Feature Selection Improves Tree-based Classification for
Wireless Intrusion Detection

Shilpa Bhandari*

Avinash K Kukreja*
sbhandari05@student.ysu.edu
akkukreja@student.ysu.edu
Youngstown State University
Youngstown, OH

ABSTRACT

With the growth of 5G wireless technologies and IoT, it become
urgent to develop robust network security systems, such as intru-
sions detection systems (IDS) to keep the networks secure. These
IDS systems need to detect unauthorized access and attacks in
real-time. However, most of the modern IDS are built based on com-
plex machine learning models that are time-consuming to train. In
this work, we propose a methodology using the SHapley Additive
exPlanations (SHAP) in combination with tree-based classifiers.
SHAP can be used to select consistent and small feature subsets
to reduce the execution time and improve classification accuracy.
We demonstrate the proposed approach with the Aegean Wi-Fi
Intrusion Dataset (AWID) dataset in a series of multi-class classifi-
cation experiments. Among the four classes ("normal”, *injection”,
"flooding” and “impersonation”), it is well-known that the class
impersonation is hard to be classified accurately. Tests show that
we can use about 10% of the initial feature set without reducing the
overall prediction accuracy. With this reduced set of features, the
training time could be reduced as much as a factor of four, while
slightly improving the discriminating ability to identify imperson-
ation instances. This study suggests that by reducing the number
of features, the classification algorithms are able to focus on key
trends that differentiates the "attacks" classes from the "normal"
class. Using a reduces subset of features improves IDS’s accuracy
and performance. Also, SHAP dependence plots capture the rela-
tionship between individual features and the classification decision.

CCS CONCEPTS

« Security and privacy — Intrusion detection systems; « Net-
works — Network security; « Computing methodologies — En-
semble methods; Feature selection.

KEYWORDS

Wi-Fi network, intrusion detection, classification, feature impor-
tance

“Both authors contributed equally to this research.

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

SNTA °20, June 23, 2020, Stockholm, Sweden

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7980-9/20/06....$15.00
https://doi.org/10.1145/3391812.3396274

Alina Lazar
alazar@ysu.edu
Youngstown State University
Youngstown, OH

Alex Sim

Kesheng Wu
asim@Ibl.gov,kwu@Ibl.gov
Lawrence Berkeley
National Laboratory
Berkeley, CA

ACM Reference Format:

Shilpa Bhandari, Avinash K Kukreja, Alina Lazar, Alex Sim, and Kesheng
Wu. 2020. Feature Selection Improves Tree-based Classification for Wireless
Intrusion Detection. In 3rd International Workshop on Systems and Network
Telemetry and Analytics (SNTA °20), June 23, 2020, Stockholm, Sweden. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3391812.3396274

1 INTRODUCTION

Today, smaller and smaller sensors and wireless devices intercon-
nected through the Internet are becoming extremely important in
the day-to-day life of almost everyone. Meanwhile, cyberattacks
threatening banking, online shopping, e-health and other digital
services are launched everyday around the world [26, 35].

Due to the global increase of cyberattacks, building reliable IDSs
is vital. IDSs must become an integrated part of any network anom-
aly detection system. Network providers should tune and contin-
uously monitor their hardware and software systems in order to
guarantee reliable, high quality, uninterrupted services. Extensive
research has been conducted on building efficient IDS systems. As
cyberattacks are becoming more sophisticated, security experts see
machine learning and artificial intelligence (AI) as promising tech-
nologies to help identify and combat cyberattacks. In this context
the use of machine learning algorithms can provide an accurate,
efficiant and automated approach to detect intrusions.

Although has been proven by experts that machine learning mod-
els can detect [3, 5, 9, 10, 13, 20, 29, 33] most types of cyberattacks
with high performances, the mechanics that affect accuracy are not
usually analyzed and discussed. Also, building performant machine
learning models require large datasets of labeled instances [16, 30].
Furthermore, tuning these machine learning models usually rely
on a time-consuming parameter search process that depends on the
underlying distribution in the training and testing data. In general,
the complex mathematical nature of machine learning models is
not easily interpretable. The reason for this is because machine
learning models are typically considered black boxes, and while the
performance might be impressive, researchers may not know the
connection between the dataset, the model and its performance.

Datasets used to build IDS systems consists of passive measure-
ments in the network where existing network traffic is observed
without adding overhead. This can be done by capturing packets,
monitoring interface counters or other ways collecting informa-
tion using popular software systems such as Wireshark [27] or
tstat[21]. The data collected this way, is usually noisy, contains a
lot of missing values, some features only have constant values while
others are highly correlated. Therefore, utilizing a preprocessing

https://doi.org/10.1145/3391812.3396274
https://doi.org/10.1145/3391812.3396274

step could potentially improve the efficiency and accuracy of IDS
systems.

As a preprocessing step, feature selection is instrumental to
identify the most important features and eliminate the non-essential
features from datasets. By reducing the size of the problem, the
computational time is also reduced and sometimes the performance
increases. Relevant features contain useful information that the
models can capture and use for better prediction. Irrelevant features,
on the other side, result in performance degradation because these
features carry no additional information that is not already provided
by the selected features. This problem is exacerbated in the case of
multi-class classification. In the end, feature selection and implicit
dimensionality reduction promote better data understanding and
interpretability, and may also reduce the required storage space
and computational cost.

The main contribution of this paper is applying the SHapley
Additive exPlanations (SHAP) to select the most important features
from the benchmark AWID wireless network intrusion datasets,
and demonstrate that we can not only reduce the time to classify
the attacks but also improve the accuracy of classification of the
most difficult cases. Our tests show that we can reduce the number
of features used for classification by a factor of ten (from about 150
features to 15) while reducing the training time by as much as a
factor of four. Using only a subset of 15 most important features,
we show that the relative contribution of some features noticeably
increases. We show evidence that this change is likely the reason
to be able to successfully classifying the instance from the "imper-
sonation" class, which are generally difficult to differentiate from
the other classes.

This paper is organized as follows. Section 2 presents recent
research advances on IDS using machine learning and compares
our approach with previous work. Section 4 is an overview of the
tree-based classification methodology and the feature importance
approach we used. Section 3 provides an overview of the AWID
datasets, while section 5 thoroughly discusses and compares the
experiments performed on full and reduced features datasets. Sec-
tion 5 also shows the dependence plots for the best ranked features.
Last section 6 draws conclusions and presents future developments
for this work on IDS.

2 LITERATURE REVIEW

In 2015, Kolias [14] collected a set of wireless intrusion detection
datasets and made them publicly available for research. In a small
office simulated environment, they perform sixteen different types
of attacks, categorized in four main classes. In the same paper they
report the results of performing intrusion detection using various
machine learning algorithms on the AWID dataset. Manually re-
ducing the set of features from 155 to 20 resulted in an improved
performance of most classifiers, however these experiments show
that instances for classes “impersonation” and “flooding” are harder
to predict compare to “injection” instances.

A curated subset of 36 features was used by Rezvy et al. [24, 25]
to improve the overall prediction process, however, no details of
the feature selection process were given in the paper. They used a
combined dataset, that includes instances from both the train and
test AWID datasets to improve the performance. The method is

based on a two-step process. First, a stacked autoencoder (SAE) was
utilised for unsupervised pre-training to remove potential noise
from the dataset. Next, the output from the SAE was fed to a three
layer convolutional neural network (CNN) for classification with
a softmax activation layer for processing the output. To prevent
overfitting the authors used dropout and batch normalization in
their set up for the training process. For result, this algorithm gives
an overall classification accuracy of 99.9%, with very good precision
and recall.

Selecting subsets of important feature manually is a complex
process, time consuming, therefore automated methods of selection
or reduction are preferred in practice. In [1] Aminanto proposed
a feature ranking and selection procedure, also based on SAE and
tested it in conjunction with three classification methods to improve
the prediction of the "impersonation” attack class. Their method
showed an overall accuracy rate of 99.91% and a false alarm rate of
0.012%. The disadvantage of their binary classification approach is
that it has to be applied separately for each class in order to detect
other attacks except impersonation attacks.

Most papers on AWID intrusion detection, approach the prob-
lem as a multi-class classification problem and do not address the
problem that some instances are more difficult to classify especially
in this highly imbalanced dataset. From the experimental results
reported in previous papers we can draw the conclusion that the
instances part of the “injection” class are easier to classify in com-
parison with "impersonation” and “flooding” instances. One cause
of this problem is the different distribution of training and testing
datasets. Also, it looks like, especially in the testing set the “injec-
tion” instance are linearly separable for the other classes, while
“impersonation” and “flooding” instances overlap with “normal”
instances. One approach used by Aminanto [1] is to replace the
multi-class problem with three binary classification problems, one
for each attack class. This approach has the advantage of allowing
a different feature selection for each class.

A series of recent research papers have developed various deep
learning methods to address the intrusion detection challenge pro-
posed by the AWID dataset. Comprehensive surveys about the
applications of deep learning to cyber security [15] and intrusion
detection have been recently published. Shone et al. [28] were first
to apply a combination of deep and shallow autoencoders to a vari-
ate of well-known intrusion detection datasets. They proved that
SAEs are capable of accurately predicting intrusions in a variety of
network traffic datasets.

Thing [31] was one of the first to proposed using SAEs for in-
trusion detection and ran the experiments on the AWID dataset.
Experiments with several different activation functions for intru-
sion detection problem show that to achieve optimal results the
Parametric Rectified Linear Unit (PRelu) activation function works
best. The proposed 2 and 3-hidden layer architectures showed good
results for the "impersonation” class, but not for the "flooding” class
(50% and 8% accuracy).

Wang et al. [34] analysed and compared multiple architectures
SAEs and CNNs, using the PRelu activation function, for wireless
intrusion detection. As parameters for the network architecture
they used three and seven hidden layers, the hidden layers had the
same large number of neurons (128, 96 and 64) and the output layer
was a softmax regression layer. Although overall results show great

detection rate especially for the *impersonation” and significant
improvement over the results reported by Thing, the accuracy for
identifying the “flodding” attacks is still low (73%).

The ladder model proposed by Ran [22] can be categorized as
a semi-supervised deep learning learning approach that combines
supervised and unsupervised training. This method is based on a
combination of back-propagation and SAEs. In order to improve
the results and especially to correctly classify some of the difficult
instances, this approach uses the AWID testing set to update the
model weights in an unsupervised way. They slightly improve the
results obtained by Wang et al. [34].

A overview survey of Random Forest (RF) applications for IDSs
was presented by Resende in [23]. RF models are suitable for IDS be-
cause of their ability to deal with imbalanced datasets, large number
of features and categorical features as well as numerical features.
Another advantage of this approach is the high performance models
that can be trained in shorter amount of time compared to other
machine learning algorithms such as deep learning.

Another recent approach proposed by Kasongo [11] consists of
an IDS implementation that combines feature selection approach
with CNNis for classification. The feature selection method used here
is based on the Extra Trees (ET) algorithm [7], an extension of the
Random Forest (RF) algorithm [17]. Both RF and ET classification
methods are iterative tree-based methods that at each iterative step
have to identify one or multiple features providing the best split for
the tree. In this way the features can be ranked and a feature subset
selected. The weights of the trained CNN model were also adjusted
by using the test instances. They compared the results obtained
by running the CNN models on the full set of features with results
obtained by training the CNN with a reduced set of 26 features.
This approach obtained overall classification accuracy of 99.77%
for the multi-class classification, however they don’t specify the
breakdown by attack class and this can be misleading and can’t be
compared with previous results. They also report better accuracy
on the reduced feature set (99.77%) compared with the full feature
set(98.57%).

Our approach is similar to the approach developed by by Ka-
songo [11], with several differences. Here we are classifying the
network traffic using several tree-based classification models. The
feature selection is performed using the new SHAP method. We
use a smaller subset of 15 features compared to 26 features. Finally,
most significant, in our approach the interaction plots show the
dependencies between individual features and the Shapley values.

3 DATASETS

The Aegean WiFi Intrusion Dataset (AWID), a popular publicly
available collection of datasets, contain both normal and attack real
network flows [14]. The tabular dataset includes 154 features, plus
the class. There are 4 classes represented, that include "normal” and
3 types of attacks “injection”, impersonation” and “flooding”. The
features mainly store MAC layer information collected from net-
work traces using Wireshark. The data is already divided into two
datasets on called training (AWID-CLS-R-Trn) and one called test-
ing (AWID-CLS-R-Tst). In [14] it is specified that the two datasets
were collected at different times. The distribution of the 4 classes
in the training and testing dataset is shown in Table 1. The ratio

between the number of "normal” and “attack” instances is 10:1 in
the training dataset and 12:1 for the testing dataset.

Table 1: Data Distribution in Terms of Type of Attacks

Normal | Injection | Impers. | Flooding
AWID-R-Trn | 1,633,190 65,379 48,522 48,484
AWID-R-Tst 530,785 16,682 20,079 8,097
Total 2,371,281 82,061 68,601 56,581

3.1 Data Preprocessing

As previously mentioned, the two AWID datasets contain multiple
features with different data types and value ranges. There is only
one string feature, namely SSID, and all the other ones have numeric
or nominal values. Features that represent MAC addresses are stored
as hexadecimal values and need to be converted before the analysis.
Particularly, in the training dataset there are many missing values
and after converting these to zeros, many features have more than
99% zero values. After removing the mostly "zero" features, 100
heavily imbalanced features were left. While, a typical MAC address
takes values in the [-231,231 — 1], the typical value of subtypes
(feature wlan.fc.subtype) is an integer between 0 and 12. Even if
tree-based methods deal well with features representing different
scales, a Min-Max scaling step can improve the running time of
any kind of machine learning algorithms.

When collecting data in the real world, getting data that is un-
representative or data that shift because of location or time changes
is not uncommon. These changes and biases can have a dramatic
effect on the machine learning models and result in models that
lack generalization and predictability. The covariate shift [8, 32]
problem refers to the change in data distribution present in the
training and the test data. The other problem is class imbalance,
that occurs when classes are not equally represented in the dataset.
Many real-world dataset suffers from these problems and AWID
dataset is just one of them. To find out which features differ the
most in terms of their distribution between train and test, we can
run the Kolmogorov-Smirnov test (KS test). Figure 1 show the his-
tograms of the first five features with the highest score for the
KS test. All of them have different distributions but the first two
frame.time_epoch and radiotap.mactime don’t even have common
values between the training and the testing datasets.

A simple solution to the covariate shift is to mix the train and
test file, and based on the full dataset generate new train or test
sets that could be classify with reasonable accuracy. In our case
combining training and the test dataset result in a total number of
2,371,281 instances. We used 20% of the entire dataset as test set, the
remaining 80% of the data for training. To solve the large imbalanced
problem of 10:1 ratio, we only select a number of "normal" instance
equal with the number of all "attacks".

4 METHODS

4.1 Tree-based Machine Learning Methods

4.1.1 Random Forest (RF). For RF models simple decision trees
are the building blocks. This algorithm [2] combines bagging en-
semble methods and small decision trees for better performance.
Two specific things make RF special and give it the name "random”.

Statistic = 1.0, p=0.0

Statistic = 1.0, p=0.0

Statistic = 0.81, p = 0.0

Statistic =0.36, p=0.0

Statistic = 0.34, p = 0.0

Statistic = 0.34, p= 0.0

Train
Test

3a
25
20
15
10
05

Train
Test

35
30
25
20
15
10
05

Train
Test

25

20

15

10

0s

Train
Test

25

20

05

Train
Test

15

10

05

Train
Test

-2 -1 o 1
Log(frame time_epoch)

2

0.0

-1 o 1
Log(radictap mactime)

0.0

-10 -05 0o 05
Log(frame time_relative]

0.0

-10 -05 0o 0s

Log(radiotap datarate)

0.0

-10

-05

00

05

0.0
10

-05 oo 05

Log(radiotap channel type cck)

Figure 1: Feature Differences between Training and Testing Datasets

First, each subtree is build based on a random sampling of the train-
ing dataset. Second, only random subsets of features are used for
calculating the splitting nodes. Therefore, is becoming very easy
to evaluate the importance of the features for the overall model.
The final predictions of the RF models are made by averaging the
predictions over hundreds of individual shallow trees. RFs have the
advantages of short computation time and interpretable models.

4.1.2 XGboost, LightGBM and Catboost. All these tree-based meth-
ods, developed in the recent years are improvements over the clas-
sical decision trees (DT). In addition to binary classification, tree-
based algorithms can be used for multi-class classification, ranking
and regression. They are all based on the idea of node splitting
based on some impurity measure, usually calculated as entropy.
The three algorithms differ by the objective function, that is min-
imized during gradient descend part of the algorithm. A choice
of multiple pre-build metrics is available not only to measure the
accuracy of the model, but to use it in the optimization process.

Standard gradient boosting methods build upon classical boost-
ing methods, managed to solve over-fitting problems, but not very
efficiently. In an effort to overcome gradient tree boosting short-
comings, Chen [4] created the XGBoost algorithm, an optimized
gradient boost. XGBoost employs both LASSO and Ridge regulariza-
tion techniques to minimize the over-fitting. Also, it has a built-in
cross-validation, automatically deals with missing values based on
the training loss and uses a Sketch algorithm to compute the split
nodes. These improvements allow XGBoost to be faster and more
robust during training.

The light gradient boosting machine (LGBM) [12] also improves
over the standard gradient boosting methods. Developed after XG-
Boost, LGBM supports GPU computations, with faster training
time, better accuracy, and for larger datasets with many featues.
The main idea differentiating this algorithm from other tree-based
algorithm is that the algorithm spends more time training the data
instances with larger gradients, considered more important for the
final model.

A slightly different gradient boosting method, CatBoost [6], in-
cludes a step of processing categorical features using permutation
techniques and target-based statistics. This helps especially for prob-
lems with such features, where the accuracy is better compared
with other tree-based methods.

4.2 Feature Ranking based on Shapley Values

The tree-based methods discussed in this paper, such as RF, XGboost,
LGBM and CatBoost, are suitable to provide quick and performant

Log(radictap channel type ofdm)

Table 2: Accuracy Metrics for the Initial Dataset

Acc. | Prec. | Recall F1 | Time(s)
GaussNB | 84.37 | 61.92 82.96 | 65.17 0
RF 99.99 | 99.91 100 | 99.95 50.5
XGBoost | 99.85 | 98.63 99.94 | 99.28 241
LGBM 99.99 | 99.87 100 | 99.93 15.7
CatBoost | 99.98 | 99.74 99.98 | 99.86 47.6

models for tabular datasets. These models usually comprise of large
sets of shallow trees can be used for binary and multi-class classifi-
cation,regression and ranking tasks. All the algorithms mentioned
here need to rank the features in order to decide which one provides
the best split. Therefore, computing feature importance is already
engrained in these algorithms and the new method TreeExplainer
proposed by Lundberg et al. [18, 19] takes advantage of that. The
TreeExplainer or SHAP method, based on game theory, computes
Shapley values for all the features. Shapley values work for both
classification and regression and provides a consistent method to
rank the features used to build the models. The ranking can be used
for feature selection, while the Shapley values can help practitioners
decide the cut off point (Figure 3).

In general machine learning models are considered black-boxes,
that means it is hard to explain how the input is transformed into
the output, by the model, during the prediction. Explaining clas-
sifications and predictions made by machine learning models is
important, but not trivial. Tree-based algorithms are well-known
for their interpretabilty power, which is one of their advantages
beside fast training time. The SHAP dependence plots, shown in
Figure 4 and Figure 5 capture the impact of one feature, wlan.da in
this case, on the final classification task. Two features can be also
represented in the same time, one feature (wlan.da) on the x-axsis
and the other feature by coloring the individual data points based
on the values of this second feature (wlan.fc.type_subtype).

5 EXPERIMENTS AND RESULTS

Before passing AWID train and test dataset to models, we ensure
those datasets have balanced number of normal and intrusive data
and all those data were in integer format. Then, we processed data
a variety of clustering methods including Random Forest, XGBoost,
CatBoost and LightGBM machine learning models. The accuracy,
precision, recall and fitting time were calculated. As shown in Table
2 and Figure 2 (a), the most accurate model was found to be Random
Forest, which had an accuracy of 99.99%.

Normalized confusion matrix

flonding o 0.0000 00000 00004
08
E impersonation 0.6
o
3
= injection {0.0000 0.0000 g 04
02
normal {0.0001 0.0002 0.0000 g
T T T I].{I
g § § F
g = £ E
8 S Z g
=] E
T
=
E
{a} Predicted label

Mormalized confusion matrix

flooding QEREREE) 0.0000 0.0000 0.0007
08
E impersonation - i 0.0000 0.0000 0E
m
]
= injection {0.0000 0.0000 gk 04
0z
normal {0.0002 0.0000 0.0000 K
0.0

flooding -
injection
normal

mpersonation S

Predicted label

(b)

Figure 2: Normalized Confusion Matrix: (a) Initial Feature Set; (b) Reduced Feature Set.

wian.da [
wian fe.type_subtype |
wian fc.ds |
wian.duration |
wlan_mgt.fixed.reason_code _
wian.fe.subtype [
frame ten [
wian.ca.
radiotap.datarate _
frame.cap_ten RN
wizn seq RN
radiotap.dbm_antsignal _
radiotap.mactime _

mmm injection
frame.time_relative [N == rormal
mmm impersonation
data.ton = e
0.00 025 050 075 100 125 150 175 2.00

mean(|SHAP value|) (average impact on model output magnitude)

(@)

wian.da [———
wian fe subtype IR
frame.cap_len NN ———
wian duration N S
wian fe type_subtype N ——
rame lon R
wian fe.ds | ——
radiotap mactime
wian.ra [———
wlan_mgt fixed.reason_code _
radiotap.dbm_antsignal _
data ten |
radiotap.datarate _

mmm injection
wian.seq [N == rormal

. i mmm impersonation
frame.time refative [N == flooding

000 025 050 075 100 125 150 175 2.00
mean(|SHAP value|) (average impact on model output magnitude)

Figure 3: SHAP feature importance plots show higher importance for the injection class after feature selection relative change
helps improve classification accuracy: (a) Initial Feature Set; (b) Reduced Feature Set.

Table 3: Accuracy Metrics for the Reduced Dataset

Acc. | Prec. | Recall F1 | Time(s)
GaussNB | 76.51 | 63.42 91.19 65 0
RF 100 | 99.94 100 | 99.97 27.1
XGBoost 99.8 | 98.25 99.88 | 99.05 61
LGBM 99.99 | 99.87 100 | 99.93 7.36
CatBoost | 99.98 | 99.72 99.98 | 99.85 31.2

5.1 Feature Importance

To determine which features are the most important for a tree-
based model, we calculate and plot the first 15 largest SHAP values
over the training dataset. The summary plot in Figure 3(a) shows

the most important features, sorted by the mean absolute value
of the SHAP values for each feature over all samples. The three
most important features are wlan.da, wlan.fc.type_subtype and
wlan.fc.ds. The plot also shows how each feature contributes dif-
ferently at classifying instances with the four classes. For example,
the contribution of wlan.fc.type_subtype to classify instances for
the "impersonation” class is very small in comparison with the
contribution of wlan.fc.ds.

Second, we take the subset of the first 15 most important fea-
tures designated by the SHAP values and repeat the classification
experiments. In terms of accuracy, precision and recall the results
obtain on the reduced feature subset are almost the same as the
results ordained for the full feature set. As shown in Table 3, Figure
2(b) for all the tree-based methods the results are higher or similar.

For these balanced training and testing datasets, we can predict the
3 different attack classes with the same accuracy. The summary
plot in Figure 3(b) shows the ranking of the features in the reduced
subset. We can see that some feature become more important and
the Shapley values become larger. By looking at the green bars,
that represent the “impersonation” class, we can conclude that the
model built on the reduced subset will make better prediction for
this class.

5.2 Feature Dependence Plots

Next, we choose the most important feature wlan.da and the most
important time related feature radio.tap.mactime and plotted the
partial dependence plots for each class. These figures show the
marginal effect that each individual variable has on the prediction
outcome. For all these plots, the x-axis represents the value of one
feature versus the SHAP values on the y-axis. Each dot on the plot
denotes on instance. They are colored by the values on another
feature, wlan.fc.type_subtype in this case. Blue represents the low
values of the feature while red the high ones.

The plots tell whether the relationship between the target and
the variable is linear (the data points fit on a line), monotonic (the
data points fit on a monotonic function) or more complex (the
points are scattered on large chunks of the plot like in Figure 5
(a)). Figure 4 (c) plot shows that there is an approximately linear
and positive trend between the wlan.da and the target variable for
class “injection”, and wlan.da interacts with wlan.fc.type_subtype
frequently. It looks like high values of wlan.da are easier to classify
when the instance are from class “injection” but harder when they
are from class "normal”. Figure 4 (a) and (b) plots show that in
general instances from the “flooding” and “impersonation” classes
are harder to classify using the wlan.da feature.

Figure 5 show the dependence plots for feature radio.tap.mactime.
These plots clearly show the time gap between the instances in the
initial training dataset (x < .6) and the initial testing dataset (x >
.9). This confirms the covariate shift existing in the initial datasets,
that can be seen in Figure 1, especially for the time related features.

6 CONCLUSIONS

Based on our finding, Random Forest, XGBoost, LightGBM and
CatBoost provide similar or improved results in terms of accuracy,
precision and recall when applied on a reduced feature subset se-
lected by the SHAP method. While there have not been many work
on feature selection and analysis for building robust IDSs, we found
wlan.da, wlan.fc_subtype and wlan.lc.ds are the features which
contribute the most while the machine learning models are detect-
ing attacks. Experiments on subset of 15 features provide similar
accuracy results, but ran in less time. Knowledge of these important
features can be used to remove insignificant features and also to
better understand how the models work and what data should be
collected in future.

In future, we plan to find better ways to attenuate the distribution
differences between the training and the testing datasets. AWID
has a second pair of larger training and testing datasets, 20 and 9
times as large as the AWID dataset used in this paper respectively.
To validate the results presented in this paper we plan to rerun the
experiments on the larger versions of the AWID dataset. We will also

compare the tree-based classification results of the reduced dataset
with results based on other popular classification approaches, such
as stack autoencoders (SAE) and convolutional neural networks
(CNN).

ACKNOWLEDGMENTS

This work was supported by the Office of Advanced Scientific Com-
puting Research, Office of Science, of the U.S. Department of En-
ergy under Contract No. DE-AC02-05CH11231. This research used
resources of the National Energy Research Scientific Computing
Center.

REFERENCES

[1] Muhamad Erza Aminanto, Rakyong Choi, Harry Chandra Tanuwidjaja, Paul D
Yoo, and Kwangjo Kim. 2018. Deep Abstraction and Weighted Feature Selection
for Wi-Fi Impersonation Detection. IEEE Trans. Inf. Forensics Secur. 13, 3 (March
2018), 621-636.

[2] Leo Breiman. 2001. Random Forests. Mach. Learn. 45, 1 (Oct. 2001), 5-32.

[3] Liwei Cao, Xiaoning Jiang, Yumei Zhao, Shouguang Wang, Dan You, and Xianli
Xu. 2020. A Survey of Network Attacks on Cyber-Physical Systems. IEEE Access
8 (2020), 44219-44227.

[4] Tiangi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’16). ACM, New York, NY, USA,
785-794.

[5] Anil V Deorankar and Shiwani S Thakare. 2020. Survey on Anomaly Detec-
tion of (IoT)- Internet of Things Cyberattacks Using Machine Learning. In 2020
Fourth International Conference on Computing Methodologies and Communication
(ICCMC). ieeexplore.ieee.org, 115-117.

[6] Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. 2018. CatBoost: gra-
dient boosting with categorical features support. arXiv preprint arXiv:1810.11363
(2018).

[7] Pierre Geurts, Damien Ernst, and Louis Wehenkel. 2006. Extremely randomized
trees. Machine learning 63, 1 (2006), 3-42.

[8] Patrick Glauner, Petko Valtchev, and Radu State. 2018. Impact of Biases in Big
Data. (March 2018). arXiv:cs.LG/1803.00897

[9] Yogita Hande and Akkalashmi Muddana. 2020. A Survey on Intrusion Detection

System for Software Defined Networks (SDN). International Journal of Business

Data (2020).

Elike Hodo, Xavier Bellekens, Andrew Hamilton, Christos Tachtatzis, and Robert

Atkinson. 2017. Shallow and Deep Networks Intrusion Detection System: A

Taxonomy and Survey. (Jan. 2017). arXiv:cs.CR/1701.02145

Sydney Mambwe Kasongo and Yanxia Sun. 2020. A deep learning method with

wrapper based feature extraction for wireless intrusion detection system. Comput.

Secur. 92 (May 2020), 101752.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,

Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boosting

Decision Tree. In Advances in Neural Information Processing Systems 30, I Guyon,

U V Luxburg, S Bengio, H Wallach, R Fergus, S Vishwanathan, and R Garnett

(Eds.). Curran Associates, Inc., 3146-3154.

[13] Khalid Khan, Amjad Mehmood, Shafiullah Khan, Muhammad Altaf Khan, Zee-

shan Igbal, and Wali Khan Mashwani. 2020. A survey on intrusion detection and

prevention in wireless ad-hoc networks. Int. J. High Perform. Syst. Archit. 105

(May 2020), 101701.

Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Stefanos

Gritzalis. 2016. Intrusion Detection in 802.11 Networks: Empirical Evaluation

of Threats and a Public Dataset. IEEE Communications Surveys Tutorials 18, 1

(2016), 184-208.

Soman KP, Mamoun Alazab, et al. 2020. A Comprehensive Tutorial and Survey

of Applications of Deep Learning for Cyber Security. (2020).

[16] Alina Lazar, Kesheng Wu, and Alexander Sim. 2018. Predicting Network Traffic

Using TCP Anomalies. Conference on Big Data (Big Data) (2018).

[17] Andy Liaw, Matthew Wiener, et al. 2002. Classification and regression by ran-

domForest. R news 2, 3 (2002), 18-22.

Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin,

Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. 2019.

Explainable Al for Trees: From Local Explanations to Global Understanding.

(May 2019). arXiv:cs.LG/1905.04610

Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin,

Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. 2020.

From local explanations to global understanding with explainable AI for trees.

Nature Machine Intelligence 2, 1 (Jan. 2020), 56—67.

=
2

[11

[12

[14

[15

=
&

[19

https://arxiv.org/abs/cs.LG/1803.00897
https://arxiv.org/abs/cs.CR/1701.02145
https://arxiv.org/abs/cs.LG/1905.04610

SHAP value for
wlan.da

SHAP value for
wlan.da

- 40

06
35
0.4
.
2
- 30
02 =
o
l :’E ..I: "y a
|
oL | FCN I'] 25 o
0.0 I ! ': :‘ g
-
20 &
-0.2 c
o
=
-15
-04
-10
-06
0.0 05 10 15 2.0 25
wlan.da lels
(a) flooding
- 40
10
35
05 '
. [«F]
4 H - 30 g
. .
Al P 0 o
o v e i o e :
l 25 o
<
-0.5 '} B
Lo o0 &
(=
k]
-10 =
15
-15 10
00 05 10 15 20 25
wlan.da lel4
(c) injection

04 40
' - 35
02
2
. - 30
5 '! . g
38 wo ‘ 25 o
T c 3 3
o >
ez =
3 20
n -2 =
=
15
-0.4
. - 10
00 05 10 15 20 25
wlan.da lel4
(b) impersonation
- 40
15
- 35
10 w
[+
N 30 &
g g
28 os Las
ac . g
> m | K =
$% o | * 5
- of o 20 &
: -!|= oy r|-ll" 1. ;
=
-5 15
10 10
0o 05 10 15 20 25
wlan.da lel4
(d} normal

Figure 4: SHAP Individual Feature Dependence Plots for Feature wlan.da. The trends of the scatter plots (a) and (b) are quite
similar to each other suggesting that it would be hard to use this feature to differentiate flooding from impersonation.

[20]

[21]

Mohammad Masdari and Hemn Khezri. 2020. A survey and taxonomy of the
fuzzy signature-based Intrusion Detection Systems. Appl. Soft Comput. 92 (July
2020), 106301.

Marco Mellia, Michela Meo, Luca Muscariello, and Dario Rossi. 2008. Passive
analysis of TCP anomalies. Computer Networks 52, 14 (2008), 2663-2676.

[22] Jing Ran, Yidong Ji, and Bihua Tang. 2019. A Semi-Supervised Learning Ap-

[23]

[24]

[25

[26

[27]

[28]

proach to IEEE 802.11 Network Anomaly Detection. In 2019 IEEE 89th Vehicular
Technology Conference (VIC2019-Spring). 1-5.

Paulo Angelo Alves Resende and André Costa Drummond. 2018. A Survey of
Random Forest Based Methods for Intrusion Detection Systems. ACM Comput.
Surv. 51, 3, Article Article 48 (May 2018), 36 pages. https://doi.org/10.1145/
3178582

Shahadate Rezvy, Yuan Luo, Miltos Petridis, Aboubaker Lasebae, and Tahmina
Zebin. 2019. An efficient deep learning model for intrusion classification and
prediction in 5G and IoT networks. In 2019 53rd Annual Conference on Information
Sciences and Systems (CISS). 1-6.

Shahadate Rezvy, Miltos Petridis, Aboubaker Lasebae, and Tahmina Zebin. 2019.
Intrusion Detection and Classification with Autoencoded Deep Neural Network.
In Innovative Security Solutions for Information Technology and Communications.
Springer International Publishing, 142-156.

Gaganjot Kaur Saini, Malka N Halgamuge, Pallavi Sharma, and James Stephen
Purkis. 2020. A Review on Cyberattacks: Security Threats and Solution Tech-
niques for Different Applications. In Cyber Warfare and Terrorism: Concepts,
Methodologies, Tools, and Applications. IGI Global, 98-126.

Chris Sanders. 2017. Practical packet analysis: Using Wireshark to solve real-world
network problems. No Starch Press.

Nathan Shone, T N Ngoc, V D Phai, and Q Shi. 2018. A Deep Learning Ap-
proach to Network Intrusion Detection. IEEE Transactions on Emerging Topics in

[29]

(30]

(31]

[32]

(33]

(34]

(35]

Computational Intelligence 2, 1 (Feb. 2018), 41-50.

Nasrin Sultana, Naveen Chilamkurti, Wei Peng, and Rabei Alhadad. 2019. Survey
on SDN based network intrusion detection system using machine learning ap-
proaches. Peer-to-Peer Networking and Applications 12, 2 (March 2019), 493-501.
Astha Syal, Alina Lazar, Jinoh Kim, Alexander Sim, and Kesheng Wu. 2019.
Automatic detection of network traffic anomalies and changes. of the ACM
Workshop on Systems ... (2019).

Vrizlynn L. L. Thing. 2017. IEEE 802.11 Network Anomaly Detection and Attack
Classification: A Deep Learning Approach. In 2017 IEEE Wireless Communications
and Networking Conference (WCNC). ieeexplore.ieee.org, 1-6.

Ryan] Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas.
2019. Conformal Prediction Under Covariate Shift. In Advances in Neural Informa-
tion Processing Systems 32, H Wallach, H Larochelle, A Beygelzimer, F dAlché-Buc,
E Fox, and R Garnett (Eds.). Curran Associates, Inc., 2530—-2540.

Putra Wanda and Huang Jin Jie. 2020. A Survey of Intrusion Detection System.
International Journal of Informatics and Computation 1, 1 (Jan. 2020), 1-10.
Shaogian Wang, Bo Li, Mao Yang, and Zhongjiang Yan. 2019. Intrusion Detection
for WiFi Network: A Deep Learning Approach. In Wireless Internet. Springer
International Publishing, 95-104.

Bruno Bogaz Zarpelao, Rodrigo Sanches Miani, Claudio Toshio Kawakani, and
Sean Carlisto de Alvarenga. 2017. A survey of intrusion detection in Internet of
Things. Journal of Network and Computer Applications 84 (April 2017), 25-37.

https://doi.org/10.1145/3178582
https://doi.org/10.1145/3178582

- 40 -40
12 . 125
1.0 - 35 1.00 - 35
08 a)
w 30 2 v 075 -1
5 E z £ z
S5 06 = = =
R F 2 050 F
2 25 o g 25 o
T 04 a a
- < 2 035 =
oom o I =
L5 02 20 & ° 20 &
=] c T 000 c
i K] il m
0.0 £]
' . 15 0254 | 15
02
s te e 10 —0.50 10
oo 02 04 06 08 10 0o 02 04 06 08 10
radiotap.mactime lel0 radiotap.mactime 1el0
(a) flooding (b) impersonation
05 — 40 100 . — 40
. ‘ 35 075 - 35
0.0
@ @
@ -30 & o 030 -30 &
5E z E z
25 = £] b
o § 05 - g o0z 2
=] | | | |
wE . By E By
: %- g % 0.00 g
Lo -0 20 & k=l 0 2e 20 &
o= = = —0. =
i o] i i
= =
15 15 -0.50 » 15
V 10 —0.75 . 10
2.0 1, . , , , , . . , , . .
0.0 0.2 04 06 08 10 0.0 0.2 04 06 08 10
radiotap.mactime 110 radiotap.mactime 110
(c) injection {d) normal

Figure 5: SHAP Individual Feature Dependence Plots for Feature radiotap.mactime. Since the scatter plots for (a) and (b) are
distinctive (especially around 0.4E10) this feature increases the likelihood that clustering methods could differentiate flooding

from impersonation.

	Abstract
	1 Introduction
	2 Literature Review
	3 Datasets
	3.1 Data Preprocessing

	4 Methods
	4.1 Tree-based Machine Learning Methods
	4.2 Feature Ranking based on Shapley Values

	5 Experiments and Results
	5.1 Feature Importance
	5.2 Feature Dependence Plots

	6 Conclusions
	Acknowledgments
	References

