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Consensus Ensemble System
for Traffic Flow Prediction

Hongyuan Zhan, Gabriel Gomes, Xiaoye S. Li,
Kamesh Madduri, Alex Sim, Member, IEEE, and Kesheng Wu, Senior Member, IEEE

Abstract—Traffic flow prediction is a key component of an
intelligent transportation system. Accurate traffic flow prediction
provides a foundation to other tasks such as signal coordination
and travel time forecasting. There are many known methods
in literature for the short-term traffic flow prediction problem,
but their efficacy depends heavily on the traffic characteristics.
It is difficult, if not impossible, to pick a single method that
works well over time. In this work, we present an automated
framework to address this practical issue. Instead of selecting a
single method, we combine predictions from multiple methods
to generate a consensus traffic flow prediction. We propose an
ensemble learning model that exploits the temporal characteris-
tics of the data, and balances the accuracy of individual models
and their mutual dependence through a covariance-regularizer.
We additionally use a pruning scheme to remove anomalous
individual predictions. We apply our proposed model to multi-
step-ahead arterial roadway flow prediction. In tests, our method
consistently outperforms recently published ensemble prediction
methods based on Ridge Regression and Lasso. Our method also
produces steady results even when the standalone models and
other ensemble methods make wildly exaggerated predictions.

Index Terms—Ensemble learning, model-combination, ma-
chine learning, traffic flow prediction.

I. INTRODUCTION

There are many useful applications for short-term (up to
one hour) prediction of traffic state. Speed predictions are
used by traveler information systems to forecast travel times
along routes. Traffic management centers in large urban areas
increasingly employ real-time traffic prediction for decision
support [1]. The available techniques for making these fore-
casts fall into two broad categories: those that employ phys-
ical models (e.g., the cell-transmission model [2]) in their
calculations, and those that do not. Applications in traffic
management typically fall into the former category, since
the traffic control algorithms being tested can be expressed
naturally in terms of the parameters of a physical model. Travel
information systems usually employ non-physical models and
use techniques of statistical learning to train their parameters.

In this work, we focus on the problem of forecasting
traffic flows, as measured by fixed pavement sensors. There
is a large body of work on the use of time-series, non-
parametric, and other methods for predicting traffic flow.
Lv et al. [3] provide a good summary of literature. Early
work on this topic includes that of Nicholson and Swann [4],
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who used spectral analysis to extract trends from measured
flow through the Mersey Queensway tunnel in Liverpool,
England. Okutani and Stephanedes [5] used a Kalman filter
to estimate the parameters of a linear prediction model. Many
authors have applied time-series techniques to this problem.
Hamed et al. [6] fitted an Autoregressive integrated moving
average (ARIMA) model to traffic data in Amman, Jordan.
Van Der Voort et al. [7] used a self-organizing neural network
to cluster data prior to fitting it with ARIMA. Lee and
Fambro [8] used the Aikaike information criterion for ARIMA
model selection. Ghosh et al. [9] have noted the importance
of spatial correlations and applied multivariate techniques.
Stephanedes et al. [10] developed a state-space model for
predicting flows on a network. Williams [11] compared sea-
sonal ARIMA and ARIMAX and found improvement by
using upstream flows as an external input. Wu et al. [12]
introduced historical measurements as the external input to
an ARMAX model. Pascale and Nicoli [13] used an adaptive
Bayesian network to more generally capture the spatial and
temporal correlation amongst flows on a freeway. Recently,
Coogan et al. [14] used principal components analysis and
partial least squares to extract trends from flows through an
intersection.

The problem of traffic flow prediction can be viewed as a
subcomponent of either a statistical or a physical predictor of
traffic state. To predict trip times, for example, the flows can be
directly translated into speeds by means of an empirical speed-
flow curve [15]. Traffic forecasts based on physical models
require a prediction of the model input. This input can be
expressed either as an intensity of flows entering the network at
its boundaries (aggregate demand modeling), or as a matrix of
trip counts from each origin to each destination (disaggregate
OD flows). The usual approach in the disaggregate case is
to compute the OD matrix from predictions of internal flows,
as in [16]. In the aggregate case, the boundary demands are
assumed to be unaffected by the internal state of the network.
Hence, a methodology for predicting sensor flows is useful in
both the aggregate and disaggregate forms of physical model-
based prediction.

When prediction results are provided by multiple models,
traffic controllers have to either trust the prediction from one
of the methods, or make some consensus judgement from the
available results. The present paper focuses on an ensemble
learning approach for consensus traffic flow prediction, which
aims to combine different base predictions to produce more
accurate and stable results.

Our proposed ensemble model extends the concept of stack-
ing [17], [18], in which the combined model learns from the
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mistakes made by base models in the past. Model combination
could be viewed as a process to assign weights for each
sub-model and generate a weighted average prediction. For
example, given M base predictions {fm}

M
m=1, we could take

the simple average 1
M

PM
m=1 fm. Despite tremendous success

of ensemble learning in other areas, this approach is relatively
new for transportation applications. Bagging predictors, an
ensemble strategy, was previously studied by Sun [19] for
short-term traffic prediction. Hou et al. [20] recently used
random forests for traffic prediction in urban work zones.
Both of these methods rely on bootstrapping the training
set and train the model based on different sub-samples. The
two methods mentioned above are not in the multi-model
combination paradigm considered in this paper, since they
use a same simple model, but trained on different data. In
contrast, our approach belongs to the category of multi-model
ensemble learning, which combines the forecast from multiple
sub-models. The advantage of our method is to benefit from
model diversity and achieve more robust results. Recently,
other traffic researchers also suggested using multi-model
methods to handle uncertainties. Li et al. [21] applied Ridge
regression and Lasso regression to combine the output from
several traffic flow simulation models. Model aggregation by
neural network were also examined in [19], [22]. In neural
network models, frequent parameter updates are infeasible
due to the high computational cost during the training stage,
whereas our proposed method reduces to a convex quadratic
program, which could be solved efficiently. A fuzzy rule-based
system with Genetic Algorithm was proposed in [23].

In this work, we study a consensus combination of five
representative methods from time series modeling and ma-
chine learning, for the multi-step-ahead arterial roadway flow
forecasting problem. We conduct a systematic performance
evaluation of the base models and the ensemble model. The ex-
perimental procedure aims to mimic the application scenario.
Our ensemble learning method robustly combines the sub-
models. We found that our method consistently outperforms
simple average combination and two related multi-model
based traffic flow prediction methods [21], and improves
the sub-model forecast results even in the cases when the
other ensemble methods fail. We demonstrate how to make
automated consensus predictions from base methods without
resorting to intervention by traffic controllers after the system
has being employed.

II. BASE METHODS

In the traffic flow forecasting setting, flow data forms a
time series. In this work, we assume each flow time series
is univariate: flow forecasts for each detector are made sepa-
rately. Let [y1, y2, · · · , yt̂] denote a time series of historical
observations of the traffic flow. The measurement stream
arrives in a batch of l most recent observations in every l

steps. Predictions for the upcoming batch of measurements
[yt̂+1, yt̂+2, · · · , yt̂+l] are of interest. We assume that there is
an underlying autoregressive function f such that

yt+1 = f(xt) + ✏t+1

where xt = [yt�p+1, yt�p+2, · · · , yt]
T
2 Rp

The measurement yt+1 is a mapping from past values with
additive i.i.d. Gaussian white noise ✏t+1 ⇠ N (0,�2

✏ ). The
function f and its order p is unknown. A forecasting model
aims to approximate f and make an appropriate choice of p.

There are many traffic flow forecasting models proposed
in the literature. Our goal is to integrate existing method-
ologies and produce a consensus prediction. We do not have
restrictions on the specific base methods being used in the
consensus system. Nevertheless, we would like to include the
best methods from a variety of different types. We aim to
produce a consensus model that will be consistently better
than these base methods. In this section, we described several
base prediction methods used to test our system. The chosen
base models are representative from the following categories:
1. time series models; 2. latent variable models; 3. maximum-
margin machine learning methods; 4. kernel machine learning
methods; and 5. Bayesian models.

Fig. 1. Illustration of the time-series notation. This is a stem-plot of data
samples up to time t̂. The two boxes represent the training data matrices, with
observations X and responses Y . The curved lines indicate the samples that
are collected in each of the columns. For example, xt̂�l comprises samples
from t̂� l� p+1 to t̂� l, whereas yt̂�l comprises samples from t̂� l+1
to t̂.

In the following sections, let

xt = [yt�p+1, · · · , yt]
T
2 Rp

X = [xt̂�l�T̂+1,xt̂�l�T̂+2, · · · ,xt̂�l]
T
2 RT̂⇥p

yt = [yt+1, yt+2, · · · , yt+l]
T
2 Rl

Y = [yt̂�l�T̂+1,yt̂�l�T̂+2, · · · ,yt̂�l]
T
2 RT̂⇥l

.

(X,Y ) comprises the training data for each base model. A row
of X uses the p past observations as the explanatory variables,
and the responses are collected in Y . T̂ denotes the number of
flow samples used for training. Also let {Xk}k=1,··· ,p 2 RT̂

be columns of X , and {Yk}k=1,··· ,l 2 RT̂ be columns of Y .
The notations for time indices used in the subsequent sections
are given in Table I.

A. ARMAX

The ARMAX model for traffic flow prediction was studied
in [12]. The ARMAX model describes the evolution of traffic
flows over time via the stochastic difference equation

A(q�1)yt = B(q�1)ut + C(q�1)wt, (1)
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TABLE I
NOTATION USED FOR DIFFERENT TIME INDICES. ALL VARIABLES ARE

POSITIVE INTEGERS.

Variable Description

t Indices for time
t̂ Present time
l Verification and prediction horizon: number of time

steps before the new batch of observations arrived
p Dimension of xt in the base models
T̂ Number of past observations for training base models

where yt is the traffic flow at time step t, ut is the his-
torical sample average flow value at the same time of day.
wt is assumed to be a zero-mean innovation sequence such
that E (wtwt�j) = 0 for all 0  j  t. Here q

�1

is the backward shift operator defined by q
�1

yt = yt�1,
A(q�1), B(q�1), C(q�1) are scalar polynomials in the back-
ward shift operators

A(q�1) = 1 + a1q
�1 + · · ·+ anaq

�na

B(q�1) = 1 + b1q
�1 + · · ·+ bnbq

�nb

C(q�1) = 1 + c1q
�1 + · · ·+ cncq

�nc ,

where the order na, nb, nc are hyperparameters. Coefficients
of the polynomial are estimated via the recursive least squares
adaptation algorithm [12], [24].

B. Partial Least Squares
Coogan et al. [14] recently applied the Partial Least Squares

(PLS) technique to short-term traffic flow prediction. The key
idea of PLS is to maximally exploit the covariance between
flows in the prediction horizon and flows in the memory
window. Let x̄ 2 Rp be the sample mean in X , and ȳ 2 Rl be
the sample mean in Y . Subtract x̄T from each row of X and
denote the result as X̃ 2 RT̂⇥p. Similarly, denote Ỹ 2 RT̂⇥l

the matrix obtained by removing the sample mean ȳT from
each row of Y . PLS exploits covariance by finding a pair of
vectors (r⇤, s⇤) 2 Rp

⇥ Rl, such that

(r⇤, s⇤) = argmax
(r, s)

rT (X̃T
Ỹ )s, s. t. krk22 = ksk22 = 1,

(2)
Notice that X̃

T
Ỹ 2 Rp⇥l is the sample covariance matrix

of flows across different times. Intuitively, we seek a pair of
projection directions (r⇤, s⇤) in Eq. (2), which maximizes
the sample covariance after the projection. The optimization
problem in Eq. (2) could be solved by a partial SVD of X̃T

Ỹ ;
the optimal projection direction (r⇤, s⇤) are the first left and
right singular vectors respectively. Define w := X̃r⇤ 2 RT̂ .
The orthogonal projection of column vector X̃k and Ỹk onto
w are

pk :=
hX̃k,wi

kwk22

, k = 1, · · · , p

ck :=
hỸk,wi

kwk22

, k = 1, · · · , l

(3)

respectively. Collectively we have p = X̃Tw
kwk

2
2

and c = Ỹ Tw
kwk

2
2

,
which are called the first predictor component and first pre-
diction component respectively [14]. The outer-product wpT

provides a rank-one approximation to X̃ , and similarly wcT

is a rank-one approximation to Ỹ . Next, X̃ and Ỹ are deflated
to remove the effects contributed by the rank-one matrices,

X̃  X̃ �wpT
, Ỹ  Ỹ �wcT . (4)

Equation (2) and (3) and the deflation (4) is repeatedly applied
until we get N predictor and prediction components, i.e.,
a predictor component matrix P 2 Rp⇥N and a prediction
component matrix C 2 Rl⇥N . To make predictions for time
t̂ + k, where 1  k  l, first project flows in the memory
window onto the latent component matrix P :

ŵ = argmin
w
kxt̂ � x̄� Pwk22. (5)

The PLS predicted flow is then computed by

[fpls,t̂+1, · · · , fpls,t̂+l]
T = ȳ + Cŵ 2 Rl

, (6)

The formulation we apply here is essentially the NIPALS-
based PLS [25].

C. Support Vector Regression
Support vector machine (SVM) is one of the most suc-

cessful machine learning methods. The variant of SVM for
the regression setting is called the Support Vector Regression
(SVR) [26], [27]. Traffic flow prediction with SVR has been
previously studied in [28], [29].

The regression model is given by

fsvr(xt) = �(xt)
Tw + b, (7)

where � is a user-defined function that maps the flows during
the memory window into features in higher dimension, and b

is a bias term. We trained the SVR models separately for each
prediction time-step {t̂+ k}

l
k=1. The SVR objective function

at time t̂+ k is

min
w,b

t̂�lX

t=t̂�l�T̂+1

L✏(fsvr(xt)� yt+k) + �kwk2. (8)

This is called the structural risk minimization framework
[30], where the term L✏(fsvr(xt)�yt+k) is the empirical loss
we want to minimize from the training data, �kwk2 controls
the complexity of the model to avoid overfitting. � 2 R+ is a
hyperparameter balancing the two terms.

The loss function used in SVR is defined by

L✏(fsvr(x)� y) =

(
0, if |fsvr(x)� y| < ✏

|fsvr(x)� y|� ✏ otherwise.
(9)

Therefore, using L✏, we allow the learned model to deviate
from the true data by a margin ✏ without penalty, where ✏ �

0 is supplied by the user. Equation (8) can be transformed
into a quadratic programming formulation by introducing slack
variables [26], [31]. Many state-of-the-art solvers for SVR use
sequential minimal optimization (SMO)-type algorithms [32],
[33]. In our experiments, we used the MATLAB SMO solver
and the MATLAB SVR default hyperparameter values for �

and ✏. After the optimal w⇤ and b
⇤ for time t̂+ k is learned,

the SVM predicted flow is produced by

fsvr,t̂+k = �(xt̂)
Tw⇤ + b

⇤
. (10)
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D. Kernel Ridge Regression

In kernel ridge regression (KRR), traffic flows in the mem-
ory window are first transformed by a mapping xt 7! �(xt),
then future flows {yt+k}

l
k=1 are modeled by linear transfor-

mation of �(xt). For simplicity, we assume that xt and yt are
mean-centered by subtracting the sample average flows from
each data point. Ridge regression balances the squared error
and model complexity by solving

min
w

t̂�lX

t=t̂�l�T̂+1

�
yt+k � �(xt)

Tw
�2

+ �kwk22, (11)

where � 2 R+ is a hyperparameter. The regularization term
�kwk22 prevents overfitting of the model. By the Representer
theorem [34], there is a vector ↵ 2 RT̂ , such that the optimal
solution vector w⇤ for Eq. (11) can be expressed as

w⇤ =
t̂�lX

t=t̂�l�T̂+1

↵t�(xt) = �T↵, (12)

where �T = [�(xt̂�l),�(xt̂�l+1), · · · ,�(xt̂�l�T̂+1)]. Substi-
tuting the weight representation in Eq. (12) into Eq. (11), we
have

min
↵

t̂�lX

t=t̂�l�T̂+1

�
yt+k � �(xt)

T�T↵
�2

+ �↵��T↵

= min
↵
kYk � ��T↵k22 + �↵��T↵

= min
↵
kYk �K↵k22 + �↵K↵,

(13)

where Yk 2 RT̂ is a vector of flows [yt+k]
t̂�l
t=t̂�l�T̂+1

, and
K := ��T . Notice that we can avoid explicitly constructing
the transformed explanatory variables �(xt) in equation (13)
by specifying a kernel function k such that Kij = k(xi,xj) =
�(xi)T�(xj). In addition, Eq. (13) is unconstrained and con-
vex, which allows an analytic solution. Setting the gradient of
the objective function with respect to ↵ to zero, the optimal
solution is given by

↵⇤ =
�
K + �I

��1
Yk. (14)

After ↵⇤ is obtained, the optimal solution to equation (11) can
be computed as w⇤ = �T↵⇤. The time t̂+ k prediction is

fkrr,t̂+k = �(xt̂)
T
�
�T↵⇤

�
=

t̂�lX

t=t̂�l�T̂+1

↵
⇤

t k(xt̂,xt). (15)

Again, the mapping � does not come into play directly, the
computation can be entirely done via the kernel.

E. Gaussian Process Regression

Gaussian process regression (GPR) is a non-parametric
Bayesian method closely related to kernel ridge regression.
Xie et al. applied Gaussian process regression for inter-state
highway flow prediction [35]. GPR differs from kernel ridge
regression mainly from the model derivation procedure and
the use of Bayesian posterior distribution. In this work, we

use the Gaussian process regression model described in [31],
[36]. For time t̂+ k, the flow is modeled by

yt̂+k = fgpr,t̂+k(xt̂) + ✏

fgpr,t̂+k ⇠ GP

⇣
0, k(x,x0)

⌘

✏
i.i.d.
⇠ N (0,�2)

(16)

where GP

⇣
0, k(x,x0)

⌘
denotes a Gaussian process with co-

variance matrix parametrized by the kernel function k(x,x0).
We assume the residual ✏ is independent of fgpr,t̂+k. The zero-
mean Gaussian process is used here, since, without loss of
generality, the sample mean of flow values can be subtracted
from yt [35]. Under model (16), the covariance between traffic
flows at t and t

0 is

cov(yt, yt0) = �fk(xt,xt0) + �
2
�tt0 , (17)

where �tt0 is a Kronecker delta function which equals 1 if t =
t
0, and 0 otherwise. The joint distribution between historical

flows Yk and the modeled flow fgpr,t̂+k(xt̂) is


Yk

fgpr,t̂+k

�
⇠ N

✓
0,


k(X,X) + �

2
I k(X,xt̂)

k(xt̂, X) k(xt̂,xt̂)

�◆
. (18)

The posterior predictive distribution [36] of fgpr,t̂+k, condi-
tional on xt̂ and historical flows, is

p

⇣
fgpr,t̂+k|xt̂, Yk, X

⌘
= N

⇣
µgpr,t̂+k, cov

�
fgpr,t̂+k

�⌘

There are closed-form formulas to compute the posterior mean
µgpr,t̂+k and posterior covariance cov

�
fgpr,t̂+k

�
[36]. We

use the posterior mean µgpr,t̂+k as Gaussian process point
estimation for flows at time k, i.e., fgpr,t̂+k := µgpr,t̂+k.

III. ENSEMBLE LEARNING

Use {fmt}
M
m=1 to denote a collection of forecasts from M

models at time t. In practice, it will often be necessary to
select a single forecast. Therefore, combining the results from
individual predictors will be valuable in practice - a consensus
outcome potentially improves robustness and prediction accu-
racy. We propose a new consensus ensemble model with the
following algorithmic contributions:

1. a time-dependent loss function exploiting the temporal
data characteristics;

2. a new covariance-based regularizer to balance model
diversity and accuracy to learn the parameters;

3. a pruning scheme to safe-guard against prediction
anomaly.

Traditionally, consensus ensemble methods build a meta-
model by convex combination of the base models.

f̄ =
MX

m=1

�mfm,

MX

m=1

�m = 1, �m � 0 8m

Stack regression is a classical consensus ensemble methods
in machine learning for computing the weights {�m}

M
m=1. In

many machine learning applications, stack regression implic-
itly assumes that samples in the training set and test set are
independently distributed. The training data is shuffled and
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↵ct +
MX

m=1

�mfm

Learning ensemble parameters

f1

f2

...

fM

Pruning by
Algorithm 1

ct
Error-

correction term

f̄
Ensemble
prediction

output from M base predictors

Fig. 2. Overview of the consensus ensemble method proposed in this paper. ↵ and {�m}Mm=1 are ensemble parameters learned from data.

partitioned. Parts of the training set is used for fitting the sub-
models, and the left-out training data is used for computing
the ensemble weights. In the traffic flow time series predic-
tion setting, due to inherent seasonality and other temporal
correlations, the shuffling and leave-out operations change the
empirical distribution. It is not reasonable to remove some
observations yt<t̂ and train the base models using samples
before and after the removed observations. Therefore, it is
necessary to modify stack regression by building the meta-
training set in a sequential manner, without data shuffling. We
describe a rolling training procedure in more detail in section
IV-B. In addition, recent data might be more representative
than older ones in a temporal prediction task. Finally, the
prediction errors may be correlated over time. With these
concerns in mind, we now describe our ensemble model for
consensus traffic prediction. Figure 2 provides an overview of
our proposed ensemble learning method.

A. Unsupervised Pruning
The proposed system has four stages as outlined in Figure

2. In the first stage, the predictions from individual models are
produced. Each base prediction method has its own degree of
robustness against noise and corruptions in the data. Some
base learners may occasionally produce unexpected abnormal
predictions due to observation noise. A base model may
behave well in training, but make an anomalous prediction
due to noise or corruptions in the most recently collected
data. Therefore, if an anomalous prediction is included in
the ensemble model in the third and fourth stages, the final
consensus prediction will be affected. Hence, we propose a
rule-based pruning step as a safe-guard against prediction
outliers before ensemble learning steps.

Algorithm 1 Pruning prediction outliers
1: function PRUNING(�, {fmt}

M
m=1)

2: fmax := max{fmt,m = 1, · · · ,M}

3: fmin := min{fmt,m = 1, · · · ,M}

4: fmedian := median{fmt,m = 1, · · · ,M}

5: if fmax > � ⇤ fmedian then
6: remove fmax at this timestep
7: else if fmin < (1/�) ⇤ fmedian then
8: remove fmin at this timestep

The pruning (algorithm 1) takes a threshold � as input. It
then discards predicted values that are outside of an interval

about the median with size proportional to �. This pruning
scheme is similar to scoring rules used in many sports. For
example in synchronized swimming, the highest score and the
lowest score are cancelled, and the team’s final score is based
on the average of the remaining. In our experiments, we show
the ensemble predictions are much more robust with the help
of pruning.

B. Ensemble Model

The model we propose exploits possible temporally corre-
lated prediction errors. Denote f̄t the consensus forecast at
time t. Recall that a new batch of measurements is provided
every l steps. Let tv (v for verification) be the time at which
yt is provided. Define the error-correction term

ct :=

PT 0
�1

t0=0 w(t0; ✓)
�
ytv�l�t0 � f̄tv�l�t0

�
PT 0�1

t0=0 w(t0; ✓)
, (19)

where T
0 is the number of time-steps used to compute ct

from historical predictions and observations. In equation (19),
the decay-function w(·; ✓) is a monotonically non-increasing
function in the first argument, which down-weights the differ-
ence y⌧ � f̄⌧ for order ⌧ . ✓ is the decay-rate hyperparameter
which controls how fast w(·; ✓) decreases. There are many
decay-functions proposed in the literature, for example, the
exponential decay defined by wexp(⌧ ; ✓) := exp(�⌧✓) and
the polynomial decay wpoly(⌧ ; ✓) := (1 + ⌧)�✓ [37]. For both
decay-functions, setting ✓ = 1 is equivalent to placing equal
weights for all samples, whereas larger ✓ discriminate against
older ones. The proposed ensemble model is parametrized by

f̄t = ↵ct +
MX

m=1

�mfmt. (20)

ct is a removing average of differences between actual flow
values and ensemble predictions from the most recent T

0

observations, which serves as a error correction term. ↵, {�m}

are parameters to be optimized in our model. We proposed the
Time Decay Error-Correction Ensemble to learn the model
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parameters ↵, {�m}

min
↵,{�m}

T�1X

t=0

w(t; ✓)

 
yt̂�1�t � ↵ct̂�1�t �

MX

m=1

�mfmt̂�1�t

!2

+ �

0

@
X

m

�
2
mcvar(fm) +

X

m

X

m0 6=m

�m�m0dcov(fm, fm0)

1

A

subject to
MX

m=1

�m = 1, �m � 0 8m, L  ↵  U.

(TDEC)
Here T is another user-given hyperparameter to control the
number of training samples supplied to the ensemble model.
The loss function in TDEC also weights the training samples
by a decay term w(·; ✓). The minimization spells more on
the loss due to recent data. The term involving � in the
objective is a regularizer. Intuitively, we are seeking for {�m}

to balance between the weighted l2 loss and variance of the
ensemble model. dcov(fm, fm0) is the estimated covariance
between model m and m

0. The choice of dcov is important, but
accurate estimation of the covariance is difficult. We described
the principle behind the covariance-regularizer and our choice
of dcov in the section III-C. The bounds L and U prevent
overfitting by the error-correction term. The procedure to select
the hyperparameters ✓ and �, and the number of time-steps T 0

in the error-correction term is discussed in section IV.

C. Bias-Variance-Covariance Decomposition
In this section, we explain the intuition behind the

covariance-regularizer in TDEC. The goal of statistical learn-
ing is to select a function f̂ to minimize the expected gener-
alization error of a loss function L,

min
f̂

E
⇣
L(y, f̂(x))

⌘
.

The expectation here is averaged over all possible randomness,
including the unknown data distribution (y,x) and random
training set T . In regression problems, when L(y, f̂(x)) =
(y � f̂(x))2, the generalization error conditional on an input
x could be decomposed by

E✏,T

⇣
(yt � f̂(x))2

⌘

=�
2
✏ +

⇣
E✏,T f̂(x)� f(x)

⌘2
+ E✏,T

⇣
f̂(x)� E✏,T (f̂(x))

⌘2

=�
2
✏ + bias2(f̂(x)) + var(f̂(x)),

(21)
where subscripts under the expectation operator denote the
random variables. This is called the bias-variance decomposi-
tion [38] and it holds for all data distributions and estimated
models f̂ . For an ensemble model given by f̄ =

P
m �mfm,

the variance term reduces to

var(f̄(x)) =
X

m

�
2
m var(fm)+

X

m

X

m0 6=m

�m�m0 cov(fm, fm0).

(22)
Therefore the purpose of the regularizer in TDEC is to
strike the right balance between the bias and variance of the
ensemble model and achieve a lower expected generalization

error. Since we do not know about the true data generating
distribution (y,x), we replaced the minimization of expected
l2 error by empirical weighted l2 error from the past T time
steps in TDEC. Similarly, we need to estimate Ex

�
var f̄(x)

�
.

Recall that the cov(fm(x), fm0(x)) considers randomness in
the training set which produced fm. Therefore, a straightfor-
ward estimation of the covariance between base learners is to
retrain the model using different training data and compute
the sample covariance of predictions for each x. However,
this approach is computationally expensive. Note that we do
not consider the error-correction term as a predictor and the
coefficient ↵ does not enter covariance-regularizer and the
sum-to-one equality constraint.

D. Covariance Matrix
Based on the above discussion, we now describe the form

of the estimated covariance matrix used in this paper. Let t̂ be
the current time,

dcov(fm, fm0) =

PT�1
t=0 w(t; ✓)(fmt̂�1�t � µm)(fm0 t̂�1�t � µm0)

PT�1
t=0 w(t; ✓)

,

(23)
where µm is an extension of the definition of simple mean,
defined by

µm =

PT�1
t=0 w(t; ✓)fmt̂�1�tPT�1

t=0 w(t; ✓)
. (24)

This definition of dcov takes time-stamps into account and
reduces the influence of older predictions. We define the
estimated covariance matrix b⌃ 2 RM⇥M as

b⌃mm0 =dcov(fm, fm0). (25)

b⌃ is symmetric and positive semi-definite. Note that the
covariance (and variance) function in TDEC is not restricted
to be the one in equation (23). In general, we expect that
better approximations to Ex [cov(fm(x), fm0(x))] may serve
as more effective regularizers.

E. Optimization
In this section, we demonstrate how to solve TDEC via a

transformation into a convex quadratic programming problem.
Define

w := [↵,�1, · · · ,�M ]T 2 RM+1
,

y := [yt̂�T , yt̂�T+1, · · · , yt̂�1]
T
2 RT

,

P :=

0

BBB@

ct̂�T f1t̂�T · · · fMt̂�T
ct̂�T+1 f1t̂�T+1 · · · fMt̂�T+1

...
...

...
...

ct̂�1 f1t̂�1 · · · fMt̂�1

1

CCCA

⇤ := diag (w(T � 1; ✓), · · · , w(0; ✓)) 2 RT⇥T

S :=

✓
0 0T

M

0M
b⌃

◆
2 R(M+1)⇥(M+1)

,

where 0M 2 RM , b⌃mm0 := dcov(fm, fm0). Also, let 1M be
a vector of ones, and IM⇥M be the identity matrix of size
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M . TDEC can then be written as a quadratic programming
problem

min
w

(y � Pw)T ⇤ (y � Pw) + �wT
Sw

⇥
0 1T

M

⇤
w = 1

⇥
0M IM⇥M

⇤
w � 0(M+1)⇥

1 0T
M

⇤
w � L

⇥
1 0T

M

⇤
w  U.

(TDEC-QP)

Therefore, solving TDEC-QP is not a more difficult problem
than stack regression.

IV. EXPERIMENTS

To assess the performance of consensus ensemble predic-
tion, we test the base methods and ensemble methods on
arterial traffic flow. We believe arterial flow forecasting is a
more difficult task than freeway flow forecasting, because of
its more variable road conditions.

A. Data Description

We conducted experiments on traffic flow data collected
from arterial sensors in Arcadia, CA in 2015. The raw data
is processed into traffic flow time series whose consecutive
measurements are separated by a fifteen minute interval,
measured in number of cars per hour.

B. Experimental Procedure

Traffic control centers receive flow measurements periodi-
cally. Using historical data and sensor readings from the recent
past, traffic operators wish to make multi-step traffic forecasts
into the near future. In our experiments, we considered the case
where traffic flow measurements are sent to the control center
every hour, and forecasts for the following hour is desired.
Hence, each prediction consists of four time-steps separated
by intervals of fifteen minutes. For instance, using historical
data and today’s traffic flow up to 7 AM, the flow predictions
at 7:15 AM, 7:30 AM, 7:45 AM and 8:00 AM are computed.
After that, the true flow at these times are “observed” by the
algorithms, and predictions for the next hour are made. Using
the notation from the previous sections, the verification and
prediction horizon is l = 4 in this setting. Notice that under
this rolling procedure, we never use flows after the forecasting
time-step in the prediction algorithms.

In the proposed consensus prediction system, there are
two levels of training required - one for the base methods
and additional training for the ensemble TDEC. For each
prediction step t, we first train the base models and make
base predictions for this step. Next, the pruning procedure
(Algorithm 1) removes anomalous base forecasts. After that
we query historical flow observations and the past T base
predictions to formulate problem TDEC. Optimal solutions
from TDEC-QP are then used to construct the consensus
forecast. The base model parameters and ensemble parameters
↵, {�m}

M
m=1 are updated in every time-step.

We use the following metrics for comparing the perfor-
mance of different base methods and the consensus method.
The absolute error of method m at time t is defined as

AE(t) = |yt � fmt|

which quantifies for the magnitude of the prediction error. The
mean absolute error (MAE) is the mean of AE in all tested time
steps. In addition to the mean, we are interested in the standard
deviation

StdAE =

s P
t(AE(t)� MAE)2

number of steps evaluated� 1
.

StdAE provides a view on the robustness of a model. When
the MAE of two models are close, the one with lower StdAE
is preferred.

C. Automatic Hyperparameter Search
We now describe the selection of hyperparameters in TDEC.

In general, hyperparameter optimization is expensive and
requires repeated model evaluation. We use two hyperparame-
ter search strategies, grid search and random search. Given
the traffic flow time series, let tH be a cut-off time such
that measurements before tH are used for constructing the
hyperparameter validation set V , and measurements after tH

are use for testing. Note that with the rolling training process
described in section IV-B, there is a cold-start period, which
is the minimum number of time-steps needed to train the base
models, plus an additional T steps needed to verify the base
predictions and build the consensus model.

In grid search, a set of candidate hyperparameters are
specified. Denote H(✓) the set of decay rate hyperparameters,
H(�) the set of regularization hyperparameters in TDEC, and
H(T 0) the number of time-steps used to compute the error-
correction term in equation (19). In our experiments, we let

Hgrid = H(✓)⇥H(�)⇥H(T 0),

H(✓) = {0, 0.05, 0.1, 0.15},

H(�) = {0, 1, 3, 5},

H(T 0) = {8, 40, 80}.

(26)

Grid search evaluates all configurations in Hgrid. The ensemble
model enumerates all possible hyperparameter configurations
in the grid search space Hgrid and uses the exponential decay-
function wexp(t; ✓) = exp(�t✓). For each hyperparameter
choice, the MAE on validation set V is recorded. The one
that achieves minimum MAE on V is chosen. Hyperparameter
grid search in high dimension is computationally expensive.
For N hyperparameters and each with c possible values,
grid search procedure results in O(|V|cN ) model evaluations.
Random search is an alternative to grid search, which does not
enumerate all possible hyperparameter settings. Rather, each
pass over the validation set randomly selects a configuration
from the search space. Many researchers have suggested that
random search is very competitive in high dimension, due
to the curse of dimensionality [39]. Recall that the decay-
function appears in the error-correction term (equation (19)),
in the weighted l2 loss term of TDEC, and in the estimated
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Fig. 3. Area plot of percentage of best predictions by each method. Area of
the strips are proportional to the percentage.

covariance matrix (equation (23)). The dimension of hyperpa-
rameters are expanded if we let each component adapt its own
parametrization of decay-function w(·; ✓) and decay-rate ✓. In
addition, the lower bound L and upper bound U for the error-
correction coefficient could also be tuned. We apply random
search for hyperparameters from the following search space:

Hrandom = H(wloss)⇥H(wec)⇥H(wcov)

⇥H(✓loss)⇥H(✓ec)⇥H(✓cov)

⇥H(�)⇥H(T 0)⇥H(L,U),

H(wloss),H(wec),H(wcov) = {exp(�t✓), (1 + t)�✓
}

H(✓loss),H(✓ec),H(✓cov) = {0, 0.05, 0.1, 0.15},

H(�) = {0, 1, 3, 5},

H(T 0) = {8, 40, 80},

H(L,U) = {L,U 2 [0, 1], L  U}.

(27)
Similar to grid search, the hyperparameter configurations
producing the lowest MAE from the random search will be
used in the testing set. In our experiments, we make 50
uniform random draws from Hrandom. Note that the embedding
dimension p for xt, and the training set size T̂ , T may also
be tuned. For comparison in later sections, we set p = 48 (12
hours), T̂ = 120 ⇤ 24 ⇤ 4 (120 days), T = 20 ⇤ 4 (80 hours).

We use the function fitrsvm for SVM and fitrgp for
GPR from Matlab Machine Learning and Statistics toolbox
with their heuristic default values for the hyperparameters
[40], [41]. We implement PLS and KRR and apply simi-
lar default heuristics for hyperparameter configuration (see
supplementary document). The tables and figures reported in
the paper are obtained from base methods with their default
hyperparameters. Although the hyperparameters for each base
method could be fine-tuned with grid search, we do not find
it impactful on the prediction quality of ensemble models
substantially. The complete experiment details with tuning can
be found in the supplementary file.

D. Overview of Results

One of the motivations for developing a consensus method
is that it is unlikely that a single base prediction could
consistently outperform others all the time. We verify this
hypothesis by comparing the absolute error obtained by the
base methods across different time and on different detectors.

For each prediction step, a method is marked as the winner if it
achieves the lowest absolute error. We compare the percentage
of testing days achieving the lowest absolute error by each
method at different time. The result is visualized by the area
plot in figure 3, in which each method is represented by a
shaded strip. The width and area of each strip is proportional
to the percentage of testing days won by the respective method.
From figure 3, there is no single strip whose area dominates
the plot. In addition, the strips are in zig-zag shapes. It is
not easy to identify a base method that consistently won over
a continuous portion of the day. This motivates us to study
a model combination approach for flow prediction. Figure 4
displays a showcase of the results on three consecutive days
randomly selected on a detector. Despite wide ranges of base
predictions around the morning rush hours, the ensemble
predictions TDEC closely aligned with the actual value of
flows.

E. Baseline and Experimental Goals
Model combination has been studied in many domains, for

example, machine learning [17], [38], [42] and econometrics
[43]–[45]. Despite a large body of literature in this area,
a common empirical observation in many areas is that the
simple average combination which assigns equal weights for
the base methods often outperforms complicate combination
schemes [44], [46]. This is known as the “forecast combi-
nation puzzle” in the statistical forecasting literature [44],
[46]. Some authors suggested that the weights learned from
historical data are unstable and unreliable, as a consequence
of overfitting [45], [46]. Therefore, we use simple average
combination as a baseline to compare with. A second baseline
is the base method achieving the lowest MAE and StdAE
for each detector. We are interested in 1. examining whether
the proposed ensemble prediction improves over the simple
average combination and best base method. 2. studying which
components in the proposed ensemble model contribute to
the performance improvement or decline. We also compare
our method with two multi-model combination methods in
traffic flow forecasting literature in section IV-H. Note that
we do not compare the performance of TDEC with bagging
and random forest [19], [20], since our study focus on multi-
model combination schemes, whereas random forest uses the
same “weak learner” together with data sub-sampling strategy.

F. Effect of Pruning
In the proposed ensemble system, the pruning scheme

may be applied prior to solving the optimization problem
TDEC in each time-step. We run the rolling experiments to
compare the performance with and without the pruning step.
The motivation of unsupervised pruning step is to safeguard
the procedure against unrealistic base predictions. Table II
displays the mean absolute error and standard deviation for
the following methods: • TDEC-rs, model TDEC where the
hyperparameters are automatically selected by the random
search procedure outlined in section IV-C • TDEC-gs such
that the hyperparameters are set by grid search • SR, Stack
regression [18] applied to the rolling experiment setting •
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Fig. 4. Predicted flow values and the true flow in three consecutive days. Despite a wide range of base predictions, the ensemble is closer to the true flow.

AVG, simple average combination of the base methods. In
addition, the sub-columns marked by � = 5 indicate threshold
of the pruning scheme, � =1 indicate no pruning.

For each detector, the lowest MAE is achieved either by
TDEC-gs or TDEC-rs. On 12 out of 14 detectors, TDEC (-gs
and -rs combined) obtained the smallest StdAE. Table III lists
the percentage reductions in MAE and StdAE with different
values of �, compared to no pruning for each method, averaged
from all tested detectors. A positive percentage change denotes
an improvement, a negative percentage implies decline in
performance. The pruning criterion is designed to be less
sensitive with larger �. Note that there are improvements to
the MAE and StdAE with all three values of �.

In table II, TDEC-rs and TDEC-gs with � = 5 outperforms
simple average combination with � = 5 in almost all the
detectors. However, if the pruning scheme is removed, TDEC-
gs with � = 1 produced higher standard deviation than
AVG with � = 1 in 5 of 14 cases. Therefore, the pruning
scheme is necessary to produce stable results and consistent
improvements over simple average combination. In addition,
TDEC (-rs and -gs combined) with the pruning step achieved
lower mean and standard deviation of absolute error on all
detectors compared to the best base method. This shows that
the proposed ensemble model could indeed be used to integrate
existing base methods.

G. Effect of Hyperparameters

The upper panel in Table IV displays the average percentage
reductions in MAE and StdAE obtained by each ensemble
method combined with the pruning scheme compared to the
best base model on all detectors, the lower panel shows
the maximum improvement of MAE and StdAE among the
fourteen tested detectors. A higher value indicates greater
improvements. On average, TDEC, with hyperparameters se-
lected either by random search (-rs) or grid search (-gs),
outperformed stack regression (SR) and simple average com-
bination (AVG). The improvements by the ensemble methods
are less pronounced when � = 10. In addition, TDEC
with random search resulted in greater improvements over
the best base model than TDEC with grid search scheme,
likely due to the enlarged hyperparameter search space we
allowed. In our experiment, we use 50 random draws from
the search space Hrandom. As a result, this requires 50|V|

TABLE II
COMPARISON OF CONSENSUS AND BASE PREDICTORS. LOWER VALUES
ARE BETTER FOR BOTH METRICS. BEST VALUES FOR EACH DETECTOR

ARE SHOWN IN BOLD FONT.

Mean Absolute Error MAE

ID TDEC-rs TDEC-gs SR AVG Ridge Lasso Best Base
� = 5 � = 5 � = 1 � = 5 � = 1 � = 5 � = 1 � = 5 � = 1 � = 5 � = 1

1 126.6 126.8 128.2 127.9 129.1 129.2 141.3 131.2 133.3 152 154.3 135.2 KRR

2 55.8 56.2 60.3 56.7 60.9 57.1 64.8 59.2 62.4 73.1 75.5 57.1 KRR

3 42.4 42.4 46.7 42.8 47.5 44.1 46.5 43.1 47.8 47.2 51.5 45.7 KRR

4 45.2 45.2 47.5 45.5 47.7 46.7 59 47.3 49.7 63.4 66.5 45.2 KRR

5 45.1 45.1 47.3 45.2 47.7 45.4 51.8 46.3 48.7 62.7 64.8 45.1 SVR

6 35.2 35.3 34.6 35.9 34.8 39.9 39.8 36.4 35.9 60.2 60.2 42 KRR

7 35 35.1 34.8 35.2 34.9 36.1 35.9 35.8 35.7 42.3 42.1 37.4 KRR

8 34.3 34.5 34.5 34.3 34.3 35.2 35.4 35.5 35.5 37.1 37.2 36.6 KRR

9 29.4 29.5 31.5 30.1 31.9 30.3 35.2 30.7 32.7 33.5 34.9 30.7 KRR

10 29.2 29.2 31.2 29.3 30.9 29.5 31.1 30.2 32.1 31.1 32.6 30.3 SVR

11 17.3 17.4 18.2 17.4 18.1 17.3 17.9 17.7 18.3 23.6 24.2 17.6 SVR

12 10.4 10.4 10.5 10.4 10.5 10.4 10.5 10.6 10.7 12.7 12.8 10.8 SVR

13 9.7 9.7 9.8 9.7 9.8 9.8 9.8 9.9 10 12.2 12.3 9.9 GPR

14 8.4 8.5 8.4 8.5 8.4 8.6 8.6 8.6 8.5 9.9 9.8 9 SVR

Standard Deviation of Absolute Error StdAE

ID TDEC-rs TDEC-gs SR AVG Ridge Lasso Best Base
� = 5 � = 5 � = 1 � = 5 � = 1 � = 5 � = 1 � = 5 � = 1 � = 5 � = 1

1 131.2 131.6 146.6 133.4 147.5 138.2 562.4 135.2 155 165.3 177.5 146.8 KRR

2 54.3 55 153.8 55.6 160.1 56.9 157.3 56.7 133.6 66.1 111.3 55.3 KRR

3 38.7 38.4 264.2 39.2 298.9 41.5 156.5 39.5 297.7 41.8 257.3 44.3 KRR

4 42.1 43.5 67.4 44 62.9 45.6 228.3 45.9 68.6 56.5 66.7 44 KRR

5 39.2 39.1 86.6 39.3 110.8 39.6 355.9 40 112.5 51.6 109.1 39.3 SVR

6 45.6 46.3 45.3 47.4 45.2 52.6 49.1 47 46.2 56.6 56.7 54.7 KRR

7 32 32.2 31.8 32.6 31.8 33.8 32.6 33.5 33 38.6 37.9 35.7 KRR

8 32.6 32.3 32.4 32.6 32.6 34.7 35.3 33.4 35.5 33.4 33.4 39 KRR

9 32.5 32.8 63.2 33.5 62.2 33.3 155.2 34.2 63.5 36.6 53.5 33.6 KRR

10 32.9 33.2 142.1 33.3 134.2 32.9 120.6 34.3 131.3 34.4 112.6 33.6 SVR

11 15.9 16.2 52 15.9 45.5 15.6 36.1 16.3 38.7 20.2 39.6 16.2 SVR

12 8.6 8.7 10.3 8.6 10.4 8.7 9 8.8 10.5 10.6 11.7 9.2 SVR

13 7.8 7.9 8.7 7.9 8.5 7.9 8.5 7.9 8.5 9.7 10.1 8 GPR

14 6.9 7 6.9 7.1 6.9 7.1 6.9 7.1 7 8.1 8 7.3 SVR

TABLE III
AVERAGE PERCENTAGE REDUCTIONS IN MAE AND STDAE OF ENSEMBLE

METHODS WITH PRUNING, COMPARED TO NO PRUNING (� = 1).

MAE StdAE
� TDEC-rs TDEC-gs SR AVG TDEC-rs TDEC-gs SR AVG

3 3.3 3 2.9 6.1 33.2 33.2 32.7 42.1
5 3.4 3 2.8 5.8 33.3 33.1 32.6 42.1

10 2.9 2.5 2.5 5.1 31.8 31.8 31.5 41.5

model evaluations of TDEC, where |V| is the number of time-
steps in the hyperparameter validation set V . Note that grid
search from Hgrid requires |V| ⇥ 32 ⇥ 42 model evaluations.
Hence, random search is more efficient and effective than
grid search for selecting hyperparameters in our experiments.
This observation is consistent with others in the literature
on hyperparameter optimization. Some theoretical analysis
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Fig. 5. Percentage Reduction in MAE and StdAE of ensemble methods with
pruning (� = 5), compared to the best base method. Higher values are better
for both metrics.

TABLE IV
AVERAGE AND MAXIMUM PERCENTAGE REDUCTIONS IN MAE AND STDAE
OF ENSEMBLE METHODS WITH PRUNING, COMPARED TO THE BEST BASE

METHOD. HIGHER VALUES ARE BETTER FOR BOTH METRICS. BEST
VALUES FOR EACH DETECTOR ARE SHOWN IN BOLD FONT.

Average Percentage Reduction
MAE StdAE

� TDEC-rs TDEC-gs SR AVG TDEC-rs TDEC-gs SR AVG

3 4.6 4.5 4 2.5 6.5 6 5.3 3.4
5 4.7 4.4 3.9 2.1 6.6 5.9 5.1 3

10 4.3 4 3.6 1.3 4.2 3.3 3.2 0.5

Maximum Percentage Reduction
MAE StdAE

� TDEC-rs TDEC-gs SR AVG TDEC-rs TDEC-gs SR AVG

3 15.6 15.9 14.5 6.5 16.7 16.9 16.2 10.6
5 16.3 15.9 14.6 5.1 16.3 17 16.3 10.8

10 16.3 16.2 15.3 8.7 15.9 17 16.4 9.4

suggests that because models typically have non-homogeneous
sensitivity with respect to different hyperparameters and data
distributions, grid search spends too much time exploiting less
sensitive hyperparameters [39].

H. Compare with Other Multi-Model Methods
We compare our proposed method with other multi-model

combination strategies for traffic forecasting to further evaluate
its performance. The Ridge Regression Ensemble and Lasso
Ensemble were proposed by Li et al. [21] for freeway traffic
estimation. This work shares the same motivation with ours,
that “any models existing are imperfect and have their own
strengths and weakness”. Using the same notations from
section III-E, the Ridge Regression Ensemble solves

min
w
ky � Pwk22 + �ridge kwk

2
2 , (28)

and Lasso Ensemble solves

min
w
ky � Pwk22 + �lasso kwk1 , (29)

to obtain the ensemble weights. In Ridge Regression En-
semble, the penalty term �ridge kwk

2
2 forces shrinkage of the

solution to avoid overfitting. The l1-norm penalty in Lasso En-
semble produces a sparse solution, hence fewer base methods
will be selected in the ensemble than the one obtained from
a least square fitting. Comparing our method TDEC-QP and
equation (28) in Ridge Regression Ensemble, the covariance
penalty term in TDEC-QP could be viewed as a generalization
to the euclidean norm penalty. Also, it is noteworthy to
point out that neither Ridge Regression Ensemble nor Lasso
Ensemble requires the weights to be summed-to-one and non-
negative. We run the same base methods and compute the
ensemble prediction with equation (28) and equation (29),
with the regularization parameter �ridge and �lasso selected
via grid search from {0.1, 1, 3, 5} on the validation data.
Both ensemble methods are tested with and without applying
the pruning procedure (Algorithm 1). The MAE and StdAE
for each detector under the Ridge Regression Ensemble and
Lasso Ensemble are listed in Table II. The Lasso Ensemble
predictions, somewhat surprisingly, underperformed the best
base method in all detectors; however, this result is consistent
with the one reported in [21], in which the authors found Lasso
Ensemble improves freeway traffic density (in vehicles per
kilometer per lane) estimate but worsen flow rate prediction in
many cases. The relative improvements of TDEC-QP, simple
averaged combination, and Ridge Regression Ensemble over
the best base method for each detector are displayed in figure
5. For each bar, positive value denotes improvement and
higher is better, vice versa. Our method outperforms Ridge
Regression Ensemble and simple averaging in almost all the
detectors in both MAE and StdAE. Moreover, TDEC-QP
offers improvement over the best base method even when
the other two multi-model methods fail (detector 2, 4, 9, 10,
11). In addition, simple averaging performs better than Ridge
Regression Ensemble in more than half of the cases. This
observation confirms simple average combination is indeed a
very strong baseline [44], [46].

I. Discussion on Computational Time
There are two major computational stages when running the

system proposed in this paper. The first stage is to train the
base models and generate predictions from each of them. The
second stage is to obtain the ensemble parameters via solving
a convex quadratic programming problem TDEC-QP. The first
stage is common for most multi-model based ensemble meth-
ods, for example, Ridge Regression Ensemble [21] discussed
in the previous section. Table V shows the running time in
seconds spent by different components of our system in a one-
hour-ahead traffic forecast scenario. The numbers reported are
the average from ten runs. In our problem setting (section
IV-B), the base models and ensemble model TDEC-QP are
refitted every hour. Four predictions spanning one hour are
produced after the model fitting. Solving convex quadratic
programming based problem is much more efficient than
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parameter optimization in neural network, which makes our
ensemble method computationally more feasible than neural
network-based ensemble model for online traffic flow forecast
[19], [22]. In our Matlab implementation, the total time needed
to finish an ensemble four-step-prediction is in the order of
seconds (table V). The running time for solving TDEC-QP
is 0.02 seconds on average. Therefore in real operation, the
computational time attributed to model fitting and predictions
is only a tiny fraction of the one hour time budget. Obtaining
a solution for Ridge Regression Ensemble takes only 0.003
seconds on average, since there is a closed-form formula
available. A non-smooth convex optimization problem needs
to be solved for Lasso Ensemble. On average, the running time
with Matlab built-in lasso function takes 0.02 seconds.

TABLE V
TEN-RUN-AVERAGED RUNNING TIME (SECONDS) SPENT BY DIFFERENT

COMPONENTS OF THE SYSTEM FOR ONE-HOUR-AHEAD FORECAST, MODEL
FITTING AND PREDICTION COMBINED. RESULTS MEASURED ON A INTEL

I5 2.40 GHZ DUAL CORE PROCESSOR.

ARMAX PLS SVM KRR GPR TDEC-QP Total

0.09 0.32 0.42 0.38 1.19 0.02 2.42

V. CONCLUSION

We addressed an important practical problem in traffic
flow prediction: how to combine the advantage of multiple
flow forecasting models to yield a result that is at least as
accurate and stable as the best one. An ensemble learning
model was proposed to this end. Our method was based on
three core ideas: 1. learning from mistakes in the recent past,
2. balancing model diversity and accuracy, and 3. applying a
pruning scheme to remove extreme forecasts. In addition, we
explained how to tailor some widely used machine learning
and statistical models for traffic flow prediction. On the
tested arterial traffic sensors, our proposed ensemble model
achieved as much as 16.3% and 17% improvements, and on
average 4.7% and 6.6% improvements, respectively in mean
and standard deviation of absolute error over the best base
model. We consistently outperformed two recently published
ensemble prediction schemes based on Ridge Regression and
Lasso, and produced more accurate and robust predictions
even in scenarios which the other ensemble methods backfire.
In addition, our framework does not have restrictions on the
type of sub-models used. Our future work will extend our
methodology to network-scale traffic flow prediction.
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