
Understanding Parallel I/O Performance Trends Under Various
HPC Configurations

Hanul Sung
Department of Computer Science and

Engineering, Seoul National
University

Jiwoo Bang
Department of Computer Science and

Engineering, Seoul National
University

Alexander Sim
Lawrence Berkeley National

Laboratory

Kesheng Wu
Lawrence Berkeley National

Laboratory

Hyeonsang Eom
Department of Computer Science and

Engineering, Seoul National
University

ABSTRACT
In high-performance computing (HPC) environments, an appro-
priate amount of hardware resources must be used for the best
parallel I/O performance. For this reason, HPC users are provided
with tunable parameters to change the HPC configurations, which
control the amounts of resources. However, some users are not
well aware of a relationship between the parallel I/O performance
and the HPC configuration, and they thus fail to utilize these pa-
rameters. Even if users who know the relationship, they have to
run an application under every parameter combination to find the
setting for the best performance, because each application shows
different performance trends under different configurations. The
paper shows the result of analyzing the I/O performance trends for
HPC users to find the best configurations with minimal efforts. We
divide the parallel I/O characteristic into independent and collective
I/Os and measure the I/O throughput under various configurations
by using synthetic workload, IOR benchmark. Through the analysis,
we have figured out that the parallel I/O performance is determined
by the trade-off between the gain from the parallelism of increased
OSTs and the loss from the contention for shared resources. Also,
this performance trend differs depending on the I/O characteris-
tic. Our evaluation shows that HPC applications also have similar
performance trends as our analysis.

CCS CONCEPTS
• Computer systems organization → Real-time operating sys-
tems; • Software and its engineering → Software development
methods;

KEYWORDS
High performance computing; Parallel I/O performance; Supercom-
puter;Performance tuning;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SNTA’19, June 25, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6761-5/19/06. . . $15.00
https://doi.org/10.1145/3322798.3329258

0

100

200

300

400

16 32 48 64 80 96 128 192 248

G
B

/s

of OSTs

Figure 1: Performance fluctuation on Cori with IOR bench-
mark

ACM Reference Format:
Hanul Sung, Jiwoo Bang, Alexander Sim, KeshengWu, and Hyeonsang Eom.
2019. Understanding Parallel I/O Performance Trends Under Various HPC
Configurations. In Systems and Network Telemetry and Analytics (SNTA’19),
June 25, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3322798.3329258

1 INTRODUCTION
As the petascale era approaches, HPC applications have begun to
utilize hundreds of cores simultaneously using huge amounts of
data [22]. The role of the parallel shared file system has become
important in order to manage such amounts of data quickly and
accurately. Many supercomputers (i.e., Jaguar system at Oak Ridge
National Laboratory [17] [13] and Cori system at National Energy
Research Scientific Computing Center [5]) provide users with vari-
ous tunable parameters such as the number of compute nodes, the
number of cores, the number of OSTs and stripe size, for efficient
use of this file system. By adjusting the parameter settings, the users
can find the best configurations showing high I/O performance.

However, there are several limitations. First, according to the
Cori log, most users are using the default configuration provided
by Cori system. In other words, since the users are unfamiliar with
their HPC environments, they do not use these parameter settings
properly and get unexpected I/O performance. Second, there are
too many combinations of the parameters to be considered for ex-
periments in order to achieve the best performance [7] [10] [12].
The I/O characteristic for each application is different and the I/O
performance differs depending on the HPC system. Therefore, in
order to obtain the configuration for the best performance, HPC

https://doi.org/10.1145/3322798.3329258
https://doi.org/10.1145/3322798.3329258
https://doi.org/10.1145/3322798.3329258

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

BB

IO

BB

BB

IO

BB

SN

SN

SN

SN

SN

SN

S
A
N

F
A
B
R
I
C

Compute Nodes Storage Nodes
IO Nodes

Burst Buffer

Figure 2: Cori Architecture

applications have to be executed in every combination of the pa-
rameter settings. However, this brute-force method is practically
impossible because there are a huge number of combinations. In
addition, it may take several hours until a job finishes executed after
being requested in a supercomputer such as Cori system, especially
when a large number of compute nodes or a large number of OSTs
are required simultaneously. Therefore it may take several days to
measure the I/O performance in every configuration. Third, HPC
users sometimes experience performance fluctuations, because they
share many hardware resources with others. Thus it is difficult to
get expected or correct I/O performance in a single experiment per
configuration. Figure 1 shows the performance fluctuations of IOR
benchmark. IOR runs three times under the same configuration. It
shows similar results in some configurations, but frequently the
performance difference is quite large up to twice. Forth, some HPC
users expect to get high I/O performance when they have a lot of
hardware resources allocated. However, against expectations, they
may get lower I/O performance despite the use of more resources.

As a result, it is necessary to find an easy way to get the best
configuration with minimal efforts for highest I/O performance. To
do this, we analyze performance trends by adjusting the tunable
parameter settings with the synthetic benchmark, IOR, in Cori
system. The HPC I/O characteristic is divided into independent and
collective I/O, and the number of compute nodes, the number of
cores, and the number of OSTs are used as the tunable parameters.
Based on the IOR results, each I/O characteristics shows specific
performance trend and other HPC applications such as Chombo [1]
and VPIC-IO [8] have the trends similar to our analysis.

2 BACKGROUND
2.1 Cori Supercomputer
Cori system, NERSC’s supercomputer, is Cray XC40 as shown in
Figure 2 [3]. Cori consists of 2,388 Intel Xeon “Haswell” processor
nodes and 9,688 Intel Xeon Phi “Xnights Landing” nodes (KNL).
Each Haswell nodes has two 16-core Intel Xeon Processor E5-2698
v3 at 2.3GHz and each KNL nodes has a 68-core Intel Xeon Phi
processor 7250. Cori also has a 1.8TB Cray Data Warp Burst Buffer
with the performance of 1.7TB/s, but this feature is not used in this
paper.

All these nodes are connected to the Cray “Aries” high-speed
inter-node network using Dragonfly topology, giving the global

0 1 2 3

File

CN 0

SN

0 1 2 3

CN 1

0 1 2 3

CN 2

0 1 2 3

CN K

(a) Independent I/O

0 1 2 3

File

CN 0

SN

CN 1 CN 2 CN K

0 1 2 3 0 1 2 3 0 1 2 3

Aggregator 0 Aggregator 1 Aggregator N

(b) Collective I/O

Figure 3: Parallel I/O operation

bandwidth of 5.625TB/s in Haswell nodes and the bandwidth of
45TB/s in the KNL nodes. Cori uses Lustre scratch file system for
disk storage and efficient I/O performance [4]. It consists of 248 IO
servers (OSS) including 41 hard disks and 248 OSTs, providing total
27TB of storage. It supports peak performance of 744GB/s.

2.2 Parallel I/O Operation
The MPI I/O operation is divided into the independent and the
collective I/Os [11]. In the independent I/O, each MPI processes
handles the I/O operations independently on its own data. In Fig-
ure 3(a), all the processes in the K compute nodes(CN) issue the I/O
operations simultaneously. If there are many small I/O operations
to handle, each process has to access non-contiguous locations in
disks many times and results in low I/O performance. To solve this
problem, the collective buffering I/O is provided.

The collective I/O is divided into two I/O phases [9]. In the
first phase, several MPI processes called aggregators merge other
processes’ data into the temporary buffer making contiguous large
chunks. In the second phase, the corresponding chunk is written to
one-to-one mapped OSTs by the aggregators when their buffer is
full. In Figure 3(b), the processes send their own data to aggregators’
buffer. Then, N aggregators issue the file write operations to their
mapped OST when the buffer is full. In the collective I/O, since only
the aggregators participate in the file I/O, there is less contention
and results in high performance.

3 PARALLEL I/O PERFORMANCE TREND
We analyze the performance trends of two different I/O character-
istics, the independent and the collective I/O, under the various
configurations. IOR benchmark is executed with sequential write

0

20

40

60

80

100

120

140

8 16 32 64 128 256 512

G
B

/s

of compute nodes

ost8 ost16 ost32 ost64 ost128 ost248

Figure 4: Independent I/O performance trend depending on
the number of compute nodes

operations in the single shared file. The various configurations are
generated by adjusting the number of compute nodes, the number
of cores per compute node, and the number of OSTs, excluding
the stripe size. The parallel I/O performance is calculated by di-
viding the output size by the average write time of MPI processes.
Even though actual MPI performance should be determined by the
write time of the slowest MPI process, since the hardware resources
in Cori are shared by many users, the performance fluctuation is
shown frequently. So multiple times of experiments are needed
under the same configuration to get stable performance results. For
this reason, we run IOR three times under same configuration and
use the average write time of MPI processes.

3.1 Independent I/O
In order to analyze the performance trends of the independent I/O,
we use 8 to 512 KNL compute nodes, 64 cores of each compute
nodes, and 8 to 248 OSTs. The output size of all experiments is
512GB and the stripe size is set to 1MB. We set the block size, which
is contiguous bytes for each thread to write, to be larger than the
stripe size for having enough I/O requests to issue.

B =
total output size

total number o f threads

O =
block size

stripe size

The formula above shows the block size(B) and the number o f
accessed OSTs per thread(O). Since the file I/O requests for the
fixed size file are issued across every MPI process, the block size
depends on the number of threads. And the number of OSTs that
the single thread accesses is determined by dividing the block size
by the stripe size. Therefore, if the number of compute nodes is the
same, the number of OSTs accessed by a thread is the same even
when the number of OSTs changes. However, when the number of
OSTs is the same and the number of compute nodes increases, the
number of OSTs to be accessed by the single thread decreases due
to the decreased block size.

3.1.1 Number of Compute Nodes. Figure 4 shows theMPI through-
put (y-axis) on the number of compute nodes used (x-axis) for dif-
ferent number of OSTs. In all experiments, the MPI throughput
increases as the number of compute nodes increases because the
number of issued I/O requests at the same time increases, resulting

0

20

40

60

80

100

8 16 32 64 128

G
B

/s

of OSTs

com512 com256 com128

(a) 8192 threads

0

5

10

15

20

25

30

35

8 16 32 64 128

G
B

/s

of OSTs

com128 com64 com32

(b) 2048 threads

0

2

4

6

8

10

12

14

16

18

8 16 32 64 128

G
B

/s

of OSTs

com32 com16 com8

(c) 512 threads

Figure 5: Indenpendent I/O performance trend depending of
the number of cores per compute node

in better parallelism. In addition, the larger the number of OSTs,
the more requests can be handled at the same time. So, the MPI
throughput variation gets larger as the number of OSTs increases.

In summary, if the number of available OSTs is fixed, it is better
to use as many compute nodes as possible for high performance.

3.1.2 Number of Cores per Compute Node. We analyze the per-
formance trends depending on the number of cores used in each
compute nodes. To do this, we adjust the number of cores used
per compute node by changing the number of compute nodes and
fixing the total number of threads.

Figure 5 shows the performance trends under three configura-
tions, 16 cores per compute node, 32 cores per compute node, and
64 cores per compute node, each when the total number of threads
is 8192, 2048 and 512. Because all MPI threads issue I/O requests
simultaneously, there is contention for shared resources such as a
cache, a memory, and a network within the single compute node.

0

20

40

60

80

100

120

140

8 16 32 64 128 248

G
B

/s

of OSTs

com8 com16 com32 com64 com128 com256 com512

Figure 6: Independent I/O performance trend depending on
the number of OSTs

As the number of compute nodes increases, the contention per
compute node is reduced because the number of threads in the
single compute node decreases. Thus, in all the figures, the I/O
throughput gets higher when using more compute nodes even if
the same number of MPI threads are executed.

In summary, if there is enough number of compute nodes, it is
better to use the fewer cores per compute node for high perfor-
mance.

3.1.3 Number of OSTs. In order to analyze the parallel I/O per-
formance trends depending on the number of OSTs, we measure the
MPI throughputs by varying the number of OSTs for the different
number of compute nodes. As shown in Figure 6, there are two
findings.

First, when the number of compute nodes is fixed, the MPI
throughput increases as the number of OSTs increases until a cer-
tain point. After that, the MPI throughput becomes worse as the
number of OSTs increases. If the number of compute nodes is fixed,
increasing the number of OSTs increases the number of I/O re-
quests processed concurrently, thereby the parallelism increases.
However, the increase in the number of OSTs causes an increase in
the waiting time than the I/O service time [21]. One of reasons for
this is the contention in the OSTs that are shared with other HPC
users. As the number of OSTs shared with other users increases, the
interference from them increases. Until the certain point, the MPI
throughput is improved because the gain from parallelism is larger
than the loss from the contention. But, after the certain point, the
gain becomes smaller than the loss and the throughput decreases.

Second, the number of OSTs giving the best performance differs
depending on the number of compute nodes. Also, the certain point
showing the best performance increases as the number of compute
nodes gets larger. As the number of compute nodes increases, the
number of MPI threads increases, so that the number of issued I/O
requests increases proportionally. Therefore, more OSTs are needed
to handle the increased I/O requests for the best performance. As
shown in the figure 6, with 8 compute nodes, the performance
increases until there are 16 OSTs. In the same aspect, 32 OSTs for
16 and 32 compute nodes, 64 OSTs for 64, 128 and 256 compute
nodes, 128 OSTs for 512 compute nodes give the best performance.
The tendency shows that the number of OSTs for the best perfor-
mance gradually increases in proportion to the number of compute
nodes. However, in some cases, despite the number of compute
nodes differs, the best performance is shown in the same number

0

5

10

15

20

25

30

35

8 16 32 64 128 256 512

G
B

/s

of compute nodes

ost8 ost16 ost32 ost64 ost128 ost248

Figure 7: Collective I/O performance trend depending on the
number of compute nodes

of OSTs. This is because only the 2n number of OSTs is used in the
experiments, we cannot find the exact number of OSTs for the best
performance. So we run IOR benchmark with 48 OSTs and 64 com-
pute nodes for an additinal experiment and get higher throughput,
30.81GB/s than one with 64 OSTs, 28.14GB/s. This verifies that the
number of OSTs showing the best performance increases as the
number of compute nodes increases.

In summary, when the number of compute nodes used is fixed,
the parallel I/O performance increases only until there is certain
number of OSTs. And the number of OSTs showing the best perfor-
mance gets larger as the number of compute nodes increases.

3.2 Collective I/O
In this section, we analyze the collective I/O performance trends
under the various configurations. For all the experiments, we use 8
to 512 compute nodes, 32 cores per compute node, 8 to 248 OSTs,
16MB stripe size and 512 GB output size.

A =
number o f OSTs

number o f compute nodes

The formula above shows the number o f aддreдators per compute
node(A). Since the number of aggregators is equal to the number of
OSTs, the number of aggregators per compute node is calculated
by dividing the total number of OSTs by the number of compute
nodes. So when the number of compute nodes is not changed, as
the number of OSTs increases, the number of aggregators of each
compute nodes increases. On the contrary, when the number of
OSTs is fixed and the number of compute nodes increases, the
number of aggregators per computer node is reduced.

3.2.1 Number of Compute nodes. Figure 7 shows the perfor-
mance trends of the collective I/O, when the number of OSTs fixed
and the number of compute nodes is changed. Regardless of the
number of OSTs, the I/O throughput is improved as the number of
compute nodes increases and saturates from a certain point. If the
number of OSTs is fixed, the total number of aggregators is also
fixed. In this situation, if the number of compute nodes increases,
the number of OSTs per compute node decreases. In other words,
the aggregators clustered on a small number of the compute nodes
are increasingly spread to the multiple compute nodes. Since the
aggregators share the hardware resources such as the cache, the
memory and the network, they experience the contention for the
shared resources. Therefore, the number of aggregators within a

compute node decreases, the contention is reduced and the I/O re-
quests are issued faster. However, if the number of aggregators per
compute node becomes small enough, the contention is negligible,
so even if the number of compute nodes increases, the performance
does not improve.

Also, the larger the number of OSTs, the greater the performance
improvement with the increasing number of compute nodes. As the
number of OSTs gets larger, the number of aggregators in the single
compute node increases which results in the greater contention. In
this case, as the number of compute nodes increases, the perfor-
mance increases greatly because the contention decreases by a lot.
For example, if there are 8 compute nodes, there is one aggregator
per compute node when there are 8 OSTs. And when there are 248
OSTs, the number of aggregators per compute node is 31. Since
it indicates that half of total threads in a compute node are the
aggregators, the contention is severe. Therefore, as the number of
compute nodes increases, the aggregators become more dispersed
and the performance increases rapidly.

In summary, if larger the number of available OSTs, the greater
the performance improvement can be achieved with more compute
nodes.

3.2.2 Number of Cores Per Compute Node. In the same way as
the section 3.1.2, we analyze the performance trends depending on
the number of cores used in the single compute node. Figure 8 shows
the effect of the contention of the aggregators per compute node
on the performance. In the figure 8(a), regardless of the number
of compute nodes, all the I/O throughputs are similar. If there are
248 OSTs, the number of aggregators per compute node is 0.5, 1
and 2 when 64, 32 and 16 cores are used. It indicates that there are
too few aggregators to make the severe contention in the single
compute node. In the figure 8(b), if there are 248 OSTs, the number
of aggregators per compute node is 2, 4 and 8 which is larger
than the figure 8(a)’s one. So more shared resource contention
occurs. Therefore, the performance increases greatly as the number
of compute nodes increases. From the figure 8(c), there are more
aggregators per compute node than the previous figures, which
results in themore serious contention. So the performance increases
most greatly as the number of compute nodes increases.

In summary, the larger the number of aggregators in the single
compute node, the better performance can be acheived by spreading
the aggregators to more compute nodes.

3.2.3 Number of OSTs. Figure 9 shows the I/O throughputs
depending on the number of OSTs. In the collective I/O, the per-
formance trends have similar features shown in the independent
I/O.

First, the performance increases until a certain point and de-
creases when there are more OSTs. Second, the number of OSTs
showing the best performance is different depending on the number
of compute nodes. Since the number of aggregators is determined
by the number of OSTs, if the number of aggregators is small, the
parallelism is also small, and if the number of aggregators is large,
the parallelism is also large. However, if there are a large number
of aggregators per compute node, the contention for the shared
resources becomes severe. Therefore, the performance changes de-
pending on the trade-off between the gain from the parallelism and
the loss from the contention.

0

5

10

15

20

25

30

35

40

8 16 32 64 128 248

G
B

/s

of OSTs

com512 com256 com128

(a) 8192 threads

0

5

10

15

20

25

30

35

8 16 32 64 128 248

G
B

/s

of OSTs

com128 com64 com32

(b) 2048 threads

0

2

4

6

8

10

12

8 16 32 64 128 248

G
B

/s

of OSTs

com32 com16 com8

(c) 512 threads

Figure 8: Collective I/O performance trend depending of the
number of cores per compute node

In the figure, when there are 8 compute nodes, the best perfor-
mance is shown when the number of OSTs is 64. As the number
of OSTs increases from 8 to 64, the number of aggregators per
compute node increases from 1 to 8. When the number of OSTs
is larger than 64, the number of aggregators increases from 16 to
32, which results in the reduced performance due to the increased
shared resource contention. When there are 32 compute nodes, the
number of OSTs showing the best performance is larger than the
previous case. The reason is that as the number of compute nodes
increases, the number of I/O requests issued at the same time gets
larger, requiring more OSTs for the best performance. When there
are more than 128 compute nodes, the number of aggregators per
compute node is at most 2, causing the small contention. As a result,
the I/O throughput continuously increases as the number of OSTs
increases.

0

5

10

15

20

25

30

35

8 16 32 64 128 248

G
B

/s

of OSTs

com8 com16 com32 com64 com128 com256 com512

Figure 9: Collective I/O performance trend depending on the
number of OSTs

In summary, when the number of aggregators in each compute
nodes is small (less than 4 OSTs in these experiments), it is better
to use more OSTs for better performance.

4 EVALUATION
In this section, we compare the performance trends of the syn-
thetic benchmark IOR we analyzed, to the trends of other HPC
workloads. We use VPIC-IO workload for the independent I/O and
Chombo I/O benchmark for the collective I/O. VPIC-IO is an I/O
kernel of VPIC(vector particle-in-cell) plasma physics simulation’s
particle data write phase [8]. VPIC-IO writes to a H5Part file using
a HDF5 I/O library as well. Chombo I/O is created from a Chombo
framework which is for the adaptive mesh refinement scientific
applications [1]. Chombo uses the HDF5 I/O library for the parallel
computations over block-structured, adaptively refined grids. We
set the configurations and the output size same in VPIC-IO and
Chombo with IOR.

4.1 Parallel IO Performance Trend Comparison
Figure 10 shows the performance trends of VPIC-IO and Chombo
depending on the number of the compute nodes and the number of
OSTs.

Even if VPIC-IO uses the same configuration and output size
as IOR with the independent I/O, the number of OSTs accessed
by the single thread is different because VPIC-IO and IOR have
different ways of selecting the range of each thread for the file I/O.
But as the configuration changes, the block size and the number of
OSTs accessed by the single thread change at a rate equal in VPIC-
IO and IOR. As shown in the figure 10(a), VPIC-IO shows similar
performance trends to IOR with the indenpendent I/O. There is the
optimal number of OSTs for the best performance, which increases
as the number of compute nodes increases. The number of OSTs
is even similar to IOR’s in the figure 6. VPIC-IO shows the best
performance when there are 16 OSTs if 16 compute nodes are used.
In the same aspect, 32 OSTs for 32 compute nodes, 64 OSTs for 64,
128 compute nodes, and 128 OSTs for 256, 512 compute nodes give
the best performance.

The performance trends of Chombo under the different configu-
rations are shown in the figure 10(b). Chombo also shows the similar
performance trends as IOR with the collective I/O. The performance
increases until a certain point when the loss from the contention

0

10

20

30

40

50

60

70

8 16 32 64 128 248

G
B

/s

of OSTs

com16 com32 com64 com128 com256 com512

(a) VPIC-IO

0

5

10

15

20

25

30

8 16 32 64 128 248

G
B

/s
of OSTs

com16 com32 com64 com128 com256 com512

(b) Chombo

Figure 10: I/O performance trend of VPIC-IO and Chombo

exceeds the gain from the parallelism, and then decreases. Chombo
also has the same optimal number of OSTs to IOR’s one.

In conclusion, we observed that the performance trends of the
other HPC workloads can be predicted by the analysis through the
synthetic workload IOR. In addition, it is expected to be able to
predict the best configuration that gives the highest performance.

5 RELATEDWORK
It is not easy for HPC users to find an optimal configuration among
a wide range of parameter combinations for the best performance
of I/O workloads. So there have been several studies to do this in
the HPC environment.

There are several works analyzing the performance trend under
the various I/O configurations. The study focusing on the data
and metadata intensive I/O patterns is presented in [20]. The work
covers the analysis of the contiguous data access pattern with the
independent I/O and the small, non-contiguous data access pattern
with the collective I/O. The study of I/O performance improvement
of Red Storm [2] HPC system is proposed in [14]. The work analyzes
the reasons for the I/O bottleneck on a single node test(1 client), a
file-per-process test and a shared file test each.

Considering the general performance trends, some studies have
utilized a modeling of the I/O workloads on HPC system to predict
the best performance. The I/O auto tuning infrastructure for the
applications running on the HPC system is developed in [21]. The
study focuses on analyzing the I/O characteristic on Lustre file
system by applying the mathematical queuing theory model and
finds the optimal parameters by modeling the I/O workload as a

vector. However, this framework has the limited applicability and
only can be applied to the specific system and the I/O workloads. To
improve the previous study’s limitation, the autotuning parallel I/O
framework by using the empirical model of the I/O performance
is presented in [6]. The framework uses the combinations of the
parameter values that have the large effect on the I/O performance
to get the training set. By repeating pruning, exploring and refit-
ting the trained model, the framework finds the optimal parameter
values for the best performance. However this framework is also
limited to the specific I/Oworkloads. The work in [15] proposed per-
formance prediction framework using static analysis. The analysis
module generates each application’s prediction model by analyzing
application’s source code statically. But they only predict applica-
tion’s performance and did not give any optimization strategies for
achieving the better performance. The IOR benchmark is used to
predict the I/O performance of the HPC workloads running on the
different HPC system environments in [19]. Each prediction model
is designed by changing the IOR parameters according to the I/O
patterns of each targeting HPC workloads. However, it is difficult
to analyze the I/O patterns for each target applications and have to
closely select the IOR parameters accordingly.

6 CONCLUSIONS
To efficiently find the best HPC configuration that gives the best
performance, we analyzed the performance trends by changing the
tunable parameters using the synthetic workload, IOR. The different
I/O operations, the independent I/O and the collective I/O, showed
specific performance trends depending on the configurations which
consist of the number compute nodes, the number of cores per
compute node and the number of OSTs. In both I/O characteristics,
the performance trends changed due to the parallelism and the
contention for the shared resources, and the best performance was
determined by appropriate trade-off between the two. The result of
applying the analysis to the HPC workloads, VPIC-IO and Chombo,
showed similar performance trends to IOR’s one.

Future work: In this paper, we did not consider the stripe size as
a parameter for the HPC configuration and set it where each thread
has the sufficient parallelism for the experiments. But, because the
stripe size affects not only the parallelism of one thread, but also
the parallelism of the entire HPC application, it is necessary to
analyze the performance trend considering the stripe size [16] [18].
Moreover, since we have focused on the performance trends of
the single shared file, we plan to expand this study to include the
analysis of performance trend of the file-per-process.

ACKNOWLEDGMENTS
This work was supported by the Office of Advanced Scientific Com-
puting Research, Office of Science, of the U.S. Department of En-
ergy under Contract No. DE-AC02-05CH11231. This research used
resources of the National Energy Research Scientific Computing
Center. This research was supported by 1)Institute for Information
& communications Technology Promotion (IITP) Grant funded by
the Korea government (MSIP) (R0190-16-2012, High Performance

Big Data Analytics Platform Performance Acceleration Technolo-
gies Development). It was also partly supported by 2)National Re-
search Foundation of Korea(NRF) grant funded by the Korea govern-
ment(MSIP) (NRF-2017R1A2B4004513, Optimizing GPGPU virtual-
ization in multi GPGPU environments through kernels’ concurrent
execution-aware scheduling), and partly supported by 3)the Na-
tional Research Foundation (NRF) grant (NRF-2016M3C4A7952587,
PF Class Heterogeneous High Performance Computer Develop-
ment). In addition, this work was partly supported by 4)BK21 Plus
for Pioneers in Innovative Computing (Dept. of Computer Science
and Engineering, SNU) funded by National Research Foundation of
Korea(NRF)(21A20151113068).

REFERENCES
[1] 2017. Software using HDF5: Descriptions. https://support.hdfgroup.org/HDF5/

tools5desc.html
[2] 2018. Red Storm - Sandia/ Cray Red Storm, Opteron 2.4 GHz dual core | TOP500

Supercomputer Sites. https://www.top500.org/system/8193
[3] 2019. Cori Configuration. https://www.nersc.gov/users/computational-systems/

cori/configuration/
[4] 2019. Cori File Systems. https://www.nersc.gov/users/computational-systems/

cori/file-storage-and-i-o/
[5] Wright-N. Cardo N.P. Andrews A. Cordery M. Antypas, K. 2014. Cori: a cray XC

pre-exascale system for NERSC. In Cray User Group Proceedings.
[6] Babak Behzad, Surendra Byna, Prabhat, and Marc Snir. 2019. Optimizing I/O

Performance of HPC Applications with Autotuning. ACM Transactions on Parallel
Computing 5, 4 (mar 2019), 1–27. https://doi.org/10.1145/3309205

[7] Babak Behzad, JoeyHuchette, Huong Luu, Ruth Aydt, Quincey Koziol, Mr Prabhat,
Suren Byna, Mohamad Chaarawi, and Yushu Yao. 2012. Abstract: Auto-Tuning
of Parallel IO Parameters for HDF5 Applications. In 2012 SC Companion: High
Performance Computing, Networking Storage and Analysis. IEEE, 1430–1430. https:
//doi.org/10.1109/SC.Companion.2012.236

[8] Wahid Bhimji, Debbie Bard, Melissa Romanus, Andrey Ovsyannikov, Brian
Friesen, Matt Bryson, Joaquin Correa, Glenn K. Lockwood, Vakho Tsulaia, Suren
Byna, Steve Farrell, Doga Gursoy, Christopher S. Daley, Vince Beckner, Brian
van Straalen, Nicholas J. Wright, and Katie Antypas. 2016. Accelerating Science
with the NERSC Burst Buffer Early User Program. https://www.semanticscholar.
org/paper/Accelerating-Science-with-the-NERSC-Burst-Buffer-Bhimji-Bard/
3037024ee9782764cfbe8e5c9c625e2edaaf83fd

[9] Javier Garc Blas, Florin Isaila, David E. Singh, and J. Carretero. 2008. View-
Based Collective I/O for MPI-IO. In 2008 Eighth IEEE International Symposium
on Cluster Computing and the Grid (CCGRID). IEEE, 409–416. https://doi.org/10.
1109/CCGRID.2008.85

[10] Julian Borrill, Leonid Oliker, John Shalf, and Hongzhang Shan. 2007. Investigation
of leading HPC I/O performance using a scientific-application derived benchmark.
In Proceedings of the 2007 ACM/IEEE conference on Supercomputing - SC ’07. ACM
Press, New York, New York, USA, 1. https://doi.org/10.1145/1362622.1362636

[11] Peter Corbett, Dror Feitelson, Sam Fineberg, Yarsun Hsu, Bill Nitzberg, Jean-
Pierre Prost, Marc Snirt, Bernard Traversat, and Parkson Wong. 1996. Overview
of the MPI-IO Parallel I/O Interface. Springer, Boston, MA, 127–146. https:
//doi.org/10.1007/978-1-4613-1401-1_5

[12] Hui Jin, Yong Chen, Huaiyu Zhu, and Xian-He Sun. 2010. Optimizing HPC
Fault-Tolerant Environment: An Analytical Approach. In 2010 39th International
Conference on Parallel Processing. IEEE, 525–534. https://doi.org/10.1109/ICPP.
2010.80

[13] Wayne Joubert and Shi-Quan Su. 2012. An analysis of computational workloads
for the ORNL Jaguar system. In Proceedings of the 26th ACM international confer-
ence on Supercomputing - ICS ’12. ACM Press, New York, New York, USA, 247.
https://doi.org/10.1145/2304576.2304611

[14] James H. Laros, Lee Ward, Ruth Klundt, Sue Kelly, James L. Tomkins, and Brian R.
Kellogg. 2007. Red storm IO performance analysis. In 2007 IEEE International
Conference on Cluster Computing. IEEE, 50–57. https://doi.org/10.1109/CLUSTR.
2007.4629216

[15] Mohammad Abu Obaida, Jason Liu, Gopinath Chennupati, Nandakishore Santhi,
and Stephan Eidenbenz. 2018. Parallel Application Performance Prediction Using
Analysis Based Models and HPC Simulations. In Proceedings of the 2018 ACM
SIGSIM Conference on Principles of Advanced Discrete Simulation - SIGSIM-PADS
’18. ACM Press, New York, New York, USA, 49–59. https://doi.org/10.1145/
3200921.3200937

[16] Md. Wasi-ur Rahman, Nusrat Sharmin Islam, Xiaoyi Lu, and Dhabaleswar K. DK
Panda. 2017. A Comprehensive Study of MapReduce Over Lustre for Intermediate
Data Placement and Shuffle Strategies on HPC Clusters. IEEE Transactions on

https://support.hdfgroup.org/HDF5/tools5desc.html
https://support.hdfgroup.org/HDF5/tools5desc.html
https://www.top500.org/system/8193
https://www.nersc.gov/users/computational-systems/cori/configuration/
https://www.nersc.gov/users/computational-systems/cori/configuration/
https://www.nersc.gov/users/computational-systems/cori/file-storage-and-i-o/
https://www.nersc.gov/users/computational-systems/cori/file-storage-and-i-o/
https://doi.org/10.1145/3309205
https://doi.org/10.1109/SC.Companion.2012.236
https://doi.org/10.1109/SC.Companion.2012.236
https://www.semanticscholar.org/paper/Accelerating-Science-with-the-NERSC-Burst-Buffer-Bhimji-Bard/3037024ee9782764cfbe8e5c9c625e2edaaf83fd
https://www.semanticscholar.org/paper/Accelerating-Science-with-the-NERSC-Burst-Buffer-Bhimji-Bard/3037024ee9782764cfbe8e5c9c625e2edaaf83fd
https://www.semanticscholar.org/paper/Accelerating-Science-with-the-NERSC-Burst-Buffer-Bhimji-Bard/3037024ee9782764cfbe8e5c9c625e2edaaf83fd
https://doi.org/10.1109/CCGRID.2008.85
https://doi.org/10.1109/CCGRID.2008.85
https://doi.org/10.1145/1362622.1362636
https://doi.org/10.1007/978-1-4613-1401-1_5
https://doi.org/10.1007/978-1-4613-1401-1_5
https://doi.org/10.1109/ICPP.2010.80
https://doi.org/10.1109/ICPP.2010.80
https://doi.org/10.1145/2304576.2304611
https://doi.org/10.1109/CLUSTR.2007.4629216
https://doi.org/10.1109/CLUSTR.2007.4629216
https://doi.org/10.1145/3200921.3200937
https://doi.org/10.1145/3200921.3200937

Parallel and Distributed Systems 28, 3 (mar 2017), 633–646. https://doi.org/10.
1109/TPDS.2016.2591947

[17] Arthur S Buddy Bland, Jim Rogers, Ricky A Kendall, Douglas Kothe, and Galen
M Shipman. 2009. Jaguar: The World’s Most Powerful Computer. In Cray User
Group.

[18] Subhash Saini, Jason Rappleye, Johnny Chang, David Barker, Piyush Mehro-
tra, and Rupak Biswas. 2012. I/O performance characterization of Lustre and
NASA applications on Pleiades. In 2012 19th International Conference on High
Performance Computing. IEEE, 1–10. https://doi.org/10.1109/HiPC.2012.6507507

[19] Hongzhang Shan, Katie Antypas, and John Shalf. 2008. Characterizing and pre-
dicting the I/O performance of HPC applications using a parameterized synthetic
benchmark. In 2008 SC - International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 1–12. https://doi.org/10.1109/SC.2008.
5222721

[20] Weikuan Yu, Jeffrey S. Vetter, and H. Sarp Oral. 2008. Performance char-
acterization and optimization of parallel I/O on the Cray XT. In 2008 IEEE
International Symposium on Parallel and Distributed Processing. IEEE, 1–11.
https://doi.org/10.1109/IPDPS.2008.4536277

[21] Haihang You, Qing Liu, Zhiqiang Li, and Shirley Moore. 2011. The Design of
an Auto-tuning I/O Framework on Cray XT5 System. Cray Users Group Confer-
ence (CUG’11) (Best Paper Finalist) (2011). https://www.icl.utk.edu/publications/
design-auto-tuning-io-framework-cray-xt5-system

[22] Zhou Zhou, Xu Yang, Dongfang Zhao, Paul Rich, Wei Tang, Jia Wang, and Zhiling
Lan. 2015. I/O-Aware Batch Scheduling for Petascale Computing Systems. In
2015 IEEE International Conference on Cluster Computing. IEEE, 254–263. https:
//doi.org/10.1109/CLUSTER.2015.45

https://doi.org/10.1109/TPDS.2016.2591947
https://doi.org/10.1109/TPDS.2016.2591947
https://doi.org/10.1109/HiPC.2012.6507507
https://doi.org/10.1109/SC.2008.5222721
https://doi.org/10.1109/SC.2008.5222721
https://doi.org/10.1109/IPDPS.2008.4536277
https://www.icl.utk.edu/publications/design-auto-tuning-io-framework-cray-xt5-system
https://www.icl.utk.edu/publications/design-auto-tuning-io-framework-cray-xt5-system
https://doi.org/10.1109/CLUSTER.2015.45
https://doi.org/10.1109/CLUSTER.2015.45

	Abstract
	1 Introduction
	2 Background
	2.1 Cori Supercomputer
	2.2 Parallel I/O Operation

	3 Parallel I/O Performance Trend
	3.1 Independent I/O
	3.2 Collective I/O

	4 Evaluation
	4.1 Parallel IO Performance Trend Comparison

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

