
Modeling Data Transfers: Change Point and
Anomaly Detection

Cecilia Dao∗, Xinyu Liu†, Jiming Jiang‡, Alex Sim§, Craig E. Tull§, and Kesheng Wu§
∗Yale University, cecilia.dao@yale.edu

†University of California at Berkeley, xinyu liu@berkeley.edu
‡University of California at Davis, jimjiang@ucdavis.edu

§Lawrence Berkeley National Laboratory, {asim, cetull, kwu}@lbl.gov

Abstract—To help the operations and resource planning of
a large experimental facility, we model the time needed for
transferring the data files produced by the facility to a computer
center, with the goals of predicting expected file transfer time and
identifying unusually slow transfers that might require attention
from human operators. The file transfer time can be thought of
having two parts: a base time depending on the hardware and
software involved, and a congestion part due to uncontrollable
interferences from other operations on the shared resources
including network links, disk storage systems, and CPU involved
in the transfers. Since many parameters important to the base
time are not available to us, we employ a change point detection
algorithm to separate the data records into time periods (called
segments) with relatively stable behavior. Within each segment,
we apply a non-parametric model to describe the congestion time.
When the observed file transfer time is significantly longer than
typical expected time, say, above 4 interquartile ranges beyond
the expected values, we declare the particular file transfer to be
unusually slow. When many of these unusually slow file transfers
are observed, it is worthwhile to notify the human operator to
investigate the abnormal behavior of the system.

I. INTRODUCTION

A. Motivation

The Department of Energy’s (DOE) Office of Science op-
erates scientific user facilities serving 10,000’s of researchers
each year, providing them access to fast detectors, high bright-
ness accelerators, automated experimental techniques, and ca-
pabilities for in situ and in operando experiments. At Berkeley
Lab, the Advanced Light Source (ALS) is a synchrotron x-ray
light source facility that provides users from around the world
access to the brightest beams of soft x-rays, together with
hard x-rays and infrared, for scientific research and technology
development in a wide range of disciplines [1] [2]. The ALS
allows scientists to probe matter with unprecedented spatial
and time resolution, but improvements in accelerator and de-
tector technology have led to an increasing data and computing
challenge for the facility and scientist users. For decades,
ALS users have relied upon a grab-and-go data management
model, which has been outpaced by the beyond-Moore’s Law
growth of data from the instruments. At the same time, the
number of users have grown and requirements for real-time
analysis to provide feedback for experiments have increased
the computational challenge facing ALS researchers. Staff at
the ALS, ESnet, and Berkeley Lab’s Computing Research
Division (CRD) have collaborated to design, develop, and

deploy a real-time data management, data processing, and data
visualization system called SPOT Suite that gives users of
select beamlines fast feedback while conducting experiments
at the ALS. One aspect of the SPOT Suite is automated, real-
time transfer of data over ESnet (Energy Sciences Network) to
the NERSC (National Energy Research Scientific Computing)
facility for real-time processing. This vital link in the end-
to-end data flow from experimental instrument to first results
occurs over shared networks and involves multiple computing
resources controlled by different administrative domains. The
consequence is that real-world effects of resource contention,
hardware and/or software failures and changes, etc. can have
detrimental effects on the flow of data. This paper describes
the building of a real-time system that can detect data transfer
delays and alert administrators to help expedite the recovery
of scientific data flow.

B. Data

The dataset we use contains 39,761 file transfer observations
from a single ALS beamline to NERSC over a long time period
(4.5 years), as the computer and networking hardware and
software stacks at both ends changed over this time period.
Each observation has the following variables: Bundle (transfer
file name), Size (bits), Start Time (of file transfer), and End
Time (of file transfer). The data spans from 03-06-13 to 08-
23-17, and Table 1 shows some descriptive statistics.

STATS size (bits) transfer time (s)
mean 4.178e+10 54.979
std 5.909e+10 172.0275
min 1.062e+04 0.3840
max 1304.142128 15695.385

TABLE I: Descriptive statistics of the data

We created the variables Transfer Time (seconds) and Trans-
fer Rate (bits/seconds) for analysis purpose. For simplicity, we
removed overlapping file transfers (about 2% of the data) and
failed or incomplete file transfers. The resulting records of
file transfers are assumed to be independent from each other.
During the exploration phase of this work, we have explored
the options of detecting daily and weekly patterns, but were
not able to detect obvious patterns. In this work, we therefore
adopted this independence assumption.



We began by investigating transfer rate changes over time.
Figure 1 shows that the transfer rate has significant drop or rise
for the past four years corresponding to significant changes in
the network connections and machines at both ends of the
file transfers. However, as mentioned before, our data records
do not contain information about these changes. It is critical
for us to detect these significant changes before building any
performance models.

Fig. 1: Transfer Rate over Start Time

Generally we expect larger files to take more time to
transfer. Next, we plot the relationship between Size and
Transfer Time in Figure 2. We notice that the values of both the
Size and Time span many orders of magnitudes. Based on past
experiences, we believe that working with log of these values
would help reduce the skewness of the data distribution and
improve the effectiveness of common prediction algorithms.

Fig. 2: Transfer Time according to Size

C. Related Work

Related past work has used machine learning or regression
methods to predict file transfer time. [3] used machine learning
techniques to improve scp estimated time of arrive prediction,
claiming that support vector regression and extended linear
regression performed the best. [4] also provided evidence
for support vector regression having greater prediction ac-
curacy compared to the exponentially weighed moving av-
erage history-based predictor, using file size and bandwidth

as covariates. [5] used regression methods to predict the
performance of GridFTP large transfer files, and noted that
sliding-window variants capture trends in throughput better
than statistical summaries such as the mean and median. They
also observed that higher accuracy occurs when information
on current system/network trends were included. File size
has been well known to greatly affect file transfer time.
Interestingly, [6] found that almost no correlation existed
between file size and transfer time when the file size was
small. But for large file sizes, file size and transfer time
increasingly correlated well with one another as file size
increases; however, using only file size to predict transfer time
did not produce highly accurate results. We used these findings
to motivate our work, especially in the change detection
in Section 2 and anomaly detection in Section 3. None of
the aforementioned work took measures to ensure that the
predicted rate did not exceed the maximum bandwidth (i.e.,
the maximum transfer rate possible). To make the prediction
more realistic, we took that restriction into account in our
prediction process after estimating the maximum bandwidth
in the change detection algorithm.

D. Contribution

Though our work was driven by the file management
needs of one specific scientific user facility, we believed
the performance data records from many different type of
applications will have similar trends - the performance would
have a guaranteed upper bound (or minimum time) with an
unknown part that could be modeled as a random process. In
modeling the file transfer time, we had a base time that was
determined by the network connection, the storage systems
and the CPU of the machines involved in the transfers, plus
a time due to congestion from other applications using one
or multiple components involved in a file transfer. Our work
demonstrates that decomposing the performance model this
way is an effective approach.

In our work, we proposed a change point detection algo-
rithm based on the maximum file transfer performance for
a given time window. This approach matched well with the
characteristics of the data and could potentially be useful in
different applications.

We explored the characteristics of the distribution of con-
tention in the file transfer time and eventually decided that
the non-parametric kernel method was effective in capturing
the distribution of the observed congestion process. Tests
shown that this approach led to an effective way of classifying
unusually slow file transfers. When multiple unusually slow
file transfers occurred during a narrow time window, this
situation might be due to a symptom of a severe system issue
that requires attention from a system administrator. In which
case, we need to alert the administrators to investigate such
issues.

This work was based on a set of observations from an
active scientific facility. Thus the work has real impact on
the operations of a scientific facility with thousands of users.
In addition, our performance model could also help with the



resource planning for the expansion of SPOTS suite to more
beamlines in the future.

The remaining of this paper is organized as follows. Section
2 describes the change point detection algorithm and results.
Section 3 describes the transfer time prediction algorithm and
results. Combining the two methods in an online fashion will
enable us to identify files that take unusual length of time.

II. CHANGE POINT DETECTION

A. Algorithm

The change point detection algorithm intends to detect
changes in the network connections, the storage systems or
the computer systems involved in the data transfer operations.
The changes in these system components are reflected in the
changes in the base time, which can be thought of as the
best-case performance. In this work, we proposed to use the
maximum bandwidth to detect these changes.

As shown in Fig 1, the transfer rate drastically rises and
drops, as the system periodically upgrades or changes. The
time period between two change points has relatively stable
maximum performance and is considered as one segment for
performance modeling.

We assumed each segment follows the same model. With
this assumption, we can build a performance model for each
segment of the data, and then use the performance model
to make prediction and detect anomalies for each segment
separately.

Figure 3 is the transfer rates plot with colors based on the
file sizes. Note that the transfer rate only reaches the maximum
bandwidth given large enough file sizes. Therefore, for all the
following analyses in change point detection, we only used the
data records where the file sizes are large enough, say, more
than 1GB.

Fig. 3: Transfer Rate over Start Time,color coded based on
Size

We proposed to compute the moving maximum, with win-
dow size h, to determine change points. We will declare a
change point under one of these conditions:

• The absolute value of the next moving maximum value
and the previous moving maximum value is greater than
or equal to a.

• The time difference between two consecutive observa-
tions is at least break day days.

We also have the option to set the width of each segment
to have at least ch width observations, which can tune the
detection sensitivity. Based on prior knowledge of our ALS
data and Figure 3, we set the parameters as h = 100, s =
2.5e+08 (bits), a = 8e+09 (bits), break day = 21 (days, 3
weeks based on the shut-down breaks), and ch width = 700.

Algorithm 1 Change Detection

for each file i do
s i← transfer size for file i
r i← transfer rate for file i
if s i ≤ s then

Skip i
end if
if i ≤ h then

Preparing for detection
else
M i← max(r i, r {i− 1}, ...r {i− h})
M i− 1← max(r {i− 1}, ..., r {i− h− 1})
if file i has more than break day days apart from file
i− 1 then

declare i as a change point
end if
if abs(M i−M {i−1}) ≥ a and i ≥ ch width then

declare i as a change point
end if

end if
end for

B. Results

We applied this algorithm to the entire dataset and extracted
seven change points.

In Figure 4, segments are separated by colors. The obser-
vations with the same segment have the same color, and the
color changes when a new change occurs with a vertical line
crossing each change point.

We were able to look up the causes of the changes in the
system logs for the seven changes. Here are the reasons we
were able to locate:

• 2014-01-09 23:47:11 - DTN OS upgrade
• 2014-07-03 01:12:12 - Resume ALS operation after net-

work upgrade
• 2014-11-14 18:46:34 - Science DMZ network configura-

tion upgrade
• 2015-04-29 20:34:42 - NFS-mounted file server shared

with 2nd beamline DTN



Fig. 4: Transfer Rate over Start Time. The moving maximum
line runs across the top, and vertical lines at the change points.
Each segment contains observations with the same color.

• 2016-01-08 20:00:00 - 2nd beamline DTN disconnected
from NFS file server

• 2016-02-08 07:02:14 - Unknown perturbation
• 2016-03-12 16:15:13 - Restore to baseline performance
We tried a plethora of change-point detection methods,

including the Pruned Exact linear Time [7] and Breakout
Detection [8]. These were either overly sensitive to change
detection or provided unnatural breaks. Our proposed change
detection is simple and intuitive based on exploratory plots.
More importantly, we were able to determine the causes of
these change points, which further confirmed the effective-
ness of our moving maximum based change point detection
approach.

III. PREDICTION

A. Algorithm

Earlier, we discussed that the observed data transfer time
can be broken into two components: a base time plus a
congestion part. Based on this understanding, we designed
an online prediction process consisting of two major steps:
determine the minimum transfer time (i.e., base time) and
then model the anticipated transfer time being the base time
plus a random process caused by congestion. This process
will guarantee realistic prediction where the predicted transfer
time will not lead to transfer rate that surpasses the maximum
bandwidth imposed by the system components involved. Due
to space limitation, we only described the prediction on the
two most recent segments: Segments 7 and 8.

Figure 5 shows the transfer time against file size for those
segments. For ease of prediction, we removed the skewness of
the data by applying log2 transformation to the transfer time
and file size, as seen in Figure 6 . Figures 5 and 6 illustrate
the differences in distribution and minimum baseline between
the two segments.

To capture the minimum baseline curve of the transfer time
(with respect to the file size) in each segment, we used B-

spline minimum quantile regression with 3 degrees of freedom
[9] [10], which corresponds to the maximum bandwidth in the
segment. Let the jth minimum base of the transfer time in the
ith segment be mij(Sizej). Define αij > 0 as the difference
between log2(Transfer Timej) and log2(mij(Sizej)) for the
jth observation in the ith segment.

We then used nonparametric kernel regression [11] to
estimate log2(αij) (to ensure that αij > 0) and then re-
transformed it to get the estimate of αij . Covariates included
to predict log2(αij) are log2(Sizej) and Epoch Timej . We
included epoch time since we assumed recent events would
be more similar to one another; perhaps a clog in the system
occurred at certain times, which could affect file transfers
in the same neighborhood of time. Then, the jth predicted
transfer time in the ith segment is ŷij = m̂ij(Sizej) +
α̂ij(log2(Sizej),Epoch Timej). The predicted rate would then

be r̂ij =
Sizej
ŷij

, which aimed to have similar shape of

the actual rate. To expedite the prediction procedure, we
considered using the most recent k file transfers to train the
data, as the difference in results is empirically minimal for
Segment 7. For the last two segments, we selected k = 300
since the maximum number of consecutive file sizes is 281.

Algorithm 2 Prediction

y{ij} ← transfer time for file j in Segment i
r{ij} ← transfer rate for file j in Segment i
Apply BSpline minimum quantile regression to estimate
m{ij}
log2(αij)← log2(y{ij})−m{ij}.
In non-parametric kernel regression, use covariates log2 of
file size and Epoch Time to predict log2(αij)
ŷij = m̂i(Sizej) + α̂ij(log2(Sizej),Epoch Timej)

r̂ij =
Sizej
ŷij

B. Result

Figure 7 shows the final prediction for expected transfer
rate, where the shape confirms well to the data and leans
towards the maximum transfer rate, which is expected under
minimal disruptions of the system. Note that the prediction
also confirms well to expected low transfer rates when the
file sizes are small. We have found that parametric and zero-
inflated models [12], such as generalized linear model under
the Tweedie distribution [13], to estimate log2(αij) did not
provide the natural shape of the actual data due to unmet
restrictive parametric assumptions.

C. Anomaly Detection

We aimed to identify alerts to inform the administrators
about anomalies or failures in the system so they can be
resolved. In contrast to large change detection in Section 2,
these are usually small and short-term changes. Note that
the expected transfer rates are skewed towards the maximum
bandwidth, as expected under normal amounts of congestion.



Fig. 5: Segments 7 and 8: Transfer Time according to Size

Fig. 6: Segments 7 and 8: log2(Transfer Time) according to
log2(Size)

Fig. 7: Segments 7 and 8: Prediction results for Transfer Rate
according to Start Time

Therefore, we considered an outlier detection method that ad-
justs the boxplot to include a robust measure of skewness when

defining the whiskers [14]. This skewed-adjusted boxplot can
perform automatic outlier detection without any parametric
assumptions. We expect large transfer files to reach maximum
bandwidth, so we focus on file sizes that are at least 236 bits
(this parameter can be changed based on empirical evidence in
the data) as represented in black in Figure 3. If the prediction
error of a substantial amount of files with at least 236 bits
lies beyond the fence boundaries of 4× (Interquartile Range)
within a consecutive or short amount of time, then an alert is
signaled to the administrators to improve the maintenance of
the system. The fence boundaries were chosen as such because
as a rule of thumb, observations beyond the fence when b ≥ 3
for b× (Interquartile Range) are considered extreme outliers,
and we aimed to find distinctly extreme anomalies.

Figure 8 shows the prediction errors along with identifica-
tion of files that have sizes at least 236 bits in black and files
with lower sizes in light blue. The fence line is in red. We see
that an alert occurred on September 18, 2016 continuously for
3 days with the observations circled in red.

Fig. 8: Segment 8: Anomaly Detection applied on Prediction
Errors according to Start Time

Figure 9 shows the detailed of those dates in Figure 3. In
the red circle, a cluster of the transfer rates for those days are
significantly lower than expected based on their large file sizes.
Further exploration in the outage log shows the following
occurred: “2016-09-18 for a few hours: System in degraded
mode. Engineers are performing emergency maintenance to
apply security updates. There may be network interruptions
during this time.”

Therefore, the alerts based on anomaly detection can fix
issues early and prevent prolonged outages.

IV. SUMMARY

Like in many applications, the file transfer performance we
seek to model in this work has a guaranteed no-to-exceed
performance limit. Since many of the system components
are shared among many users, the actual performance is
typically lower than the theoretical maximum. To capture these
characteristics, we propose a hybrid performance model that



Fig. 9: Zoomed in Figure 3

captures these two elements: a base time plus a congestion
time.

To simplify the modeling process, we first employ a change
point detection algorithm to separate the data records into peri-
ods of relatively uniform performance. Within each segment of
these time periods, we apply a prediction model for predicting
performance and identifying anomalies. For this change point
detection, we propose an algorithm based on the moving
maximum of data transfer rates. Our approach is validated
to be effective because we successfully found explanations
for those change points being identified. By combining both
models into one online algorithm, we can predict transfer rates
per file based upon recent end-to-end system performance.
This permits us to identify large and small changes which
may correspond to macroscopic configuration changes or to
performance anomalies caused by components along the data
flow. The novelty in our work lies in respecting the maximum
bandwidth baseline in both change and prediction.

We are in the process of transferring the research code
described earlier to be used in the production system. Ad-
ditionally, we plan to update the algorithms to accommodate
higher accuracy for file transfer performance with small sizes,
and consider transfer overlaps.

ACKNOWLEDGMENT

The authors gratefully acknowledge data support from
Simon Patton. This work was supported by the Office of
Science, of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231. This research used resources of
the National Energy Research Scientific Computing Center.

REFERENCES

[1] J. Blair, R. S. Canon, J. Deslippe, A. Essiari, A. Hexemer, A. A. Mac-
Dowell, D. Y. Parkinson, S. J. Patton, L. Ramakrishnan, N. Tamura et al.,
“High performance data management and analysis for tomography,” in
Developments in X-Ray Tomography IX, vol. 9212. International Society
for Optics and Photonics, 2014, p. 92121G.

[2] J. Deslippe, A. Essiari, S. J. Patton, T. Samak, C. E. Tull, A. Hexemer,
D. Kumar, D. Parkinson, and P. Stewart, “Workflow management for
real-time analysis of lightsource experiments,” in Proceedings of the
9th Workshop on Workflows in Support of Large-Scale Science. IEEE
Press, 2014, pp. 31–40.

[3] D. Del Testa, M. Danieletto, and M. Zorzi, “Applying machine learning
techniques to a real cognitive network: File transfer etas prediction,” in
Global Communications Conference (GLOBECOM), 2015 IEEE. IEEE,
2015, pp. 1–7.

[4] M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A machine learning
approach to tcp throughput prediction,” in ACM SIGMETRICS Perfor-
mance Evaluation Review, vol. 35, no. 1. ACM, 2007, pp. 97–108.

[5] M. Sharma and J. W. Byers, “How well does file size predict wide-
area transfer time?” in Global Telecommunications Conference, 2002.
GLOBECOM’02. IEEE, vol. 3. IEEE, 2002, pp. 2160–2164.

[6] S. Vazhkudai and J. M. Schopf, “Using regression techniques to predict
large data transfers,” The International Journal of High Performance
Computing Applications, vol. 17, no. 3, pp. 249–268, 2003.

[7] R. Killick, P. Fearnhead, and I. A. Eckley, “Optimal detection of
changepoints with a linear computational cost,” Journal of the American
Statistical Association, vol. 107, no. 500, pp. 1590–1598, 2012.

[8] N. A. James, A. Kejariwal, and D. S. Matteson, “Leveraging cloud data
to mitigate user experience from breaking bad,” in Big Data (Big Data),
2016 IEEE International Conference on. IEEE, 2016, pp. 3499–3508.

[9] C. De Boor, C. De Boor, E.-U. Mathématicien, C. De Boor, and
C. De Boor, A practical guide to splines. Springer-Verlag New York,
1978, vol. 27.

[10] R. Koenker and K. F. Hallock, “Quantile regression,” Journal of eco-
nomic perspectives, vol. 15, no. 4, pp. 143–156, 2001.

[11] J. Racine and Q. Li, “Nonparametric estimation of regression functions
with both categorical and continuous data,” Journal of Econometrics,
vol. 119, no. 1, pp. 99–130, 2004.

[12] A. F. Zuur, E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith,
“Zero-truncated and zero-inflated models for count data,” in Mixed
effects models and extensions in ecology with R. Springer, 2009, pp.
261–293.

[13] G. K. Smyth and B. Jørgensen, “Fitting tweedie’s compound poisson
model to insurance claims data: dispersion modelling,” ASTIN Bulletin:
The Journal of the IAA, vol. 32, no. 1, pp. 143–157, 2002.

[14] M. Hubert and E. Vandervieren, “An adjusted boxplot for skewed
distributions,” Computational statistics & data analysis, vol. 52, no. 12,
pp. 5186–5201, 2008.


