUs. We used
a RAPIDS 0.18 conda environment including the cuDF and cuML
libraries together with NVIDIA libraries.

5.2 Benchmark Training Step

We applied a variety of classification methods including Multino-
mial Naive Bayes, K-Nearest Neighbors, Random Forest, Liniar SVM,
CatBoost, XGBoost, on the large extracted AWID dataset. Accuracy,
precision, recall and training time were calculated on both CPU
and GPU runs. As shown in Table 3 and Table 4, the most accurate
models was found to be SVC, CatBoost and XGBoost, that had an
accuracy of 100% on both CPU and GPU runs.

To illustrate the performance benefits of the cuML library, we
compare cuML’s algorithms with scikit-learn’s algorithms. Scikit-
learn only interfaces with the serial version of these machine learn-
ing algorithms. We also included experiments with CatBoost, the
method that has a CPU and GPU implementation.

Figure 1a shows training performance using Scikit-learn algo-
rithms on CPUs. It is worth notice that even for a large dataset
with over 4,000,000 instances, Multinomial Naive Bayes, XGBoost
and CatBoost training takes less than 20s. Random Forest takes
around 65s or more, that is 3x as much as Naive Bayes, XGBoost
and CatBoost. Linear SVC was trained on around 100,000 instances
maximum because of the long time it takes to train. No results were



=@==_Multinomial NB
=== Nearest Neighbors
== Random Forest
=== Linear SVM
==fe==_CatBoost

== XGBoost

(2]
o
L

w
o
L

40 A

CPU Training Running Time(s)

GPU Training Running Time(s)

=@=_Multinomial NB

7 1 =%== Nearest Neighbors
== Random Forest

61 == Linear SYM

5 ==t CatBoost

| == XGBoost

0 1 2 3 4
number of training examples (#)

(b) GPU

Figure 1: Training Running Time Comparison on CPU and GPU

30 1
201
10
0- T T T
0 1 2 3 4
number of training examples (#) le6
(a) CPU
Run
m GPU
~~ 60 - s CPU
2
()
£ 50
|_
(@)
C 401
C
c
3 30
(a'd
(@)
.S 204
C
©
= 101
0 B
W & o oS
2\ X o O
" \ 0((\ 00\‘% *66
o &
W «

Algorithm

Figure 2: Training running time comparison on CPU and
GPU side by side for several machine learning algorithms

obtained on the K-Nearest Neighbors Classifier because the large
size of the testing set.

Figure 1b shows training performance obtained using the RAPIDS
cuML algorithms and CatBoost, on GPU. In this case, when training
on the same large dataset with over 4,000,000 instances, Multino-
mial Naive Bayes, K-Nearest Neighbors Classifier, Random Forest
and CatBoost training took less than 3s. XGBoost trained in around
7s or around 3x more compared to Naive Bayes, Random Forest

and CatBoost. Linear SVM performs the worst among all the algo-
rithms, taking at least 8x more than every other algorithm, even for
smaller (262,144 instances) training sets. The GPU implementation
of K-Nearest Neighbors Classifier performs very well because of
the intrinsic parallelism characteristic of this algorithm.

Figure 2 compares the training performance on CPU versus GPU
for Multinomial Naive Bayes, Random Forest, CatBoost, XGBoost
for a training dataset with over 4,000,000 instances. It is worth
noting that the largest performance gap is seen for Random Forest,
where the GPU version improves by 65x. For the other algorithms
the improvement varies between 2x and 5x.

6 CONCLUSIONS

In this paper we present a scalable machine learning workflow to
speed-up network intrusion detection and attacks classification
over large 5G datasets. We use the RAPIDS AI cuML library and the
CatBoost library to compare these implementations with classical
scikit-learn CPU implementations. The results show a speedup
up to 65-fold on GPUs. RAPIDS cuDF and cuML libraries offer all
necessary tools to easily scale training when GPU resources are
available. This pipeline can be adapted to other intrusion detection
tasks processing and interpretation tasks, aiming to provide efficient
and scalable solutions to many applications.

RAPIDS cuML learning algorithms easily scale training when
GPU resources are available. The proposed pipeline may be adapted
to other intrusion detection datasets to provide efficient and scal-
able solutions for these important applications. It is well-known
that deep learning training benefits from the GPUs computing char-
acteristics. Therefore, we plan to compare results from tree based
classifiers with results from deep learning approaches.
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