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ABSTRACT
Accurately predicting network behavior is beneficial for TCP con-
gestion control, and can help improve routing, allocating network
resources, and optimizing network designs.This task is challenging
because many factors could affect network traffic, such as the num-
ber of network sessions and synthetic reordering. There are also
many ways to measure the network state, such as the number of
retransmissions per flow and packet duplication. For this work, we
use a set of passive TCP flow measurements collected at a major
computer center on multiple data transfer nodes (DTN).

To assist the operations of the computer network, we propose
to detect abnormally slow network transfers in real-time. The pro-
posed system breaks the network monitoring logs into fixed-size
chunks and employs a state of art classifier to identify the slow time
windows. This method will be validated on real large datasets col-
lected from several DTNs. The proposed method is able to generate
models to quickly detect large intervals of low performing network
transfers, which require attention from network engineers.
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1 INTRODUCTION
As computer networks grow in size, complexity and available ser-
vices, network engineers have to spend significant time and effort
to tune and optimize the network performance. Network traffic
monitoring can provide important insights about current state of
the network. Methodologies and tools have been developed to help
network engineers with their routines of traffic monitoring and
problem detection. Data collection is the first step to diagnose the
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network performance to understand the implications and intercon-
nection of users’ behavior.

Large scientific facilities use Science DMZ, which includes sev-
eral dedicated data transfer nodes and high performance data move-
ment tools, to attain high network transfers for high performance
scientific applications. Network traffic analysis [14] and prediction
play a vital role in maintaining healthy operations within all va-
rieties of complex and diverse computer networks. Online traffic
monitoring information, collected over time, can be used to predict
future traffic volume and unexpected events in real-time.

Reliable file transfers are essential for successful science compu-
tations and experiments that need large complex data files to be
moved across long distances. Networks use protocols such as TCP
and UDP to support file transfers, and their performance degrades
under packet losses and duplications, thereby adversely affecting
science applications. Hence, scientists and engineers often monitor
network statistics to find and repair network problems that cause
such degradation.

Machine learning has been employed in many network appli-
cations, such as traffic prediction, traffic classification, intrusion
detection, network management, network adaptation, performance
prediction, and configuration extrapolation. Specifically, machine
learning methods have been proposed to identify bottlenecks and
explain the status of network traffic using features from passive net-
work measurements. However, analyzing the network traffic data
using machine learning and statistical methods [3, 20] is challeng-
ing for several reasons. The network data is usually automatically
collected as a high volume heavy stream of high dimensionality
that needs to be analyzed in real-time to provide alerts in case of
unexpected events.

Another important challenge is the lack of labeled ground truth
for evaluating the machine learning methods [1]. Even if network
data can be relatively easy to collect, there is no automatic way to
acquire labels based of the problem to solve. High-quality ground
truth datasets often need to be manually created, a process that is
time consuming, requires solid domain knowledge, and may have
serious privacy issues, especially in the case of analyzing real traffic
traces.

Machine learningmodels are build on existing data with the hope
that their high generalizability makes them adaptable to the high-
variance future network traffic values. Given the often changes of
these dynamic systems, it would be unacceptable to require a model
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retraining for every time interval manifesting significant network
traffic changes.

To build well-performing models, for most machine learning
algorithms it is required that the training data follows the same dis-
tribution as the target distribution. This assumption is not always
true or practical in dynamically changing networking environ-
ments, where the features are highly dependent on timing, physical
equipment and transfers interactions. Although previous research
[21] showed that the machine learning models built using training
data from a specific network environment can, to some degree, per-
form well in other network environments, more research in transfer
learning is necessary. The analysis and methods presented in this
paper provide a first step towards identifying important features to
detect the network status.

Even if state of the art machine learning algorithm can achieve
good performance when trained on networking data, many of the
resultingmodels are still black boxes, not humanly readable or easily
interpretable. The accountability and interpretability properties
create big obstacles in practical implementations of these models.
If expert network engineers do not understand how the models
behave, they cannot integrate this knowledge in the real systems
to provide new ways for network adaptation and configuration
extrapolation.

One performance characteristic of a network can be measures
using the average network throughout. High throughput means
that the network is running smoothly, while a state of stable low
throughput is usually a sign of network congestion known as "con-
gestive collapse". Network congestion takes place when a network
link is transferring more data packets than it can handle and usually
exhibits the reduced quality of service. This network state is usually
due to interference among the server’s shared physical resources
involved in these transfers, such as network links, disk storage
systems, and CPUs. Typical effects include packet loss, duplication,
and retransmission. A typical consequence of congestion is immi-
nent decrease in network throughput. Identifying factors [15] that
contribute to the decrease of network throughput is very important
in determining resource allocations to use in scheduling requests.

The main goal of this paper is to demonstrate that supervised
machine learning approaches applied to passive measurements of
network flow datasets can be potentially used to identify states of
congestive collapse. Assigning labels based on the average through-
put to categorize network traffic flows grouped by time intervals,
can help with the analysis of these large network datasets. After the
initial binary labeling of network transfer flows to a small prede-
fined number of clusters, the features of each time window can be
used to generate a classification model of the traffic. New incoming
flows can then be classified on the fly and assigned to one of the
two classes (low versus normal throughput time window).

Specific contributions of this paper are as follows:

· Statistical analysis methods to extract throughput threshold
values to label the time intervals as ’slow’ or ’normal’.

· Unsupervised dimensional reduction and visualization meth-
ods based on UMAP to provide a 2-dimensional representa-
tion of the datasets to understand the structure of the data.

· Classification experiments performed on real network data
collected from eight DTNs using Tstat.

· Checking the results of this supervised learning approach, es-
pecially the false positives and false negatives, using through-
put plots for evaluation and comparison.

This paper is organized as follows. Section 2 compares our approach
with previous work, while section 3 is an overview of the proposed
methodology and describes its main steps. Section 4 provides an
overview of the datasets, while sections 5 thoroughly discusses the
experiments performed on eight large real traffic datasets. Finally,
section 6 draws conclusions and presents future developments for
this work.

2 RELATEDWORK
TCP logs collected by Tstat [17] together with other logs from
DTNs at a scientific computing facility have been statistically ana-
lyzed before by Liu et. al [14]. They examined transfers performed
during the year 2017 at three different levels: that of user transfer
requests; that of individual file transfers; and that of TCP flows.
Using these logs, insights on transfer, file, and flow characteristics,
and identify areas for improvement in transfer performance and
resource utilization were presented. This study shows that useful
insights can be obtained by combined analysis of logs from differ-
ent layers of the data movement stack and some of the findings on
flow, file, and transfer characteristics are applicable to other large
facilities.

Network data at the flow level collected with Tstat is unlabeled
and therefore there is no good way for the network engineers to
immediately differentiate between normal and anomalous network
transfers. Using perfSONAR, Rao et al. [19] collected network data
in a controlled environment to detect and identify network trans-
fer anomalies such as packet loss, duplication, and retransmission
sequencing that affect file transfer performance especially related
to congestion. A combined approach of dimensionality reduction
and statistical analysis was used to determine important features
and highlight abnormal behaviors.

Simple experiments using unsupervised feature extraction show
that the proposed method works well to extract certain characteris-
tics from known network transfer datasets. These experiments used
real network data extracted from Tstat logs and ignored specific
file details such as file size, workflow stage and link details, to allow
core network properties to be extracted as general normal features.
The patterns extracted using dimensionality reduction based on
Principle Component Analysis (PCA) and clustering can help build
feature filters to select data for any future machine learning meth-
ods. In the end this method will allow researchers and network
engineers to build relationships among sensitive parameters such
as congestion and availability with transfer file type. The main
goal was to understand how packet loss and congestion impact the
end-to-end performance.

Instead of analyzing Tstat features, Dao [5] only looks at the
throughput characteristic of the network transfers. This approach
employs a change point detection method that works by first di-
viding the network flows into time windows based on their time
stamp and second by applying a non-parametric model for each
window to describe the congestion. The idea is to designate net-
work transfers that take significantly longer than typical expected



time as ”slow” or ”abnormal transfers”. When many ”slow” net-
work transfers occur in the same time window, it is worthwhile to
alert the network engineers and prompt them to investigate the
abnormal behavior of the system.

Another unsupervised approach, based on clustering and pro-
posed by Kim [9–12], aims to keep track of the network state based
on the aggregation of multidimensional variables. The clustered
result represents the state of the network with regard to the mon-
itored variables, which can also be compared with the observed
patterns from previous time windows enabling intuitive analysis.
The definition of the network state depends on what type of data
is being analyzed to construct clustered patterns. They proved the
proposed method with two popular use cases, one for estimating
traffic breakdown and the other for identifying anomalous states.
The authors also applied their method to the Tstat data collected
from ESnet to show the applicability of their method.

It is well-known that TCP anomalies such as packet loss con-
tributes to the variance of network throughout [15]. Therefore, it
is essential to be able to correctly identify all these the anomalies.
Previous research [2, 11] reported statistical correlation between
multiple variables collected in the Tstat logs and the network
traffic throughput. Recently, Hidden Markov Model and Recurrent
Neural Networks have been proposed [4] to predict network traffic
volume from some flow statistics, such as flow counts per time
interval. These flow statistics are assumed to be easier to compute
compared to network throughput.

Another unsupervised/supervised technique proposed in [13],
accurately identify TCP anomalies occurring during file transfers
based on passive measurements of TCP traffic collected using Tstat.
This method was validated on real large datasets collected from
several DTNs. The preliminary results indicate that the percentage
of TCP anomalies correlate well with the average throughput in
any given time window.

The big data framework SeLINA, proposed by Apiletti et al. [2]
was design to extract information from raw network flows data and
to meet current network data analysis requirements including scal-
ability, auto configuration capability, human readability of results,
as well as evaluation of the model quality over time. The first step
involves clustering the data using an automated tuning algorithm
based on DBSCAN. Second, the clustering labels are used as input
for a decision tree algorithm that has the capability to rank the
features.

For continued evaluation and comparison, SeLINA uses the av-
erage Silhouette index as the quality measurement and also a check
of the degree of change that takes place in the network. When
this index changes drastically, the main DBSCAN clustering model
is automatically rebuilt to incorporate the new incoming traffic
data. The experiments conducted highlight the system’s ability to
identify over-time changes in the network. One of the main con-
tributions of this paper is the self-tuning property for the main
algorithms, a step that normally requires sophisticated, expert level
fine-tuning.

To prevent network congestion and overutilization of network
devices, it is important to detect data transfer anomalies over the
network. Flowzilla [8] is a methodology designed to achieve the
same. It uses training data from Tstat to build the Model, which is

adaptive to the changing network load. The training data is gener-
ated from the Feature Extraction Filter, which uses Random Forest
Regression (RFR) to extract a subset of features from Tstat data-
base. It then uses Adaptive Threshold Mechanism for detection of
anomalies, which includes a threshold calculator, that calculates the
detection threshold values based on previous data and the Detector,
that calculates the anomalous flows based on difference in model’s
predicted flow size and threshold value. 92.5% accuracy is achieved
using this framework.

Our approach is similar to the Flowzilla approach [8], with sev-
eral differences. Here we are classifying the network transfers based
on the throughput and not based on their size. The classification is
performed on time intervals instead of individual transfers. Finally,
most significant Tstat are used in our approach compared to the
limited set of features used by Flowzilla.

3 METHODS
Traffic flows collected in the Tstat logs have no feature or variable
to designate them as anomalies. However, for this paper we con-
sider labeling the network transfers using the average throughput
per time window and an adaptive threshold set as the first quar-
tile of the dataset. Then, supervised machine learning algorithms
are used to predict which flows are slow and which are normal.
Specifically, a supervised approach based on the linear version [6]
of the popular Support Vector Machine (SVM) approach was found
suitable to build models that automatically classifies the traffic flow
time windows into two separate groups with similar characteristics
in terms of their throughput. All the steps of this approach are
highlighted in Fig. 2.

The proposed method employs a linear SVM algorithm to iden-
tify time intervals with low averages of the throughput values over
the entire dataset. SVMs are supervised learningmodels that usually
provide high performance for classification and regression analysis.
Given a set of training examples, each marked as belonging to one
or the other of two classes, an SVM training algorithm builds a
linear hyperplane with the specific property of having the largest
margin. In other words, the individual data points are mapped so
that the points of the two categories are divided by the optimal
hyperplane that has the largest gap. The optimization step of linear
SVMs can be solved efficiently using the coordinate descent algo-
rithm, thereby reducing the convergence iteration to linear time,
making this algorithm run very fast compared to other classifica-
tion methods. The linear SVMs method was selected because of the
low computational time required for training and high accuracy
rates obtained on the testing sets.

Uniform Manifold Approximation and Projection (UMAP) [16]
is a new dimension reduction technique that can be used for vi-
sualizations similar to other manifold data embedding techniques,
and also for general non-linear dimension reduction. It is based on
manifold theory and fuzzy topological data analysis. The algorithm
builds a weighted k-neighbor graph to efficiently approximate the
k-nearest-neighbor computation and calculates spectral embed-
dings that are later optimized using the stochastic gradient descent
algorithm. The algorithm is founded on assumptions that the data
is uniformly distributed on a Riemannian manifold, an assumption
that does not always hold for real data.



Figure 1: UMAP 2-dimensional visual representation of the network traffic flows collected from node 5 and colored based on
their throughput values. Red means low, blue means normal and green means high. (a) individual flows (b) majority labels
assigned based on one hour time intervals.

Figure 2: Proposed machine learning guided methodology
for identifying and categorizing low performing network
flows.

To understand the underlying structure of this particular dataset,
a two-dimensional representation in an embedding space for the
node 5 dataset is presented in Figure 1. Similar to principal compo-
nent analysis (PCA) representations, the values of the x-axis and
y-axis of the UMAP scatterplot are nothing more than a represen-
tation in the embedding two-dimensional space. Part (a) of this
figure shows all the individual flow with their calculated through-
put. Red represents flows with low throughput (throughput lower
than the first quartile), blue means normal (throughput between
the first quartile and the third quartile), while green shows the
high performing flows (throughput larger than the third quartile).
Figure 1 (b) shows the same network transfers, colored using the
same encoding; however this time the flows are assigned with the
majority class of the one-hour time windows in which they belong.

Given the time series property of the network transfers datasets,
it does not make sense to split them randomly into training and
testing or perform standard cross-validation shuffling, but instead
a ”time series cross-validator” is more appropriate. The procedure

used to split time series is described next. One moment in time
can to be chosen as the delimiter between the training and testing
sets. Also, to perform cross-validation at each split, test indices
must be higher than the indices used for testing before, and the
entire training set needs to have timestamps from before the test
set. Unlike standard cross-validation methods, successive training
sets are supersets of those that come before them, but they can
also be limited to a certain size. Cross-validation is the preferred
validation method for larger datasets because it better estimates
the generalization ability of the model, which is very important for
the problem we are trying to solve.

Quantitative classification evaluation, which evaluates the good-
ness of classification results, can be done using the traditional
measures such as accuracy, precision, recall, and F1 score. Precision
is the ratio between the correctly classified positive instance and
number of all positive instances. It gives an idea of the amount
of elements from the positive class that were misclassified. Recall
is the ratio between the correctly classified positive instance and
the number of all instances classified as positive. The F1 score is
an average between precision and recall. Precision, recall, and the
F1 score are very important, especially when the training and/or
testing datasets are highly imbalanced.

By showing the correctly classified time intervals versus the
incorrectly classified on the time series average throughput plots, a
qualitative classification evaluation is possible.

4 DATASETS
Today, network traffic statistics at the flow level can be collected
using passive monitoring tools such as Tstat [7]. A passive probe
located on the access link that connects each Data Transfer Node
(DTN) located at the National Energy Research Scientific Comput-
ing Center (NERSC) to the ESnet (Department of Energy’s dedicated



science network) inspects all packets flowing on the link and ex-
tracts the information to be summarized. The Tstat software
rebuilds each TCP and UDP network flow by matching incoming
and outgoing segments.

Table 1: Datasets Statisctics

Node # of Flows 60min 30min 5min
1 2,447,602 4,232 8,450 47,310
2 1,119,470 2,639 4,372 13,618
3 5,131,592 4,029 7,845 36,089
4 455,244 3,286 5,716 21,006
5 135,531 421 659 2,140
6 166,116 598 1,060 4,359
7 157,247 412 659 2,439
8 169,233 626 1,096 4,539

Tstat offers output statistics at packet and flow level. The flow-
level analysis provides a summary of the connection properties that
is logged [18] for further analysis. It can be used to collect many
different statistics for TCP, UDP, and RTP/RTCP traffic. For TCP
connections, congestion window size, out-of-sequence segments,
duplicated segments, number of bytes and segments retransmitted,
and RTT are some of the statistics that it collects. Tstat distin-
guishes between completed and not completed flows, and between
clients (hosts that actively open a connection) and servers (hosts
that passively listen for connection requests). Tstat also records
UDP messages. However, since UDP communication contributes
a very low percent of the total bytes moved from/to the major
computer center, we did not included UDP communications in this
study.

Among the measurements collected by Tstat, some of the met-
rics are believed to be correlated to both system configuration and
possible performance issues. For example, the measure of Round
Trip Time (RTT) is usually related to both the distance from the
server, but also possible to reveal congestion on the path. Similarly,
both reordering and duplicate probabilities increase during periods
of congestion. The duration and amount of carried data are used to
compute the actual throughput and could also distinguish between
the type of service the flow carries, e.g., short-lived signaling flows
carrying little data rather than long lived data flows carrying a
large amount of data. We included all these Tstat measurements
in our experiments.

At the large scientific facility 90K of TCP flows are collected
per node daily and an approximate total of 10GB of compressed
data logs are collected yearly on ten DTNs. The Tstat data used for
this study was collected and provided by the NERSC computing
facility at LBNL. The Tstat data contains source and destination IP
addresses, and so is not publicly available for privacy reasons. To
simplify our analysis, for this study we eliminated all flows that
carry less than 10MB of data both ways. Table 1 shows the number
of network transfer in each dataset and also the number of time
intervals. The datasets for nodes 1 to 4 contain six months worth
of transfers collected between 01/01/2017 - 06/28/2017, while the
datasets for nodes 5 to 8 are smaller and have approximately one
month worth of data collected between 06/01/2017 - 06/28/2017.

For each dataset all the features with constant values are elim-
inated. We also eliminate features involved in the calculation of
the throughput because it is used to assign the output labels. Table
2 shows the summary statistics for the calculated throughput for
all eight nodes. The first quartile values in this table are used as
threshold values for our experiments. Network transfers that take
place closer in time are highly correlated compared with transfers
that are far apart. To account for this important characteristic of
the datasets we add two additional features which where assigned
based on the previous and two time intervals preceding the current
time window.

All the features are then normalized using the MinMax Scaling
procedure. The datasets are divided into time intervals based on
three time frequencies: 5, 30 and 60 minutes. Averages for all the
features including throughput are calculated and saved for further
input into the classification algorithm.

5 EXPERIMENTS AND RESULTS
To detect time intervals of slow network transfer we adopt a su-
pervised classification method based on linear SVMs. Let X =
{(x1,y1), ...(xN ,yN )} be the labeled anomaly detection dataset with
N total instances, where xi represents the input feature vector that
can be defined in a d dimensional space as xi = {x1i ,x

2
i , ...x

d
i }. This

set of feature values (client/server IP Address, client/server proto-
col, RTT values, maximum segment size) is extracted from the raw
Tstat data. The corresponding binary class label yi ∈ {y1,y2, ...yN }

for each input vector xi represent normal speed time intervals of
abnormally slow intervals. This class label is assigned based on the
adaptive threshold defined using the first quartile of the average
throughput of the training dataset. Therefore, the training dataset
will always contain 25% of slow time intervals transfers. In the
end, the classification models are designed to predict whether the
average throughput for the network transfers flows in a given time
window that is below the throughput threshold for that node.

In the detection or testing phase, based on a classifier trained
with set X, every instance in a test set is assigned to the class of
either normal or slow type of transfer. It is important to note that
because of the dynamic nature of the network, the network traffic
data would change with time; thus, the adaptive threshold needs to
be periodically updated and the classification model for anomaly
detection must be learned with new training data, for the purpose
of keeping high accuracy for online detection.

We build several models, a different one for each combination of
node dataset and time window. The experiments are done for 5, 30
and 60 minutes time intervals. For the first set of experiments, we
used the entire datasets for all the eight nodes and divided each of
them based on the time stamp in training and testing sets. The last
week is used for testing and the rest to build the model. Results of
these experiments are presented in Table 3 in terms of accuracy,
precision, recall and F1 score and percent of time windows under
the threshold.

Overall, the results presented in Table 3 show accuracy greater
than 83%, precision more than 68% for all the datasets, while recall is
less than 50% in only two cases for node 8. Best results are observed
for node 7 and node 6 and are shown in Figure 3 and Figure 4. These
two figures clearly show that our classification models have no



Table 2: Summary Statistics

node1 node2 node3 node4 node5 node6 node7 node8
count 2,447,602 1,119,470 5,131,592 455,244 135,531 166,116 157,247 169,233
mean 129.46 98.836 881.61 174.46 105.23 262.35 91.439 268.05
std 317.78 115.29 978.5 375.75 69.401 335.53 81.206 631.1
min 0.00003 0.00009 0.00005 0.00007 0.0008 0.0007 0.005779 0.008
5% 13.941 20.175 43.448 7.66 22.825 22.329 21.242 26.714
25% 31.636 56.643 174.85 42.672 57.376 64.642 47.877 60.551
50% 57.901 82.353 377.81 87.981 92.339 107.12 77.219 93.842
75% 111.15 103.64 1521.1 162.7 135.83 198.24 117.02 149.5
max 9853.994 9883.041 9889.773 9725.279 3003.8 5920 3048 3271.2

Table 3: Classification Evaluation

min Acc. Prec. Recall F1 %CI

node1
5Min 0.9013 0.8632 0.7597 0.8081 27.34
30Min 0.8574 0.6878 0.5842 0.6318 20.94
1H 0.8664 0.6875 0.5878 0.6337 19.66

node2
5Min 0.9312 0.9401 0.7853 0.8558 25.97
30Min 0.9055 0.9189 0.7133 0.8031 27.03
1H 0.8985 0.9008 0.6987 0.7870 26.85

node3
5Min 0.9181 0.8765 0.8090 0.8414 26.86
30Min 0.9288 0.8261 0.8132 0.8196 19.87
1H 0.9024 0.8480 0.6974 0.7653 22.82

node4
5Min 0.9396 0.9058 0.6468 0.7547 14.37
30Min 0.9121 0.8917 0.5350 0.6687 16.58
1H 0.9221 0.9107 0.5312 0.6711 14.95

node5
5Min 0.9413 0.9758 0.9213 0.9478 57.77
30Min 0.8349 0.9891 0.7222 0.8349 57.79
1H 0.8862 0.8732 0.9254 0.8986 54.47

node6
5Min 0.9311 0.8274 0.7596 0.7920 17.26
30Min 0.9279 0.8281 0.8281 0.8281 20.98
1H 0.9176 0.8621 0.7143 0.7813 20.58

node7
5Min 0.9703 0.9782 0.9515 0.9647 42.63
30Min 0.9167 0.9545 0.8660 0.9081 47.54
1H 0.8780 0.9216 0.8103 0.8624 47.15

node8
5Min 0.8824 0.8878 0.4307 0.5800 18.86
30Min 0.8562 0.7742 0.4000 0.5275 20.06
1H 0.8916 0.8000 0.5333 0.6400 18.07

problem correctly identifying contiguous intervals of low network
performance. The number of false negatives is insignificant, a fact
denoted by the high rates of the precision measure. The number
of false positives is higher, as reflected by the recall rate. This is
observed especially during times when time intervals with high
throughput alternate with time intervals of low throughput.

Finally, we take a look at the results for node 8 (Figure 5), where
recall is the lowest. The test set of this dataset, has a very low ratio
(between 18% and 20%) of transfers with low throughput, fact that
makes this test set harder to classify. In this case there are four
false negatives instances, two of them very close to the throughput

Figure 3: Average throughput for node 7, 5min time win-
dows. The red line is throughput threshold. Recall is 95%

Figure 4: Average throughput for node 6, 5min time win-
dows. The red line is throughput threshold. Recall is 75%

threshold. A third of the false positives are very close to the average
throughput and the others alternate with time intervals with high
throughput.

The second set of experiments are done for node 1 through
4, where the datasets contain a larger number of network flows
collected over 6 months. For these datasets we run cross validation
using a Time Series Split with k=6 sets. The results are presented
in Table 4. Accuracy is greater than 86%, precision does not fall less
than 79% and the lowest recall is only 75%. Overall, the best results
are obtained for node 3 and time interval of 30 minutes (Figure 6),



Table 4: Cross Validation Evaluation

Accuracy Precision Recall F1 Score

node1
5Min 0.8920 ±0.0076 0.8587 ±0.0109 0.8132 ±0.0373 0.8272 ±0.0301
30Min 0.8884 ±0.0127 0.8381 ±0.0339 0.7924 ±0.0519 0.8045 ±0.0501
1H 0.8753 ±0.0118 0.8181 ±0.0427 0.7638 ±0.0504 0.7794 ±0.0502

node2
5Min 0.9157 ±0.0105 0.8666 ±0.0346 0.8237 ±0.0363 0.8369 ±0.0332
30Min 0.8758 ±0.0195 0.8175 ±0.0359 0.8099 ±0.0270 0.8068 ±0.0327
1H 0.8643 ±0.0132 0.7972 ±0.0246 0.8052 ±0.0234 0.7987 ±0.0229

node3
5Min 0.9128 ±0.0144 0.8702 ±0.0260 0.8244 ±0.0413 0.8375 ±0.0324
30Min 0.9176 ±0.0150 0.8858 ±0.0146 0.8702 ±0.0225 0.8727 ±0.0148
1H 0.8980 ±0.0139 0.8638 ±0.0099 0.8349 ±0.0444 0.8341 ±0.0348

node4
5Min 0.8785 ±0.0259 0.8474 ±0.0270 0.7887 ±0.0206 0.8106 ±0.0216
30Min 0.8676 ±0.0245 0.8354 ±0.0235 0.7716 ±0.0244 0.7899 ±0.0231
1H 0.8614 ±0.0257 0.8221 ±0.0282 0.7586 ±0.0286 0.7719 ±0.0274

Figure 5: Average throughput for node 8, 30min time win-
dows. The red line is throughput threshold. Recall is 40%

and the worst are for node 4 and 30 minutes time intervals (Figure
7). Node 3 has more 30-minute time intervals than node 4, however
the testing results for node 4 applied on the last month’s dataset
shows a much lower recall. Node 3 has 44 false negatives and 48
false positives (Figure 6) where node 4 has 13 false negatives and
93 false positives (Figure 7).

As shown in Table 4 the number of time intervals in our experi-
ments vary from 412 to 47,310. It is well known [6] that linear SVMs
are capable of training datasets with over 500,000 instances in sec-
onds. It takes less than 4 seconds to train and .02 to test the dataset
for node 1 with 5 minutes time intervals which is the largest dataset
used in our experiments. Data preprocessing and training can be
done offline and so it doesn’t slow down the detection. Testing
works fast, making this method suitable for quick detection.

6 CONCLUSION
Reliable network transfers are essential for successful operations
at large scientific facilities where petabytes are transferred daily.
To identify possible problems such as low throughput, we propose
to classify the traffic flows captured by Tstat with linear SVM
classification algorithms. Our system splits the Tstat log streams
into chunks so as to make predictions in near real-time. The classi-
fication model only needs to be updated and not rebuilt from the

ground up. Tests show that this new method is able to accurately
detect abnormally low throughput time intervals.

This paper presents a supervised data analytics system that
effectively mines network traffic data. The proposedmethodology is
based on a two-phase approach that 1) assigns binary classification
labels to network transfers using an adaptive threshold based on
the throughput mean; and 2) builds a classification model to predict
new data labels in real-time to identify traffic with low throughput.

This methodology features a linear SVM classification algorithm
that can easily handle one year’s worth of network traffic data. It
is a general purpose approach, which can be easily exploited to
analyze network traffic data under different network conditions.
The approach has been tested using datasets from eight out of ten
DTNs at the major computer center.

The tests on the proposed method showed its ability to accu-
rately identify large windows of low throughput, but also showed
problems in the case of isolated or alternating intervals. To address
this problem, we plan to extend the current system with (i) the
inclusion of more time related features, (ii) the evaluation of pre-
processing feature selection techniques for eliminating more of the
correlated features, and (iii) the design and integration of different
analysis techniques, more appropriate for outlier detection.

In future, we plan to find better ways to label the data or the
’slow’ time intervals and also to investigate the generalization ca-
pabilities of the presented method; larger datasets will be used for
training and testing. To compare the validation results presented
in this paper with results based on other existing classification ap-
proaches, we will consider methods such as random forest, SVM,
Vowpal_Wabbit and convolutional neural networks (CNN).
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Figure 6: Average throughput for node 3, 30min time windows. The red line is throughput threshold. Recall is 81%

Figure 7: Average throughput node 4, 30min time windows. The red line is throughput threshold. Recall is 53%
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