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BACKGROUND

RESEARCH QUESTION CONCLUSION
How can data augmentation be 

used to improve naïve federated 
learning for IoT anomaly detection 
with imbalanced class datasets?

METHODS

Naïve Models

RESULTS
As security threats to IoT devices become more
common, machine learning provides a mechanism
to discover and mitigate possible intrusions.
Federated learning is a decentralized form of
machine learning where training happens on-
device, allowing participating IoT devices to
maintain privacy of data while contributing to an
optimal aggregate model. In this work, we study
supervised federated learning for recently
published IoT sensor readings and experiment
with data augmentation to overcome the class
imbalance issue and achieve higher performance
metrics, ultimately leading to more frequent and
reliable anomaly detection.

• The UNSW TON_IoT datasets contain 
data from IoT sensors intended for 
cybersecurity AI applications.

• The dataset includes sensory readings 
for various IoT devices under normal 
circumstances as well as hacking attacks 
(i.e. DDoS, backdoor, poisoning).

• Federated learning (FL) is applied to 
avoid transmitting sensitive data.

§ Server sends current model to each client
§ Client trains model and computes 

gradient update using its own data
§ Updates are sent back and aggregated 

on server (FedAvg algorithm)

• FL uses a client-server architecture to 
collaboratively train a model over a series 
of rounds.

• Steps of a given training round:

• After converging, a learned model can 
allow clients to identify types attacks that 
they have not been directly exposed to.

§ Random oversampling (RAND)
§ Synthetic Minority Oversampling 

Technique (SMOTE)
§ Adaptive Synthetic Sampling 

Approach (ADASYN)

FURTHER READING

• An F1 score threshold of 70.00% is 
used as an acceptable performance 
level to compare data augmentation 
strategies and baseline models:

Training naïve federated models without
any augmentation results in F1 score
stalling at zero for initial rounds:

• Baseline model took 280 rounds to 
reach threshold, RAND approach 
took 211 rounds (24.6% decrease).

• Trials conducted for 5 and 50 nodes 
conducted as well, but advantage of 
oversampling most noticeable when 
learning is increasingly distributed.

• Data for 100 nodes and 100 rounds:

Scan the above code to view a slide deck 
containing further information about this work.

Augmentation is used to raise initial F1 score 
and compare performance after further training.

• Supervised binary classifier neural 
networks are trained using fixed 
parameters for each trial (2 hidden 
layers, 128 batch size, 10 local 
epochs, 0.1 initial learning rate).

• IoT Modbus features binned using 
bin_size of 1,000 to increase feature 
space and create sparse input data.

• Naïve FL first performed using 5, 50, 
and 100 nodes to establish baseline 
metrics.

• Trials are then conducted using 
statistical and nearest neighbor 
augmentation strategies:

Fig 3: F1 scores using various augmentation strategies (100 nodes)

• Randomly augmenting minority 
class data samples can provide 
performance boosts to FL systems 
where minimizing number of 
training rounds is a priority.

• Machine learning augmentation 
methods either degrade long-term 
performance (SMOTE, ADASYN) or 
add infeasible computational costs 
for mobile devices (i.e. GANs, 
which are not used in this study).

• With highly decentralized (large 
number of nodes) and 
homogeneous (no node has most of 
data) training, advantage of 
augmentation is most significant.

\

Fig 1: Federated learning framework for cloud devices
Source: Google AI Blog 

Fig 2: F1 scores for naïve FL Modbus classification

Method Accuracy F1 Score Avg Round 
Time

RAND 83.49% 55.96% 37.09 s

SMOTE 72.22% 52.09% 36.87 s

ADASYN 73.34% 52.77% 36.63 s

NONE 81.87% 46.64% 34.68 s
Table 1: Comparing short-term augmentation method results. 

RAND remains advantageous with minor computational overhead.  

• Additionally, device heterogeneity is 
investigated where amount of data is 
nonuniform across clients:

Fig 4: F1 scores for heterogeneous data quantities obtained by 
Gaussian sampling. Due to weighted federated averaging, these 
models outperform their homogeneously-trained counterparts. 


