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Abstract—High-Performance Computing (HPC) applications
are generating increasingly large volumes of data (up to hundreds
of TBs), which need to be stored in parallel to be scalable.
Parallel I/O is a significant bottleneck in HPC applications,
and is especially challenging in Adaptive Mesh Refinement
(AMR) applications because the structure of output files changes
dynamically during runtime. Data-intensive AMR applications
run on the Cori supercomputer show variable and often poor
I/O performance, but diagnosing the root cause remains chal-
lenging. Here we analyze logs from multiple levels of Cori’s
parallel I/O subsystems, and find bottlenecks during file metadata
operations and during the writing of file contents that reduced
I/O bandwidth by up to 40x. Such bottlenecks seemed to be
system-dependent and not the application’s fault. Increasing the
granularity of file-system performance data will help provide
conclusive causal relationships between file-system servers and
metadata bottlenecks.

I. INTRODUCTION

High-performance computing systems have undergone great
advancements in scale, efficiency, and capacity over the pre-
vious decades, which has brought about a significant increase
in the complexity and parallelism of modern supercomputer
architectures. In such HPC systems, achieving peak parallelism
and performance in parallel I/O will be an important step in
building any feasible exascale computing system [1]. Finding
parallel I/O bottlenecks and identifying their cause will im-
prove efficiency and scalability at both the application level
as well as the system level.

An HPC system uses multiple layers of software and
hardware to implement parallel I/O. System logs exist for
various levels of this stack, but comprehensive analysis of I/O
performance is challenging due to the size, granularity, and
varying sources of performance data.

II. METHODS

The methodology employed by this work focuses on inte-
grating performance logs from two key levels of Cori’s parallel
I/O subsystems: application-level POSIX and Message Passing
Interface (MPI) I/O traces, coming from the Darshan library
[2], and performance data logged by the Lustre Monitoring
Tool (LMT) [3], a monitoring tool for the Object Storage
Targets (OSTs) and Metadata Servers (MDSs) of the Lustre
parallel file system. We focus on the I/O behavior of two sam-
ple HPC AMR applications, HyperCLaw [4] and Chombo
[5].
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Fig. 1. A schematic of the parallel I/O software stack analyzed in this work.
The Darshan logs collect application-level I/O traces, while the LMT logs
collect file-system usage data. The data from both is analyzed in parallel
using Apache Spark.
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Fig. 2. The write bandwidth relative to the proportion of total I/O time spent
in metadata operations, for all 79 runs of HyperCLaw. Bottlenecks happened
when metadata operations dominated total I/O time (bottom right) and when
writing of file contents dominated total I/O time (bottom left). Some outlying
cases existed where bottlenecks in both components led to a roughly equal
contribution to total I/O time from each (bottom center).

The I/O performance logs from large, highly parallel appli-
cations with heavy I/O traffic are large in size and unwieldy to
process. To efficiently analyze all of this information, Apache
Spark [6] was used to accelerate log-parsing and make I/O
activity for specific times and MPI ranks easily accessible. A
schematic diagram of this workflow is given in Figure 1.
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Fig. 3. The slowdown ratio of each runs actual bandwidth relative to normal
bandwidth (log scale), with the 90% range shown in gray. Besides runs with
too few (blue) or too many (red) OSTs, most runs with a 2x or more slowdown
had file system bottlenecks.

III. EXPERIMENTAL RESULTS

Even with optimized file system stripe settings, some runs
showed significant slowdowns that caused as much as a 40x
reduction in I/O bandwidth. These bottlenecks occurred when
metadata operations or data write operations, and sometimes
both, took much longer than usual and dominated the I/O time
of the application. The relationship between write bandwidth
and amount of I/O time spent in metadata operations can
be seen in Figure 2. Figure 3 shows the slowdown ratio of
each run with respect to the normal bandwidth of runs with
similar parameters. Because other runs with identical settings
to the bottlenecked cases were observed to run perfectly fine,
it appears that slowdowns during metadata operations and data
writing were not the fault of the application.

The file-system logs sampled activity once every 5 seconds,
and MDS CPU load was only measured for the primary MDS
and not the four others. Consequently, this limited granu-
larity obscured the relationship between file system traffic
and application-side I/O performance in bottlenecked runs.
For example, even in the worst-performing run that saw a
bottleneck in both metadata operations and data writing during
each file’s writing period, only one of the writing periods
coincided with elevated file system traffic (see Figure 3).

We also observed an additional bottleneck in the applica-
tions with HDF5 collective writes, showing several trailing
writes that occurred after the main write output phase (see
Figure 5). The duration of these writes lasted up to 5.5
seconds, despite only writing less than 5 kB of data (a small
fraction of the total output), and increased when the total
file size and number of processes increased. Such behavior
is inefficient and does not scale.

IV. CONCLUSIONS

While the largest slowdowns in these application runs
occurred during data writing, there were also significant slow-
downs during metadata operations that seemed not to be the
application’s fault. Most runs (90%) spent within 23% of total
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Fig. 4. The CPU load of the primary metadata server (top) and bytes
transferred across each file’s OSTs (bottom) for the two files of a run where
both metadata activities and data writing were bottlenecked. The write period
of each file is shaded in gray.
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Fig. 5. MPI (blue) and POSIX (red) writes for each of the 128 MPI processes
during a 104 GB Chombo run. Trailing writes occur near 22 seconds.



I/O time in metadata operations, depending on the amount data
they wrote, and anything higher than this usually resulted in
degraded performance, as can be seen in Figures 2 and 3. As
the traffic on HPC file systems continues to rise, it is likely
that parallel I/O bottlenecks arising during metadata operations
will become more frequent and severe.

Higher-resolution performance data for file-system activi-
ties should enable pinpointing such metadata bottlenecks to
individual servers. During runs that did not experience any
bottlenecks, many periods of metadata operations or data write
operations took between 0.5-5 seconds. Therefore, knowing
the load on file-system servers over intervals shorter than five
seconds (as was the case in this work) is essential to find-
ing correlations between file-system traffic and application-
specific I/O performance. While activity on the primary meta-
data server is indicative of system load, knowing the load on
each of the secondary metadata servers will also give a more
comprehensive picture.
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