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Abstract—While federated learning (FL) has gained great
attention for mobile and Internet of Things (IoT) computing
with the benefits of scalable cooperative learning and privacy
protection capabilities, there still exist a great deal of technical
challenges to make it practically deployable. For instance, the
distribution of the training process to a myriad of devices
limits the classification performance of machine learning (ML)
algorithms, often showing a significantly degraded accuracy
compared to centralized learning. In this paper, we investigate
the problem of performance limitation under FL and present
the benefit of data augmentation with an application of anomaly
detection using an IoT dataset. Our initial study reveals that one
of the critical reasons for the performance degradation is that
each device sees only a small fraction of data (that it generates),
which limits the efficacy of the local ML model (constructed by
the device). This becomes more critical if the data holds the class
imbalance problem, observed not infrequently in practice (e.g., a
small fraction of anomalies). Moreover, device heterogeneity with
respect to data quantity is an open challenge in FL. Based on
these observations, we examine the impact of data augmentation
on detection performance in FL settings (both homogeneous and
heterogeneous). Our experimental results show that even a simple
random oversampling can improve detection performance with
manageable learning complexity.

Index Terms—Federated Learning, Internet of Things,
Anomaly Detection, Machine Learning

I. INTRODUCTION

Data collection and measurement are essential services in
the Internet of Things (IoT) computing sector for building
operations [1], [2], healthcare [3], [4], environmental stud-
ies [5], and mobile behavior analysis [6], [7], to list a few.
Collected instances are then analyzed often using one or
more machine learning (ML) algorithms for high-level data
analytics. However, the ever-increasing concern of privacy and
data confidentiality may be a big obstacle to implement such a
data-driven analytics process that assumes the sharing of raw
data. For instance, the data measured by healthcare devices
needs to be protected by law, while other applications such as
smart homes and public safety also require a degree of privacy
and security protection [8], [9].

Federated learning (FL) has been introduced to enable
privacy-preserving learning without sharing private data with
external entities [10]–[12]. In other words, rather than sharing

potentially privacy-sensitive raw data, devices process their
local data to create an ML model (“local model”), which
is then collectively combined to build an aggregated model
(“global model”) often by a coordinator (e.g., a cloud server).
The privacy concern can thus be mitigated by limiting the
sharing of raw data in the FL setting. In the meantime,
numerous challenges have also been introduced, which should
be addressed for practical deployment of FL [12]. For in-
stance, the distribution of the training process to a myriad
of devices limits the classification performance of machine
learning (ML) algorithms, often showing a significantly low
accuracy compared to the centralized learning. In this paper,
we investigate the problem of performance limitation under
FL and present the benefit of data augmentation with an
application of anomaly detection (AD) using an IoT dataset.

We first show that one of the critical reasons for the
performance degradation is that each device sees only a small
fraction of data (that it generates), which limits the efficacy
of the local ML model (constructed by the device). This
becomes more critical if the data holds the class imbalance
problem, observed not infrequently in practice (e.g., low
frequency of anomalies while most instances generated are
normal). Moreover, device heterogeneity with respect to data
quantity is an open challenge in FL. Based on our initial
observations, we examine the impact of data augmentation
on detection performance in FL settings (both homogeneous
and heterogeneous), with a set of augmentation techniques
including random oversampling, SMOTE [13], and a variant
of SMOTE known as ADASYN [14].

Our experimental results show that even a simple random
oversampling significantly improves detection performance
with manageable complexity when training over a large num-
ber of client nodes. Under the assumption of the equal-
rate data generation by clients (i.e., homogeneous), random
sampling yields up to a 19.98% improvement in F1 score
compared to the baseline without augmentation after 100
rounds of training. In case of the heterogeneous setting which
assumes different data generation rates among clients, random
sampling helps FL converge quickly within significantly fewer
rounds (more than half) than the baseline.



Contributions: The key contributions of this paper can be
summarized as follows:

• We show the performance degradation problem in case
of a simple adoption of FL by comparing AD rates to
the traditional, non-FL approach with the IoT dataset
(TON IoT) recently collected in 2019;

• We present our approach to improve the classification per-
formance by employing the concept of data augmentation.
The augmentation techniques include random sampling,
SMOTE [13], and ADASYN [14];

• We show that data augmentation can be used to achieve
high performance results faster over highly decentralized
FL training through extensive experiments in both homo-
geneous and heterogeneous settings.

The organization of this paper is as follows. In Section II, we
introduce relevant background information regarding anomaly
detection, federated learning, and the dataset we use for this
work. We conduct preliminary analysis including data statistics
and centralized classifier metrics in Section III, and then
present common strategies for handling imbalanced classi-
fication and explain our sampling approach in Section IV.
In Section V, we report our experimental results with these
strategies for both homogeneous and heterogeneous settings.
Section VI summarizes the previous studies closely related to
our work, and we conclude our presentation with a summary
and future direction in Section VII.

II. BACKGROUND

In this section, we provide an overview of anomaly detec-
tion, federated learning, and the IoT dataset used in this study.

A. Anomaly Detection

AD is a widely important and actively studied area of
computational research [15]. With the significant advance on
ML (including deep learning), a body of studies investigated
the adoption of ML to improve the AD performance [16].
Basically, the vast majority of AD algorithms rely on the
infrequency of anomalies occurring as well as anomalous data
deviating substantially from normal instances. When these
assumptions hold true, unsupervised learning is often applied
to identify clusters of anomalies without any class labeling.
In practice, anomalies can make up a significant portion of
a dataset (i.e. a client that has been corrupted by a malicious
attack) and anomalous feature values may be relatively similar
to normal samples. Supervised classifiers are typically more
effective in this case, which we primarily focus on in this work
in a distributed setting.

Performance metrics are used to measure the ability of a
learning algorithm to correctly identify anomalies. Accuracy
can be a biased metric in this regard, as it gives equal weight
to positive and negative classes in the subset of data it is
measured over. For convention, we consider anomalies to be
the positive class and normal samples to be the negative class.
Precision and recall are instead more appropriate for this task,
which measure the proportion of anomaly classifications that
are correct and proportion of total anomalies identified, respec-
tively. F1 score is the harmonic mean of precision and recall,
where a higher value indicates more reliable and frequent AD.

TABLE I
AD PERFORMANCE METRICS

Metric Definition

Accuracy TP+TN
TP+TN+FP+FN

Precision TP
TP+FP

Recall TP
TP+FN

F1 score 2TP
2TP+FP+FN

Improving F1 score beyond a naive implementation of AD
classifiers is the central goal of this work. The performance
metrics are defined based on confusion matrix that contains
TP (true positive – anomalies correctly classified), TN (true
negative – benign instances correctly classified), FP (false
positive – benign instances incorrectly classified as anomalies),
and FN (false negative – anomalies incorrectly classified as
benign). Table I provides the definition of the metrics.

B. Federated Learning
FL is an approach to machine learning recently pioneered

by Google that makes use of a client-server architecture
to allow eligible devices to contribute to global model up-
dates [10]–[12]. McMahan et al. [10] showed that sending
a commonly initialized artificial neural network (ANN) to
client nodes over subsequent training rounds and aggregating
locally computed updates often leads to model convergence
at a mutually optimal minimum. Additionally, due to upload
speeds posing a more significant bottleneck than training on
each client, McMahan et al. proposed the FederatedAveraging
algorithm [10], which is a variation of Stochastic Gradient
Descent (SGD) that iterates multiple local updates per device
prior to aggregation.

A phased approach is common when implementing FL for
end user devices. The FL server, which is often a cloud-based
distributed service, first accepts connections from a subset of
K devices with n total examples for a given training round t.
This proportion of total available clients chosen per round is
donated by a parameter C (i.e., a fraction of clients). Once
C·K of the clients have been chosen, the server enters a
configuration phase where the current model checkpoint is
retrieved and distributed to user devices. Client nodes then use
their available data to train this model using specified values
for local epochs E, batch size B, learning rate η, and any other
necessary parameters. Each device, k, will then repeatedly
calculate weight updates for the specified number of epochs
and for every batch b:

wk = wk − η∇`(wk; b)

The final updates are then reported back to the server to
be aggregated together via the following weighted averaging
function:

wt+1 =

K∑
k=1

nk
n
wk

The FL server typically enforces a timeout if clients do not
report back within an allotted period. However, a minimum



number of successful updates are necessary to commit to
the global model, which can leave the server waiting for the
slowest client to continue the learning process. Consequently,
FL can be very slow to converge to comparable performance
levels of centralized models. It is an open area of research of
reducing the amount of rounds necessary to train models as
well as improving naive FL algorithms.

Through this process, FL provides the framework for dis-
tributed learning without sharing local data, thus mitigating
the privacy concern that becomes more crucial in real set-
tings. Despite the benefits, our observation shows that the FL
process may not be able to produce a high-quality ML model,
and we investigate the impact of class imbalance and data
heterogeneity in this study.

C. Description of IoT Dataset (TON IoT)
The TON IoT datasets1, which are a collection of IoT

telemetry readings, operating system logs, and network traffic
information, have been published in 2019 to help train and
test cybersecurity AI applications. Normal and attack scenarios
were executed using an architectural testbed to generate a
heterogeneous set of sensor readings. These attacks include
some of the most common forms of hacking events, including
but not limited to scanning attacks, Denial of Service (DoS)
attacks, and backdoor attacks. To the best of our knowledge,
there do not appear to be existing works using these datasets
for FL anomaly recognition algorithms.

Table II provides a summary of the IoT/IIoT datasets
included in the TON IoT package. There exist seven indepen-
dent datasets collected from different classes of IoT devices.
Each dataset provides specific features as shown in the table.
In addition, there are four common features defined in all the
datasets, which are ‘date’, ‘time’, ‘label’, and ‘type’. Here,
the ‘label’ feature has either 1 (anomaly) or 0 (normal),
while ‘type’ shows the attack category if applicable. After
analyzing individual datasets, we decide to focus on analyzing
the Modbus dataset since it contains a rich set of features
compared to data for other IoT devices. Modbus is a data
communication protocol and connects a plant supervisory
computing machine to a remote terminal unit in electrical
power systems (i.e., SCADA or Supervisory Control and Data
Acquisition systems).

III. DATA ANALYSIS AND LEARNING MODELS

In this section, we analyze the Modbus IoT data employed in
this study for AD under FL and discuss potential limitations of
the naive adoption of FL with our initial experimental results.

A. Analysis of IoT Modbus Data
As mentioned, the IoT Modbus dataset is used for experi-

ments in this work, as it has the highest variation in features
relative to the other IoT device readings. However, aside
from time and date, the Modbus dataset only contains four
of these numeric features, each corresponding to a different
sensor reading from registers. Thus, there are simply not
enough numeric features in a continuous number domain.

1https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-
ton-iot-Datasets/

TABLE II
SUMMARY OF TON IOT DATASETS

Dataset Specific features # instances % anomaly
Fridge fridge temperature (Number) 587,077 14.7%

temp condition (String)
GarageDoor door state (Boolean) 591,447 12.9%

sphone signal (Boolean)
GPSTracker latitude (Number) 595,687 13.7%

longitude (Number)
Modbus FC1 Input Reg (Number) 287,195 22.4%

FC2 Discrete Val (Number)
FC3 Holding Reg (Number)
FC4 Coil (Number)

MotionLight motion stat (Number) 452,263 14.1%
light stat (Boolean)

Thermostat curr temperature (Number) 442,229 12.7%
termostat stat (Boolean)

Weather temperature (Number) 650,243 13.9%
pressure (Number)
humidity (Number)

TABLE III
TRANSFORMING MODBUS FEATURES USING MULTIPLE BINS

Bin size # features Training seconds
500 632 599.4

1,000 314 308.1
2,000 154 260.8
3,000 101 190.4
4,000 79 175.6

No encoding 4 93.2

We considered one-hot encoding for these features, but each
could take on more than 50,000 different values which is
unnecessarily large to train with. For this reason, we transform
the features into a discrete domain using a set of bins with a
definition of bin size. Each bin becomes a transformed feature
that uses a binary flag to indicate if a register’s reading is
within a given range of values.

Table III compares the number of features after the trans-
formation based on bin size, along with the training overhead
in seconds. Preliminary testing in Table III shows that setting
bin size to 1,000 achieves a substantially large feature space
and is more efficient than smaller sizes with the manageable
training overhead. This bin size is adopted during experimen-
tation, and further work is needed to study if varying bin size
to either increase or decrease the input feature dimensionality
can be beneficial.

Prior to conducting our experiments, we analyze statistics
for the Modbus dataset to determine which learning algorithms
would be most effective. To do so, samples were separated into
two groups based on their label such that analytics could be
compared based on class. Ideally, a trend in one group that is
not present in the other could be leveraged when performing
classification, but there do not seem to be extremely notable
distinctions between normal samples and anomalies. Figure 1
shows kernel density estimation functions for each class in-
dicating the frequency of values for the FC1 Input Register
feature. The similarity between the two curves demonstrates
that anomaly readings do not deviate substantially from their
normal counterparts, but this is the desired setting for this work
as it motivates well-performing FL algorithms to distinguish



Fig. 1. Kernel Density Estimations for FC1 Input Register readings, sep-
arated by class. The similarity of these probability distributions motivate
supervised learning to classify unknown readings.

between classes.

B. Limitation of Naive Federated Learning
The Modbus dataset, as well as the other TON IoT datasets,

all have significantly more normal samples than anomalous
readings. This can make learning a supervised classifier a
difficult task when a reasonably low loss can be achieved by a
SGD optimizer simply by ignoring the positive class. Doing so
will yield an F1 score of zero, which is contrary the intended
AD goal.

For our initial experiments, we design a deep neural network
(DNN) performing AD based on supervised learning. The AD
classifier consists of two hidden layers, each with a shape of
157 neurons, which is half of the input dimension. We use a
batch size of 100 and an RMSprop optimizer with an initial
learning rate of 0.1. Note that we do not intensively optimize
the classifier through rigorous hyperparameter tuning as our
interest here is to see how well the AD model works under
various FL settings.

To compare the AD performance between the centralized
vs. FL settings, we assume that each FL client has a disjoint
subset of training records, while the centralized setting can
access the entire training records to build the learning model.
Since the Modbus dataset does not contain the client identifier
information for individual records, we randomly partition the
data to simulate the FL setting. In our experiments throughout
this paper, the homogeneous FL setting assumes that clients
have the equal amount of data instances, while each client has
a different number of instances in the heterogeneous setting.

We first observe metrics reached by a centralized classifier
over the entire Modbus dataset. It takes this classifier only
a few epochs to begin to correctly recognize anomalies,
converging after approximately 50 epochs to a model with
maximum testing accuracy of 94.35% and F1 score of 87.35%.
This indicates that supervised learning can be a useful means
of AD where unsupervised methods are likely to fail, and it
additionally establishes goals for FL model metrics.

We next assume the homogeneous FL setting. In this
scenario, each individual update to the global model is not as
powerful as in the centralized case. We use the same model
architecture as previously described while also setting the

Fig. 2. F1 scores for naive FL classifiers trained over 5, 50, and 100 nodes.
An important observation is the initial start at an F1 score of zero due to the
class imbalance issue, which could be mitigated by a manual rebalancing on
each client.

number of local epochs at each client to 10. Figure 2 shows
testing F1 scores after homogeneously splitting data across
5, 50, and 100 nodes and performing FL for each setting. It
is notable that, for imbalanced datasets, distributing the same
amount of data to more nodes results in a larger number of
rounds until classifiers begin to learn meaningful distinctions
between the two classes (that is, a larger number of rounds
until the F1 score becomes nonzero). Furthermore, the slope
of these curves representing progress in model training is
also subject to optimization. When the number of clients with
small datasets becomes increasingly high, class imbalance may
pose an even more significant issue than in the use case we
discuss here and therefore motivates techniques to learn better
classifiers in fewer rounds.

We choose to set 70.00% as the target F1 score for FL
models to reach. While substantially lower than the centrally
trained classifier, this threshold nonetheless demonstrates ade-
quate AD performance and appears sufficient to compare data
augmentation algorithms to one another. As our goal is not
to vastly outperform a naive implementation of FL, but rather
to achieve better performance in a shorter number of rounds,
we defer ensuring that FL models can indeed reach near-
centralized levels to other works. Our main focus is on the
period of training in which graphs of model metrics are the
steepest for more apt comparisons.

IV. DATA AUGMENTATION

To mitigate the performance impact when using FL in a
naive manner, we investigate the effectiveness of data aug-
mentation. In this section, we describe statistical sampling
techniques, including random oversampling, SMOTE [13], and
ADASYN [14], examined in this study.

A. Random Oversampling
Dataset rebalancing via random oversampling entails repeat-

edly choosing a data point belonging to the minority class at
random and adding it to a new dataset. This is done until a
desired threshold is reached, which we set to be the amount
of points in the majority class for any given client. Thus,
it is possible that some points will be left out of the new
rebalanced dataset and it is guaranteed that other points will



be duplicated. This has the overall effect of forcing a neural
network’s optimization algorithm (i.e. SGD) to pay greater
attention to the minority class data to achieve a sufficiently
low loss.

Random oversampling does not create any new data and it
is therefore limited to the quality of the information present
within the original dataset. When minority class samples are
especially infrequent, this can lead to poor generalization
over unseen data. Furthermore, it is unlikely that random
sampling will facilitate performance metrics that would be
unachievable by a naive learning algorithm when amount of
minority data is not too small. Instead, the goal is to speed up
the learning process and converge to a better model in fewer
rounds. Adjusting hyperparameter settings such as the number
of epochs can also achieve such a speedup, but this in effect
duplicates majority class data as well, incurring an unnecessary
time expense. Random oversampling has the advantage of only
copying the infrequent data to prevent model updates from
being biased towards the majority class.

B. SMOTE and ADASYN

The Synthetic Minority Oversampling Technique
(SMOTE) [13] is a generative algorithm that creates
new data for the underpopulated class using a point’s nearest
neighbors. Similar to the previous method, SMOTE will
first choose a minority sample at random, but instead of
reproducing it, the algorithm will select one of its k-nearest
neighbors and consider a vector drawn between these two
points. A value will then be chosen uniformly between 0 and
1 and be multiplied by this vector to rescale its magnitude.
Finally, applying the transformed vector to the original point
will indicate a new location in the feature space which will
represent a synthetically generated sample.

It is worth noting that, due to the limitation of scaling
the vector connecting a point and one of its neighbors by a
value between 0 and 1, all synthetic samples will be confined
by the boundaries of the feature space. This is a relatively
cautious way of generating new points and will not result
in drastic changes from the original data. Considering the
similarity of kernel density estimations for each class in the
Modbus dataset, such careful oversampling appears benefi-
cial; introducing higher variance into a generative algorithm
would be far more likely to cross the class boundary and
unintentionally be more representative of a normal reading
rather than an anomaly. SMOTE may suffer from this issue as
well when class distributions become increasingly complex,
but introducing new points into the training dataset can have
the important benefit of better generalization to unseen data.

The Adaptive Synthetic algorithm (ADASYN) [14] is an
extension of SMOTE that attempts to shift the classification
boundary closer to harder-to-learn examples. ADASYN starts
by calculating the k-nearest neighbors of each minority exam-
ple, but in addition, it will bias the probability of selecting a
point based on if it is located in a homogeneous neighborhood.
Minority points that have majority examples as their closest
neighbors will be chosen with greater frequency, resulting in
a larger clustering of points around these regions that would
ideally make boundaries more well-defined. The success of

ADASYN relative to SMOTE often depends on the use case,
as sparsely distributed minority data can lead to even more
significant mislabeling of synthesized samples.

C. Our Augmentation Strategy
The naive FL scenario introduced in Section III-B does not

employ any sampling technique but builds local models only
using the data generated by the TON IoT testbed (without any
synthetically augmented instances). This may result in a biased
model, especially in earlier rounds, which leads to degraded
performance in the FL setting. This problem is more critical
when a large number of nodes is used in training, each with
a small proportion of the total dataset. Our strategy in this
study is to augment data locally to improve the quality of local
models, ensuring that these clients can contribute meaningful
updates to the global model.

We describe our augmentation strategy under the FL envi-
ronment. In the typical scenario, the client (device) generates
its own data. Since we assume supervised learning to detect
anomalies, we also assume the generated data instance is
tagged to indicate whether it is normal or not. When the client
participates in a FL round, it analyzes the generated instances
with respect to class population. In general, the number of
anomalies is much smaller than normal samples, as can be
seen in Table II. The client then augments the minority class
data to mitigate the imbalance problem. Each client’s dataset
is rebalanced such that there are an equal amount of normal
and anomalous readings, using either random oversampling,
SMOTE, or ADASYN. After balancing the number of in-
stances in both classes, the client creates the local model,
which is then aggregated to a global model for that round.

For augmenting the minority class data (i.e., anomalies),
random oversampling duplicates instances chosen in a uniform
manner. For SMOTE and ADASYN, points are also chosen
uniformly, but a new synthetic anomaly is created using a
randomly selected k-nearest neighbor. We set k to 5, which is
a standard default value to ensure some variation without using
points that are too distant in the feature space. Once each client
generates the same amount of anomalies as normal samples,
they will combine and shuffle the data from the two classes
and begin training their local models.

V. EXPERIMENTS

We conduct a series of experiments for both homogeneous
and heterogeneous settings on the NERSC Cori Supercom-
puting system (cori.nersc.gov), which is configured
with Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz, 16 GB
memory, and Ubuntu 16.04.6 LTS. The TensorFlow Federated
library is used to simulate training FL models across client
nodes. Again, a homogeneous setting indicates that devices
generate the same amount of data, while a heterogeneous
setting assumes discrepancies among devices with respect to
data generation rates. We first report the experimental results
observed from homogeneous settings and then discuss the
results from heterogeneous settings.

A. Homogeneous Setting
For the experiments in this section, the Modbus dataset

was partitioned such that each client node received an equal



TABLE IV
FL PERFORMANCE METRICS FOR VARIOUS NODES AND DATASET REBALANCING STRATEGIES OVER 100 ROUNDS

# Clients Method Accuracy (%) Precision (%) Recall (%) F1 Score (%) Avg Round Time (s)

5 nodes

NONE 94.74 86.99 89.94 88.39 13.58
RAND 94.65 86.49 90.24 88.33 23.35

SMOTE 91.97 79.68 86.28 82.84 20.56
ADASYN 87.91 67.07 90.72 77.12 24.77

50 nodes

NONE 85.98 76.47 54.36 63.55 22.77
RAND 87.29 77.97 60.92 68.40 25.81

SMOTE 76.30 48.07 73.42 58.10 24.80
ADASYN 76.81 48.77 72.20 58.22 24.98

100 nodes

NONE 81.87 69.07 35.20 46.64 34.68
RAND 83.49 70.99 46.17 55.96 37.09

SMOTE 72.22 42.65 66.88 52.09 36.87
ADASYN 73.34 44.20 65.46 52.77 36.63

number of samples. Data for each client is selected at random,
so this partitioning simulates data being independently and
identically distributed (IID), which is a common setting for
studying FL performance. The following section will consider
when the IID assumption is relaxed by creating dramatic
differences in the amount of data available at each client.

Trials are conducted using 5, 50, and 100 nodes in training,
which result in a relatively large, medium, and small amount
of data to train each client with, respectively. For each node
size, clients will iteratively rebalance their own dataset using
either random oversampling, SMOTE, or ADASYN. A bench-
mark case with no resampling is also considered. Metrics are
recorded for each pair of node size and oversampling method,
including accuracy, precision, recall, F1 score, and average
training time per round (in seconds).

The collected metrics over a testing dataset are reported
in Table IV, where boldface indicates the best value achieved
for a fixed number of nodes. A general trend evident from this
data is that, as training becomes more decentralized over more
nodes, oversampling strategies become increasingly effective
at recognizing anomalies. For only 5 nodes, the difference
between the two best methods after 100 rounds is extremely
narrow with only a 0.06% gap in F1 score. When 100 nodes
are used in training, this gap increases sharply to 9.32%.

For 50 and 100 nodes, random oversampling appears to be
the best means of dataset rebalancing. This suggests that the
anomalies present within the original data are sufficient for

Fig. 3. F1 scores using various preprocessing methods over 100 client nodes.
Random oversampling and a naive approach surpass a 70.00% target threshold
while SMOTE and ADASYN do not.

learning models, as evidenced by the centralized case which
used no oversampling to achieve high metrics. The naive
model with no augmentation takes longer to reach the same
performance level as random oversampling, and, alternatively,
randomly undersampling the normal readings led to a classifier
that stagnated at approximately 50% testing accuracy. This
indicates that the large volume of normal readings is necessary
to avoid underfitting, but the issue of too few anomalies can
be remedied by a simple random oversampling.

SMOTE and ADASYN did not appear to provide sig-
nificant improvements to classification. Notably, Table IV
shows that the SMOTE-trained classifier over 100 nodes had
the highest recall but the lowest precision after 100 rounds,
with the ADASYN classifier showing very similar metrics.
This indicates that synthetic data generation for the Modbus
dataset will allow for more anomalies to be detected at the
expense of a high degree of false positives. Due to anomalies
being sparsely distributed rather than clustered together, these
algorithms seemed to have shifted the classification boundary
too significantly such that more normal readings became
misclassified.

Figure 3 shows F1 scores over an extended period (300
rounds) of training to compare to our target threshold of
70.00%. Our naive FL classifier attained this F1 score after 280
rounds, while it only took 211 rounds for an FL classifier using
random oversampling of client data to surpass the threshold.
Neither SMOTE nor ADASYN reached this performance level
after 300 rounds of training and appear to be converging at a
lower value. Random oversampling was able to yield a 24.6%
decrease in number of rounds to attain this target with only
a 6.9% increase in average training time per round. Note
that wall-clock time is not a particularly relevant metric, as
sending updates back to the server for aggregation is a far
more significant bottleneck than on-device training.

B. Heterogeneous Setting

In real-world scenarios, it is very unlikely for data to be
evenly distributed across client devices participating in train-
ing. The FedAvg algorithm partially takes this into account,
computing a weighted average between updates based on the
proportion of data a client uses in training relative to the
total data used by all the clients. Nonetheless, heterogeneous
partitioning can pose an issue for some classifiers to attain
acceptable performance.



(a) Heterogeneous partitioning resulting in variation in client dataset sizes (b) Homogeneous partitioning resulting in equal client dataset sizes

Fig. 4. F1 scores for 100 rounds of training FL classifiers over 35 nodes using both heterogeneously and homogeneously partitioned data. Heterogeneous
splitting results in metrics closer to those of the centralized classifier.

We iteratively generate Gaussian random variables and
translate them to their corresponding probabilities, which
represent the proportion of the total available data to assign to
a new client. We always consider the smaller-tail probability
such that the dataset is not exhausted too quickly. We are
able to create partitionings for 35 nodes consistently such
that each client has multiple anomalies to perform generative
oversampling techniques.

Figure 4 shows F1 score results for an FL classifier where
the number of data on each client is fixed and determined by a
Gaussian distribution. Furthermore, we also show F1 scores for
the homogeneous case using FL over 35 nodes for comparison.
Interestingly, heterogeneous partitioning actually yields higher
testing metrics over 100 rounds than the homogeneous case
regardless of oversampling algorithm. This appears to be due
to the fact that the highest weighted updates are ones that
come from nodes with the most amount of data, so classifiers
can benefit from a heterogeneous setting where clients have
large numbers of examples that are indicative of the overall
data distributions of each class.

While not entirely following the IID assumption, FL
nonetheless appears well-equipped to handle clients with
varying sizes of their datasets. While random oversampling
does cause a speedup of reaching an F1 score of 70% from
34 rounds to only 15 rounds — a 55.9% decrease — this
can be misleading as all models trained over heterogeneous
data ultimately converge at approximately the same level of
performance. Indeed, there is only a 0.98% difference in F1
score between the random oversampling model and the naive
model after 100 rounds of training. In environments where
the number of training rounds must be rigorously optimized,
random oversampling can certainly be advantageous, but naive
FL over heterogeneous data does not appear to suffer from
the same degree of performance degradation as in the homo-
geneous case.

Performing such oversampling would be more beneficial
for clients with data crucial to generalizing beyond training
sets, but have too few total samples to contribute a significant

update after aggregation (i.e. their data follows a different
distribution than data belonging to other clients). Future work
using other datasets that exhibit greater clustering patterns
within each class could test such an approach to determine
how strong the benefit of data augmentation can be in this
more extreme non-IID setting.

VI. RELATED WORK

We provide a summary of the previous studies in the areas
of IoT anomaly detection and anomaly detection over FL that
are closely related to our work.

IoT Anomaly Detection. ML is a very common approach
to detecting anomalies for IoT devices, but is not limited to
DNNs as we employed in this work. Other studies have shown
that logistic regression, support vector machines, decision
trees, and random forests can reach or even surpass testing
metrics of neural networks [17]. In [18], deep autoencoders
have also been shown to be successful for detecting anomalous
network traffic from IoT devices that have been targeted by
botnet attacks. Clustering algorithms can also be suitable and
efficient means of finding deviations from normal behavior as
reported in [19]. Improving feature selection methods can also
be useful, such as the work in [20] that did so by capitalizing
on IoT-specific network behaviors.

Anomaly Detection over FL. Intrusion detection for IoT
devices using FL remains an open area of research, with
several novel approaches being developed such as incorporat-
ing blockchain [21] and language-analysis techniques under
the assumption of edge computing [22]. Outside the scope
of IoT data, malicious clients pose a significant challenge to
global model convergence, so identifying and removing such
erroneous updates is another important AD application [23].
In the work of [24], network AD tasks have also been studied
to detect suspicious traffic flow while preserving data privacy.

VII. CONCLUSIONS AND FUTURE WORK

We have shown that naive FL may initially stagnate when
training over a large number of clients with imbalanced



datasets, which can ultimately degrade overall model per-
formance due to poorly learned initial parameters. Random
oversampling, SMOTE, and ADASYN can improve upon
baseline metrics in earlier rounds in both homogeneous and
heterogeneous settings. Interestingly, random oversampling
consistently achieves the best results over prolonged training.
This appears to be due to the sparse distribution of anomalies
amongst normal readings in the IoT Modbus dataset, which
is likely a more realistic setting than anomalous data being
highly clustered together.

Further work could be conducted by modifying data genera-
tion algorithms beyond k-nearest neighbors, which our results
have shown has a high potential of crossing the boundary
between classes. In particular, generative adversarial networks
(GANs) have shown a great deal of success in synthesizing
realistic new samples. However, the mode collapse problem
observed when generating a wide variety of samples with
diverse density functions is a technical challenge to address
when using GANs and we plan to explore the effectiveness of
such models to improve AD performance over FL. Another
planned work is the performance improvement for semi-
supervised recognition of anomalies in FL based on our
preliminary observations with autoencoders showing unaccept-
able detection accuracy despite its benefit of the simplicity in
training only with normal instances.
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