

Analysis of Variable Selection Methods on Scientific Cluster Measurement Data

Jonathan Wang

University of California, Berkeley

&

Scientific Data Management Research Group
Computational Research Division
Lawrence Berkeley National Laboratory

SDM, CRD, LBNL

Application: Palomar Transient Factory (PTF)

- Comprehensive transient detection system
 - Survey cameras
 - Realtime data reduction pipeline
 - Identify astronomical transients
- Observational data processed through NERSC
 - 38 checkpoints
 - Execution logs of runtime
- Effort to understand resource requirements
 - Model performance of data pipeline

PTF Performance Model

- Use PTF logs to predict execution time
 - Identify bottlenecks
 - Slowdown after checkpoint 15
- Goal: Predict execution time of checkpoints 16-38
- Input Features: Observational features and execution time for checkpoints 0-15

Motivation

- Use variable selection methods to find optimal variable subset
 - Reduce performance model training time (fewer features)
 - Improve prediction accuracy by removing noisy variables
- Improve variable selection runtime
 - Parallelize variable selection
 - Eliminate redundant variables quickly

Data Exploration

Feature correlation matrix

Multiple strongly correlated features (this is just a subset of features)

SDM, CRD, LBNL 5

Prediction Model

- Random Forest vs Gradient Boosting
 - Random Forest has lower bias
 - 100x higher variance (0.2 v 0.002)
 - Inconsistent subset selection
- Can offset bias by predicting with Random Forest after selecting subset
- Select prediction model that gives more information
 - Consistent set of variables selected by importance
 - Less influence from model variance

Prediction Model

Variable Selection Methods

Methods from scikit-learn library

- RFE: Recursive Feature Elimination
- Univariate: Build up model using F Regression
- Importance: Based on Gini Impurity of Random Forest

Methods implemented in Spark

- Sequential Forward Selection (SFS): greedy selection from empty set
- Sequential Backward Selection (SBS): greedy elimination from full set

*SFS and SBS were implemented in Spark to be parallelized

Sequential Backward Selection (SBS)

Objective

- Remove single variable at each iteration
- Select best size n-1 subset (lowest error)

Implementation

- Start with subset of all variables
- For each variable train and test model without variable (parallelizable)
- Select subset with lowest Root Mean Squared Error
- Repeat until subset is of desired size

Experimental Setup

- Lawrencium HPC system at LBNL
 - 56 nodes
 - 2 12-core Intel Xeon E5-2670 CPUs
 - 64 GB memory
- Utilized 3 nodes for PTF experiments
 - Parallelize for one core per variable
 - Maximize parallelization on PTF data

SBS Parallelization

Parallelization

- Test each variable in subset at each iteration
- One core for each variable to maximize parallelization

Improvement

- 18 hours (65020 sec) without parallelization
- < 1 hour (2727 sec) when parallelized
- 20x improvement (not 50x) since number of variables decreases after each iteration

Sequential Backward Selection

SDM, CRD, LBNL

Variable Selection

- Exhaustive Selection tests every combination of variables
 - Determines optimal variable subset
 - Can only be completed on small variable sets due to exponential runtime
- Ideal Selection Method
 - Identifies optimal subset
 - Consistent improvement shows subset is not affected by variance

Variable Selection

SBS Performance

SBS Performance

Selected Variable Subsets

- Significant features (feature index)
 - ec_long (44) ecliptic longitude
 - medsky (27) median sky background
 - Brightness of sky affects visibility of transients
 - Time for checkpoints 0-15 (0)
 - gal_lat (47) galactic latitude

Selected Variable Subsets

Exhaustive

- {44} : RMSE = 80.706
- {27, 47} : RMSE = 76.637
- {0, 27, 44} : RMSE = 74.622
- {0, 27, 44, 47} : RMSE = 73.805

SBS

- {44} : RMSE = 80.706
- {27, 44} : RMSE = 76.932
- {0, 27, 44} : RMSE = 74.622
- {0, 27, 44, 47} : RMSE = 73.804

SBS Results

- Achieves comparable prediction error as exhaustive search
 - Small variable set test
 - Same final variable subsets
- Consistent trends of changing prediction error
 - Identify noisy and redundant variables
 - Decreasing prediction error until minimum subset size

SBS Improvement

Correlation Grouping

Goal:

- Reduce iterations of SBS
- Group highly correlated features
- Select single variable from each group
- Perform SBS on remaining subset

Implementation

- Use Breadth-First Search to search through correlation matrix
- Group variables with correlation above correlation threshold parameter
- Build prediction model for each group to select most critical variable

Correlation Grouping

SDM, CRD, LBNL

Correlation Grouping Performance

Correlation Grouping Performance

Improvement

- Improves serial runtime of SBS
- Varies based on correlation of dataset
- Eliminates most expensive models
- Reduces runtime by 1/3rd on PTF dataset

Parallelization

- Test correlation groups in parallel
- One core for each correlation group
- Utilize 3 nodes as with SBS parallelization
- Improvement depends on number of correlation groups

Correlation Threshold

Correlation Threshold Parameter

- Controls size of correlation groups
- Balance accuracy with runtime improvement
- Large groups eliminate too many features
- Many small groups reduces runtime improvement

Selected Threshold

- Experimentally selected correlation = 0.8
- Most improvement in runtime
- Reduces runtime from 2727 sec to 888 sec

Correlation Grouping Threshold

Results

SBS approximates exhaustive search

- Sequential selection does not add variables back
 - Not a significant drawback on this data
- Identifies same optimal subset
- Parallelized for large runtime improvement

Correlation Grouping

- Eliminates redundant variables quickly in parallel
- Same results as SBS
- Further runtime improvement