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ABSTRACT
Large data transfers are getting more critical with the increasing
volume of data in scientific computing. While scientific facilities
manage dedicated infrastructures to support large data transfers,
predicting network performance based on the historical measure-
ment would be essential for workflow scheduling and resource
allocation in the facility. In this study, we empirically evaluate deep
learning (DL) models with respect to the prediction accuracy of
network performance for scientific facilities, using a two-month net-
work communication log. This paper compares a set of DL models
based on Artificial Neural Network (ANN), Convolutional Neural
Network (CNN), Gated Recurrent Unit (GRU), and Long Short-Term
Memory (LSTM), to predict average throughput as a means to esti-
mate network performance, and shares the observations made from
the extensive experiments with the results of prediction accuracy
and timing complexity.

CCS CONCEPTS
• Networks → Network performance analysis; Network mea-
surement; Network monitoring; • Computing methodologies →
Supervised learning by regression.
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1 INTRODUCTION
Large data transfers are getting more critical with the increasing
number of data-intensive applications in the big data era. This
trend can easily be found from scientific computing since large
data transfers among computing facilities are inherent in many
scientific workflows to bring the data into the local facility for
experimenting [7, 9, 12]. For instance, a recent study shows that
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Table 1: Summary statistics of the measured variables: (𝑥,𝑦)
= a pair of data for January and February 2019, respectively.

STAT numConn aggBytes (MB) avgTput (KB/s)
Median (18.0, 27.0) (0.25, 0.25) (0.25, 0.16)
Mean (78.9, 47.1) (1,509, 143.6) (98.9, 36.7)
Stdev (184.1, 52.9) (4,952, 1,923) (335.1, 508.0)
Max (3495.0, 891.0) (43,808, 107,176) (17,872, 29,283)

the average file size is greater than 40 GB, which takes around
55 seconds on average to move in, for a scientific application of
Advanced Light Source (ALS) [1]. Linac Coherent Light Source
(LCLS) at SLACNational Accelerator Laboratory produces terabytes
of data for a single experiment, which is delivered to the National
Energy Research Scientific Computing Center (NERSC) computing
facility to process [5].

To support large data transfers, scientific facilities manage ded-
icated infrastructures with a variety of hardware and software
tools [7]. In particular, the network communication plays a key role
to disseminate massive data among scientific facilities across the
wide-area setting. Data transfer nodes (DTNs) are dedicated systems
for data transfers in scientific facilities that facilitate data dissemina-
tion over a large-scale network [6]. Another crucial dimension for
large data transfers is the accurate network performance prediction,
since estimating data transfer time is vital for workflow scheduling
and resource allocation. In that regard, the connection log would
be a helpful resource to infer the current and future network per-
formance, such as for change point and anomaly detection [1, 10]
and for throughput and packet loss prediction [4, 5].

In this study, we empirically evaluate deep learning (DL) models
with respect to the prediction accuracy of network performance
for scientific facilities. We consider a simple prediction model that
takes a sequence of the past observations to make a prediction for
the subsequent cycle. For this purpose, we analyze a tstat dataset
collected fromDTNs at NERSC over twomonths (January–February
2019). tstat is a network monitoring tool that captures the TCP
connections with a rich set of relevant information, including the
number of bytes sent and received and the connection duration.
Using this measurement, we compare a set of DL models, including
Artificial Neural Network (ANN), Convolutional Neural Network
(CNN), Gated Recurrent Unit (GRU), and Long Short-Term Memory
(LSTM) that have often been utilized for prediction tasks [2, 3, 11],
to estimate network performance. We share our observations based
on the extensive experiments with the results of prediction accuracy
and timing complexity.
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(a) Single-layer LSTM/GRU (b) Stacked LSTM/GRU (c) Stacked ANN (d) Combination of CNN-LSTM

Figure 1: Sketch of DL models for prediction

2 DATASET AND PREDICTION MODEL
In this study, we analyze a 2-month tstat data collected in January–
February, 2019 from the primary DTN node (𝐷𝑇𝑁1) servicing the
largest number of connections at NERSC. The tstat tool collects
TCP instrumentation data for each flow, which can be used to
analyze either real-time or captured packet traces [8]. In detail,
the tool constructs individual TCP connections by referring to the
TCP header in the incoming and outgoing directions, and measures
the transport layer statistics, such as the number of bytes/packets
sent and received, the congestion window size, and the number of
packets re-transmitted. A tstat instance consists of 107 columns
to represent the associated TCP connection. NERSC collects tstat
data to measure the impact of the network parameter settings to
TCP behavior and network throughput.

Although the tstat data contains both incoming (i.e., from ex-
ternal facilities to DTNs) and outgoing (i.e., from DTNs to external
facilities), we focus on analyzing incoming traffic since we are more
interested in downloading from data sources for computing. For
the purpose of network performance prediction, this study predicts
average throughput for incoming traffic based on historical obser-
vations using DL models. Additionally, we also apply the evaluated
DL models to predict aggregated bytes for incoming traffic.

Here is a brief description about the prediction model used in
this study. The prediction takes place based on a discrete time
window with size 𝑤 (e.g., 𝑤 = one minute). The 𝑠 number of the
previous observations are referenced to make a prediction for the
subsequent window. Thus, the prediction of the subsequent cycle
is based on the previous time interval of (𝑠 ×𝑤). The prediction
function is then defined as 𝑃𝑟𝑒𝑑 (·) that takes input and produces
the prediction result as output. The input is a variable set 𝑉 =

{𝑣𝑘 |𝑘 > 0} and a sequence length 𝑠 defining the number of previous
elements referenced for predicting the subsequent cycle. The output
is a scalar variable 𝑝 . Then the prediction function is defined as:
𝑃𝑟𝑒𝑑 (𝑉 , 𝑠) → 𝑝 . The prediction performance is measured based
on the difference between the actual measurement (𝑚) and the
predicted value (𝑝).

By default, we assume the prediction is made by utilizing a single
variable to predict the identical variable in the subsequent window

(i.e., |𝑉 | = 1), but we also employ a combination of variables to
predict to see the impact of the utilization of multiple variables (i.e.,
|𝑉 | > 1). As mentioned, we are interested in predicting (1) average
incoming throughput (𝑎𝑣𝑔𝑇𝑝𝑢𝑡 ) and (2) aggregated received bytes
(𝑎𝑔𝑔𝐵𝑦𝑡𝑒𝑠), for each time window. Based on the basic prediction
model, 𝑎𝑣𝑔𝑇𝑝𝑢𝑡 for the subsequent window is inferred by referenc-
ing a set of 𝑎𝑣𝑔𝑇𝑝𝑢𝑡 values observed in the past 𝑠 windows, while
𝑎𝑔𝑔𝐵𝑦𝑡𝑒𝑠 is predicted by referring to the previous 𝑎𝑔𝑔𝐵𝑦𝑡𝑒𝑠 values
in those past windows.

To enable this, the 𝑡𝑠𝑡𝑎𝑡 data were pre-processed to construct a
table maintaining window-based observations, with the following
three columns for each window:

• aggBytes: Aggregated bytes
• numConn: Number of connections
• avgTput: Average throughput (=aggBytes/numConn)

Table. 1 provides the summary statistics for the measured vari-
ables, which shows a high degree of variations with large standard
deviations for both months (i.e., January and February in 2019).
This simple analysis result indicates the prediction task would not
be straightforward enough due to a huge degree of variations of
the measured variables over time. The focus of this study is the
evaluation of DLmodels empirically to see their applicability, rather
than defining an optimal learning model for network performance
prediction.

3 DEEP LEARNING MODELS
Using the tstat measurement and prediction model described in
the previous section, we examine several DL models for predicting
the network performance for the subsequent window. Fig. 1 pro-
vides the illustration of the DL models often used for prediction,
based on ANN, CNN, GRU, and LSTM structures. As can be seen
Fig. 1(a), a single LSTM or GRU cell can be used for the predic-
tion, while multiple cells can be stacked as shown in Fig. 1(b) and
Fig. 1(c). It is also possible to combine heterogeneous DL models
as sketched in Fig. 1(d). In this study, we examine not only homo-
geneous DL models but also heterogeneous models as shown in
Fig. 1(d). Note that we do not make intensive optimizations for
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Table 2: RMSE for predicting 𝑎𝑣𝑔𝑇𝑝𝑢𝑡 (𝑉 = {𝑎𝑣𝑔𝑇𝑝𝑢𝑡},
Data=January)

Model 𝑠 = 5 𝑠 = 15 𝑠 = 30 𝑠 = 60
C(𝑠) 118126 87321 125536 74340
D(𝑠) 207915 193880 105496 207634
G(𝑠) 58411 118167 110756 67322
L(𝑠) 58183 108850 139787 80361
CCC(𝑠) 195506 221347 296393 219396
DDD(𝑠) 309117 346295 88380 68821
GGG(𝑠) 81606 100447 163036 185395
LLL(𝑠) 71197 133158 234786 72297

individual DL models, but employ them with default settings. The
following is some specific configuration information used for our
experiments. For ANN, we employ linear activation function and
Adam for the gradient-based optimization. For CNN, we assume
a simple one dimensional model. For LSTM and GRU, we set the
dropout parameters to 0.2.

We set up a naming convention to indicate individual DL models,
based on a concatenation of the first letter of the DL method: ‘C’ for
CNN, ‘D’ for DNN, ’G’ for GRU, and ‘L’ for LSTM. Hence, the model
in Fig. 1(c) is called DDD, while the name of the model in Fig. 1(d)
would be either CL (CNN+LSTM) or CG (CNN+GRU), depending
on the cell type in the upper layer. In addition, we experiment with
a set of sequence lengths (i.e., how many of previous windows are
referenced to make a prediction), and the model name also includes
the sequence length in the form of ‘(𝑠)’ where 𝑠 is the sequence
length used. For example, ‘L(5)’ indicates a single layer LSTM with
𝑠 = 5, while ‘LLL(30)’ does a stacked model with three LSTM layers
with 𝑠 = 30.

4 EXPERIMENTS
4.1 Experimental setting and metrics
We assume a relatively short time interval (one minute) for the
window size with different sequence lengths for predicting. For
example, if 𝑠 = 5, the prediction process references the past five
windows (i.e., five minutes) to predict the subsequent window. In
fact, one minute is not a small amount of time in the scheduling
discipline, but we observed too many windows having no connec-
tion at all if the window size is too small (i.e., less than one minute).
The following is the experimental configurations:

• Normalization: standard feature scaling (0–1)
• Window size:𝑤 = 1 minute
• Sequence length: 𝑠 = {5, 15, 30, 60}
• Training:testing = First 60% of windows for training and the
rest (40%) for testing

We utilize the metric of Root Mean Squared Error (RMSE) to
compare the prediction performance. We also measure timing com-
plexity for training and testing. The measurement of timing was
taken place on a dedicated machine, and we performed three runs
for each setting to report statistical deviations.

Table 3: Top-10 testing performance for predicting 𝑎𝑣𝑔𝑇𝑝𝑢𝑡

(Data=January)

Model Num. variables RMSE (training) RMSE (testing)
L(5) 1 98494 58183
G(5) 1 97292 58411
GGD(5) 1 107531 58504
G(15) 3 94028 59890
GD(60) 1 98966 61928
G(30) 3 94989 62309
LLL(5) 3 97940 62513
L(5) 3 99997 64686
G(60) 1 94740 67322
DDD(60) 1 161026 68821

4.2 Experiments with combinations of DL
models

Since we have no a priori knowledge regarding what models work
better for predicting network performance, an extensive set of
DL models are considered in our experiments. Table 2 shows the
initial result collected with homogeneous DL models over different
sequence lengths.

There are several interesting observations, as follows. First, using
GRU or LSTM works well compared to the other structures. Second,
using 𝑠 = 5 (i.e., referencing five minutes for predicting) works
better than longer sequence lengths. Using 𝑠 = 60 (referring to
past one hour for predicting) works better than 𝑠 = 15 and 𝑠 = 30.
Another interesting observation is that, using three variables is
not helpful to improve the prediction performance for CNN- and
ANN-based models, while using more variables largely improve the
performance for GRU- and LSTM-based models (we will discuss
this again with Fig. 2 shortly).

We also constructed a variety of heterogeneous DL models by
combining basic DL models. Table 3 shows the top-10 results sorted
by the testing RMSE scores. From the extensive experiments, the
result shows the DL models based on GRU or LSTM largely outper-
form other possible combinations based on CNN and ANN. With
this observation, we next examine the GRU/LSTM-based models
more in detail.

4.3 Experiments with DL models based on GRU
and LSTM structures

Based on the observation above, we further evaluate the DL models
based on GRU and LSTM structures. Fig. 2 shows testing results for
two different months. In this experiment, we experiment with three
different variable sets to predict 𝑎𝑣𝑔𝑇𝑝𝑢𝑡 : 𝑉1 = {𝑎𝑣𝑔𝑇𝑝𝑢𝑡},𝑉2 =

{𝑎𝑣𝑔𝑇𝑝𝑢𝑡, 𝑛𝑢𝑚𝐶𝑜𝑛𝑛},𝑉3 = {𝑎𝑣𝑔𝑇𝑝𝑢𝑡, 𝑎𝑔𝑔𝐵𝑦𝑡𝑒𝑠, 𝑛𝑢𝑚𝐶𝑜𝑛𝑛}. From
the extensive experiments with a variety of combinations with
different structures and parameters, the figure shows eight models
that have the least RMSE measured against the January data in the
training phase, with error bars obtained from multiple runs.

In Fig. 2, the single-layer models with 𝑠 = 5 quite workwell, yield-
ing comparable or better results than multi-layer models or with a
longer sequence length. Also, using three variables slightly works



SNTA ’20, June 23, 2020, Stockholm, Sweden Nakashima, et al.

(a) Testing RMSE for 𝑎𝑣𝑔𝑇𝑝𝑢𝑡 (Jan)

(b) Testing RMSE for 𝑎𝑣𝑔𝑇𝑝𝑢𝑡 (Feb)

Figure 2: Best-performed DL models for predicting 𝑎𝑣𝑔𝑇𝑝𝑢𝑡

with the RMSE metric

Figure 3: Learning time complexity for predicting 𝑎𝑣𝑔𝑇𝑝𝑢𝑡

(Data=January)

consistently compared to the use of the less number of features.
The testing errors are quite similar between the two datasets.

Fig. 3 compares the timing complexity for constructing learning
models. Intuitively, using a smaller number of cells is beneficial for
reducing the amount of time for learning data. Also, using a smaller
sequence length would require a less amount of time for executing.
The experimental results confirm these intuitions. However, we
did not observe significant impacts of the number of variables, and
we conjecture that using 1–3 variables would not be a big deal in
considering high-dimensionality in practice.

5 CONCLUSIONS
In this study, we evaluated deep learning models with respect to the
prediction accuracy of network performance for scientific facilities.
We established a set of DL models based on ANN, CNN, GRU,
LSTM, and combined DL models, to predict average throughput
as a means to estimate network performance. From the extensive
experiments, our observations show that using recurrent DLmodels
(based on GRU or LSTM) work better than non-recurrent models
(based on CNN and ANN). We also observed GRU models exhibit
smaller relative differences than LSTM-based models. Overall, a
simple model with a single layer and a relatively small sequence
lengthwould have some benefits, given the significantly high timing
complexity for complicated models.

This work is an ongoing work and still in the initial stage. As
shown in the results with relative difference, the models show high
error rates. This prediction work is intrinsically challenging due
to a significant degree of variations over time with a mixture of
control and data channels. We plan to thoroughly analyze data
channels to focus on predicting data transfer performance.
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