
Diagnosing Parallel I/O Bottlenecks in HPC Applications

Peter Harrington -- University of California, Santa Cruz

Advisors:
Wucherl Yoo, Alexander Sim, & Kesheng Wu -- Lawrence Berkeley National Laboratory



HPC Parallel I/O

Application

MPI processes

Aggregator nodes

Parallel file system

Multiple layers of software and hardware:
● Nodes communicate with Message Passing 

Interface (MPI)
● Aggregator nodes buffer data from MPI processes
● Aggregators write to file system (Lustre Object 

Storage Target) via POSIX

Becoming a significant bottleneck as HPC data volumes grow, and is especially 
challenging in Adaptive Mesh Refinement (AMR) applications.



Parallel I/O Performance Analysis

Approach:
1. Track application-level I/O activity with Darshan 

profiling tool
2. Track system-wide Lustre file system activity with 

Lustre Monitoring Tool (LMT)
3. Parse performance logs and analyze in parallel 

with Apache Spark

Parallel file system (Lustre OSTs, MDSs)

POSIX I/O calls

MPI I/O calls

Application

Darshan logs

LMT logs

Apache Spark

Performance logs exist for some levels of the underlying parallel I/O subsystems but 
are independent of each other, so analyzing I/O performance remains challenging.



Locating and Diagnosing Bottlenecks

Even with optimized file system stripe settings, some runs showed significant
slowdowns that caused as much as a 40x reduction in I/O bandwidth.

Write bandwidth for runs of the 
HyperCLaw AMR application , colored by 
the output file size. The x-axis denotes the 
proportion of total I/O time consumed by 
metadata operations.

Metadata 
bottlenecks

Data write 
bottlenecks

Both



Locating and Diagnosing Bottlenecks

During bottlenecked runs, either metadata or data write operations took much longer
than usual, and in some cases both did.

The slowdown ratio of each run’s actual 
bandwidth relative to normal bandwidth 
(log scale), with respect to the proportion of 
time spent in metadata operations. 



Locating and Diagnosing Bottlenecks

Bottlenecked performance sometimes corresponded with elevated levels of file system
traffic, but the limited granularity of the traffic data could not conclusively assign
responsibility to specific servers.

Write 
period, file 0

Write 
period, file 1

Write 
period, file 0

Write 
period, file 1



Additional Observations

An additional bottleneck was observed in the applications with HDF5 collective writes, 
showing several trailing writes that occurred after the main write output phase.

This behavior degraded:
● Efficiency

Duration of trailing writes lasted up to 5.5 
seconds, despite only writing less than 5 kB of 
data (a small fraction of the total output).

● Scalability
Time taken by the writes increased when the 
total file size and number of processes 
increased, so such behavior does not scale.



Conclusions

● Slowdowns that reduce I/O bandwidth by up to 40x can occur during metadata operations and/or 
data writing, and are not the application’s fault.

● For 90% of runs, metadata operations consumed up to 23% of the total I/O time. Higher 
proportions of time spent in metadata operations resulted in bottlenecks.

● Repeating similar analysis using more detailed file-system measurement data will help ascribe 
metadata bottlenecks to specific servers within the file-system.



Acknowledgements

Surendra Byna (LBNL) -- guidance and insights on HPC I/O

Vincent Beckner (LBNL), Ann Almgren (LBNL) -- AMReX HyperCLaw application

Brian Van Straalen (LBNL) -- Chombo application


