
Diagnosing Parallel I/O Bottlenecks in HPC Applications
Peter Harrington1, Wucherl Yoo (advisor)2, Alexander Sim (advisor)2, Kesheng Wu (advisor)2

1University of California Santa Cruz, 2Lawrence Berkeley National Laboratory

An HPC system uses multiple layers of software and hardware to 
implement parallel I/O. System logs exist for various levels of this 
stack, but comprehensive analysis of I/O performance is 
challenging due to the size, granularity, and varying sources of 
performance data.

Abstract

Background & Approach

What is causing performance bottlenecks in HPC 
applications?

The flow of application data through Cori’s parallel I/O subsystems

Research Question

High-Performance Computing (HPC) applications are generating 
increasingly large volumes of data, which need to be stored in 
parallel to be scalable. Parallel I/O is a significant bottleneck in 
HPC applications, and is especially challenging in Adaptive Mesh 
Refinement (AMR) applications because the structure of output 
files changes dynamically during runtime. Data-intensive AMR 
applications run on the Cori supercomputer show variable and 
often poor I/O performance, but diagnosing the root cause remains 
challenging. Here we analyze logs from multiple levels of Cori's 
parallel I/O subsystems, and find bottlenecks during file metadata 
operations and during the writing of file contents that reduced I/O 
bandwidth by up to 40x. Such bottlenecks seemed to be 
system-dependent and not the application's fault. Increasing the 
granularity of file-system performance data will help provide 
conclusive causal relationships between file-system servers and 
metadata bottlenecks. 

Application

MPI processes

Aggregator nodes

Parallel file system

We focus on the I/O behavior of two sample HPC AMR 
applications, HyperCLaw and Chombo , and use Darshan to track 
application-level I/O activities and Lustre Monitoring Tool (LMT) 
to track Lustre parallel file system activities on Cori’s 248 Object 
Storage Targets (OSTs). Data was processed in parallel using 
Apache Spark.

Parallel file system (Lustre OSTs, MDSs)

POSIX I/O calls

MPI I/O calls

Application

Darshan logs

LMT logs

Apache Spark

The workflow used to analyze I/O performance.

Acknowledgements
I would like to thank Surendra Byna at LBNL for his guidance on HPC 
I/O insights, Vincent Beckner and Ann Almgren at LBNL for the AMReX 
HyperCLaw HPC application, and Brian Van Straalen at LBNL for the 
Chombo HPC application. This work utilized resources of the National 
Energy Research Scientific Computing Center (NERSC). This work was 
supported by the Office of Science of the U.S. Department of Energy 
under Contract No. DE-AC02- 05CH11231. This work was supported in 
part by the U.S. Dept. of Energy, Office Science, Office of Workforce 
Development of Teachers and Scientists (WDTS) under the Science 
Undergraduate Laboratory Internship (SULI) program.

Locating and Diagnosing Bottlenecks
Even with optimized file system stripe settings, some 
runs showed significant slowdowns that caused as 
much as a 40x reduction in I/O bandwidth. 

Poor performance

The write bandwidth of HyperCLaw at different file sizes, for the best 
performing stripe count (128 OSTs per file).

The distribution of write speeds during the main parallel write phase of a 
run that was bottlenecked during data write (top) and normal run (bottom).

During bottlenecked runs, either metadata operations or 
data write operations took much longer than usual, and in 
some cases both did.

The relationship between time spent in file metadata operations (relative to total 
I/O time) and bandwidth for 79 runs of HyperCLaw.

Metadata 
bottlenecks

Data write 
bottlenecks

Both

The slowdown ratio of each run’s actual bandwidth relative to normal bandwidth 
(log scale), with the 90% range in gray. Besides runs with too few (blue) or too 
many (red) OSTs, most runs with a slowdown of >2x had file system bottlenecks.

The CPU load of the primary metadata server (left) and bytes transferred across each file’s OSTs (right) for the two files of a run where both metadata activities 
and data writing were bottlenecked.

Bottlenecked performance sometimes corresponded with elevated levels of file system traffic, but the limited 
granularity of the traffic data could not conclusively assign responsibility to specific servers.

The file-system logs sampled activity once every 5 seconds, and metadata server CPU load was only measured for the primary MDS and not 
the four others. Even in runs where both files experienced significant metadata and data write bottlenecks (such as the one pictured above), 
this limited granularity obscured the relationship between file system traffic and application-side I/O performance.

Additional Observations

We also observed an additional bottleneck in the applications with 
HDF5 collective writes, showing several trailing writes that 
occurred after the main write output phase. This behavior 
degraded two important performance properties:
● Efficiency

Duration of trailing writes lasted up to 5.5 seconds, despite 
only writing less than 5 kB of data (a small fraction of the total 
output).

● Scalability
Time taken by the writes increased when the total file size and 
number of processes increased, so such behavior does not 
scale.

Conclusions
● Slowdowns that reduce I/O bandwidth by up to 40x 

can occur during metadata operations and/or data 
writing, and are not the application’s fault.

● For 90% of runs, metadata operations consumed up to 
23% of the total I/O time. Higher proportions of time 
spent in metadata operations resulted in bottlenecks.

● Finer-granularity file-system measurement data will 
be helpful in ascribing metadata bottlenecks to 
specific servers within the file-system.

● Determining the source of trailing writes observed 
after the main collective I/O phase will help improve 
application performance and scalability.

Future Work

MPI (blue) and POSIX (red) writes for each of the 128 MPI processes during a 
104 GB Chombo run. Trailing writes occur near 22 seconds.

Write period, 
file 0

Write period, 
file 1

Write period, 
file 0

Write period, 
file 1


