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- . Application: Palomar Transient
— Factory (PTF)

« Comprehensive transient detection system

« Survey cameras
 Realtime data reduction pipeline
 ldentify astronomical transients

* Observational data processed through NERSC

* 38 checkpoints
« Execution logs of runtime

« Effort to understand resource requirements
 Model performance of data pipeline
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PTF Performance Model

 Use PTF logs to predict execution time

* |dentify bottlenecks
« Slowdown after checkpoint 15

* Goal: Predict execution time of checkpoints
16-38

* Input Features: Observational features and
execution time for checkpoints 0-15
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* Use variable selection methods to find optimal
variable subset

 Reduce performance model training time (fewer
features)

* Improve prediction accuracy by removing noisy
variables

* Improve variable selection runtime

» Parallelize variable selection
* Eliminate redundant variables quickly

.::‘ Motivation
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Data Exploration

Feature correlation matrix
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Multiple strongly
correlated features
(this is just a subset of
features)
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.';7‘ Prediction Model

- Random Forest vs Gradient Boosting

« Random Forest has lower bias
* 100x higher variance (0.2 v 0.002)
 Inconsistent subset selection

« Can offset bias by predicting with Random
Forest after selecting subset

+ Select prediction model that gives more
information

« Consistent set of variables selected by importance
* Less influence from model variance
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Prediction Model

Gradient Boosting vs Random Forest
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* Methods from scikit-learn library

 RFE: Recursive Feature Elimination
* Univariate: Build up model using F Regression
* Importance: Based on Gini Impurity of Random Forest

* Methods implemented in Spark

+ Sequential Forward Selection (SFS): greedy selection
from empty set

« Sequential Backward Selection (SBS): greedy
elimination from full set

.::‘ Variable Selection Methods

*SFS and SBS were implemented in Spark to be parallelized
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o Sequential Backward Selection
] (SBS)

* Objective
 Remove single variable at each iteration
« Select best size n-1 subset (lowest error)

* Implementation

o Start with subset of all variables

 For each variable train and test model without variable
(parallelizable)

» Select subset with lowest Root Mean Squared Error
 Repeat until subset is of desired size
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 Lawrencium HPC system at LBNL

* 56 nodes
« 2 12-core Intel Xeon E5-2670 CPUs
« 64 GB memory

« Utilized 3 nodes for PTF experiments

« Parallelize for one core per variable
 Maximize parallelization on PTF data

*‘ Experimental Setup
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 Parallelization

» Test each variable in subset at each iteration
* One core for each variable to maximize parallelization

* Improvement
* 18 hours (65020 sec) without parallelization

* <1 hour (2727 sec) when parallelized

« 20x improvement (not 50x) since number of variables
decreases after each iteration

.’;:‘ SBS Parallelization
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Sequential Backward Selection

SBS
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Selected Variable Set (VS)

Remove one variable l

\—L Reduced Variable Set (VS-1)

Train a prediction model with
each reduced variable set

l |

L

Prediction |
model

Select a
reduced
variable set
with the best
prediction error
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« Exhaustive Selection tests every combination of
variables

 Determines optimal variable subset

« Can only be completed on small variable sets due to
exponential runtime

* |ldeal Selection Method

 |dentifies optimal subset

« Consistent improvement shows subset is not affected
by variance

.::‘ Variable Selection
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Variable Selection
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Variable Selection Methods
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SBS Performance

SBS vs Exhaustive Search

—Exhaustive

= SBS

approximates optimal subset quite well

Small subset test shows that SBS /
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Sequential Backward Selection
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» Significant features (feature index)
* ec_long (44) — ecliptic longitude
 medsky (27) — median sky background
* Brightness of sky affects visibility of transients
« Time for checkpoints 0-15 (0)
- gal_lat (47) — galactic latitude

.::‘ Selected Variable Subsets
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 Exhaustive

+ {44} : RMSE = 80.706

« {27, 47} : RMSE = 76.637

- {0, 27, 44} : RMSE = 74.622

- {0, 27, 44, 47} : RMSE = 73.805
- SBS

+ {44} : RMSE = 80.706

. {27, 44} : RMSE = 76.932

- {0, 27, 44} : RMSE = 74.622

. {0, 27, 44, 47} : RMSE = 73.804

.’.‘:‘ Selected Variable Subsets
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 Achieves comparable prediction error as
exhaustive search

« Small variable set test
« Same final variable subsets

« Consistent trends of changing prediction error

* ldentify noisy and redundant variables
* Decreasing prediction error until minimum subset size
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SBS Improvement
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 Goal:

* Reduce iterations of SBS

* Group highly correlated features

« Select single variable from each group
* Perform SBS on remaining subset

* Implementation
« Use Breadth-First Search to search through correlation

matrix

* Group variables with correlation above correlation
threshold parameter

« Build prediction model for each group to select most
critical variable

.’;:‘ Correlation Grouping
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Correlation Grouping

| Original Variable Set |

Correlation
Grouping

|
|
LL Correlated Variable Subsets

Select one variable from

each subset

Selected Variable Set (VS)

SBS

Remove one variable l

|
|
LL Reduced Variable Set (VS-1)

Select a

Train a prediction model with rgduced
each reduced variable set v_arlable set
with the best

prediction error

Prediction |__.
model
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~ Correlation Grouping
sl ___ Performance

SBS vs Correlation Grouping

29 1 |—Grouped SBS
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o Correlation Grouping
j— Performance

* Improvement
* Improves serial runtime of SBS
 Varies based on correlation of dataset

* Eliminates most expensive models
* Reduces runtime by 1/3" on PTF dataset

 Parallelization

* Test correlation groups in parallel
* One core for each correlation group
 Utilize 3 nodes as with SBS parallelization

* Improvement depends on number of correlation
groups
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 Correlation Threshold Parameter

« Controls size of correlation groups

« Balance accuracy with runtime improvement

- Large groups eliminate too many features

 Many small groups reduces runtime improvement

 Selected Threshold

« Experimentally selected correlation = 0.8
 Most improvement in runtime
 Reduces runtime from 2727 sec to 888 sec

.’.‘:‘ Correlation Threshold
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Correlation Grouping Threshold
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 SBS approximates exhaustive search

« Sequential selection - does not add variables back
* Not a significant drawback on this data

* |dentifies same optimal subset
» Parallelized for large runtime improvement

« Correlation Grouping
« Eliminates redundant variables quickly in parallel

« Same results as SBS
* Further runtime improvement

.::‘ Results
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