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Application: Palomar Transient 
Factory (PTF) 

•  Comprehensive transient detection system 
•  Survey cameras 
•  Realtime data reduction pipeline 
•  Identify astronomical transients 

•  Observational data processed through NERSC 
•  38 checkpoints 
•  Execution logs of runtime 

•  Effort to understand resource requirements 
•  Model performance of data pipeline 
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PTF Performance Model 

•  Use PTF logs to predict execution time 
•  Identify bottlenecks 
•  Slowdown after checkpoint 15 

•  Goal: Predict execution time of checkpoints 
16-38 

•  Input Features: Observational features and 
execution time for checkpoints 0-15 
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Motivation 

•  Use variable selection methods to find optimal 
variable subset 
•  Reduce performance model training time (fewer 

features) 
•  Improve prediction accuracy by removing noisy 

variables 
•  Improve variable selection runtime 

•  Parallelize variable selection 
•  Eliminate redundant variables quickly 
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Data Exploration 

Multiple strongly 
correlated features 
(this is just a subset of 
features) 

Feature correlation matrix 
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Prediction Model 

•  Random Forest vs Gradient Boosting 
•  Random Forest has lower bias 
•  100x higher variance (0.2 v 0.002) 
•  Inconsistent subset selection 

•  Can offset bias by predicting with Random 
Forest after selecting subset 

•  Select prediction model that gives more 
information 
•  Consistent set of variables selected by importance 
•  Less influence from model variance 
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•  Random Forest 
•  No discernible trends 
•  Requires more variables 
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Variable Selection Methods 

•  Methods from scikit-learn library 
•  RFE: Recursive Feature Elimination 
•  Univariate: Build up model using F Regression 
•  Importance: Based on Gini Impurity of Random Forest 

•  Methods implemented in Spark 
•  Sequential Forward Selection (SFS): greedy selection 

from empty set 
•  Sequential Backward Selection (SBS): greedy 

elimination from full set 
 
*SFS and SBS were implemented in Spark to be parallelized 



SDM, CRD, LBNL  9 

Sequential Backward Selection 
(SBS) 

•  Objective 
•  Remove single variable at each iteration 
•  Select best size n-1 subset (lowest error) 

•  Implementation 
•  Start with subset of all variables 
•  For each variable train and test model without variable 

(parallelizable) 
•  Select subset with lowest Root Mean Squared Error 
•  Repeat until subset is of desired size 
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Experimental Setup 

•  Lawrencium HPC system at LBNL 
•  56 nodes 

•  2 12-core Intel Xeon E5-2670 CPUs 
•  64 GB memory 

•  Utilized 3 nodes for PTF experiments 
•  Parallelize for one core per variable 
•  Maximize parallelization on PTF data 
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SBS Parallelization 

•  Parallelization 
•  Test each variable in subset at each iteration 
•  One core for each variable to maximize parallelization 

•  Improvement 
•  18 hours (65020 sec) without parallelization 
•  < 1 hour (2727 sec) when parallelized 
•  20x improvement (not 50x) since number of variables 

decreases after each iteration 
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Sequential Backward Selection 

Correlation 
Grouping
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\Prediction 
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Variable Selection 

•  Exhaustive Selection tests every combination of 
variables 
•  Determines optimal variable subset 
•  Can only be completed on small variable sets due to 

exponential runtime 
•  Ideal Selection Method 

•  Identifies optimal subset 
•  Consistent improvement shows subset is not affected 

by variance 
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Variable Selection 

Sklearn methods not optimal  
and inconsistent 

Sequential selection 
closer to optimal 
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Small subset test shows that SBS 
approximates optimal subset quite well 
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Feature subset too small 

Noisy features 

Redundant features 

Optimal subset size is ~4 
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Selected Variable Subsets 

•  Significant features (feature index) 
•  ec_long (44) – ecliptic longitude 
•  medsky (27) – median sky background 

•  Brightness of sky affects visibility of transients 
•  Time for checkpoints 0-15 (0) 
•  gal_lat (47) – galactic latitude 
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Selected Variable Subsets 

•  Exhaustive 
•  {44} : RMSE = 80.706 
•  {27, 47} : RMSE = 76.637 
•  {0, 27, 44} : RMSE = 74.622 
•  {0, 27, 44, 47} : RMSE = 73.805 

•  SBS 
•  {44} : RMSE = 80.706 
•  {27, 44} : RMSE = 76.932 
•  {0, 27, 44} : RMSE = 74.622 
•  {0, 27, 44, 47} : RMSE = 73.804 
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SBS Results 

•  Achieves comparable prediction error as 
exhaustive search 
•  Small variable set test 
•  Same final variable subsets 

•  Consistent trends of changing prediction error 
•  Identify noisy and redundant variables 
•  Decreasing prediction error until minimum subset size 
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Much shorter training time 
with little loss in prediction 
accuracy 

‘Optimal’ subset size 

Full subset training time 
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Correlation Grouping 

•  Goal:  
•  Reduce iterations of SBS 
•  Group highly correlated features 
•  Select single variable from each group 
•  Perform SBS on remaining subset 

•  Implementation 
•  Use Breadth-First Search to search through correlation 

matrix 
•  Group variables with correlation above correlation 

threshold parameter 
•  Build prediction model for each group to select most 

critical variable 
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Correlation Grouping 

Correlation 
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Correlation Grouping 
Performance 

Expensive models 
condensed into more 
efficient computations 

Achieves similar final 
results as regular SBS 
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Correlation Grouping 
Performance 

•  Improvement 
•  Improves serial runtime of SBS 
•  Varies based on correlation of dataset 
•  Eliminates most expensive models 
•  Reduces runtime by 1/3rd on PTF dataset 

•  Parallelization 
•  Test correlation groups in parallel 
•  One core for each correlation group 
•  Utilize 3 nodes as with SBS parallelization 
•  Improvement depends on number of correlation 

groups 
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Correlation Threshold 

•  Correlation Threshold Parameter 
•  Controls size of correlation groups 
•  Balance accuracy with runtime improvement 
•  Large groups eliminate too many features 
•  Many small groups reduces runtime improvement 

•  Selected Threshold 
•  Experimentally selected correlation = 0.8 
•  Most improvement in runtime 
•  Reduces runtime from 2727 sec to 888 sec 



SDM, CRD, LBNL  26 

0	

500	

1000	

1500	

2000	

2500	

3000	

1	 0.9	 0.8	 0.7	 0.6	 0.5	 0.4	 0.3	 0.2	 0.1	

Ti
m
e	
(s
ec
)	

Correla/on	Threshold	

Correla/on	Grouping	Run/me	

Correlation Grouping Threshold 

Finds optimal subset 
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Results 

•  SBS approximates exhaustive search 
•  Sequential selection - does not add variables back 

•  Not a significant drawback on this data 
•  Identifies same optimal subset 
•  Parallelized for large runtime improvement 

•  Correlation Grouping  
•  Eliminates redundant variables quickly in parallel 
•  Same results as SBS 
•  Further runtime improvement 


