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The goal of this paper is to investigate the impact of missing values in clustering joint categorical social
sequences. Identifying patterns in socio-demographic longitudinal data is important in a number of social
science settings. However, performing analytical operations, such as clustering on life course trajectories,
is challenging due to the categorical and multi-dimensional nature of the data, their mixed data types, and
corruption by missing and inconsistent values. Data quality issues were investigated previously on single
variable sequences. To understand their e�ects on multivariate sequence analysis, we employ a dataset of mixed
data types and missing values, a dissimilarity measure designed for joint categorical sequence data, together
with dimensionality reduction methodologies in a systematic design of sequence clustering experiments.
Given the categorical nature of our data, we employ an ”edit” distance using Optimal Matching (OM). Because
each data record has multiple variables of di�erent types, we investigate the impact of mixing these variables
in a single dissimilarity measure. Between variables with binary values and those with multiple nominal
values, we �nd that the ability to overcome missing data problems is more di�cult in the nominal domain
than in the binary domain. Additionally, alignment of leading missing values can result in systematic biases
in dissimilarity matrices and subsequently introduce arti�cial clusters as well as unrealistic interpretations
of associated data domains. We demonstrate the usage of t-distributed Stochastic Neighborhood Embedding
(t-SNE) to visually guide mitigation of such biases by tuning the missing value substitution cost parameter or
determining an optimal sequence span.
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1 INTRODUCTION
Time series clustering plays an important role in temporal data mining research [Kotsakos et al.
2013]. In this work, we study the quality issues often present in many common sources of time
series data. To make this exploration concrete, we use the task of clustering multivariate life
course trajectories consisting of mixed data types from a large collection of real world survey data
with prominent and not commonly addressed data quality issues. We assess the e�ects of data
quality issues by comparing and diagnosing clustering solutions from a systematically designed
set of dissimilarity measures using internal validity metrics, normalized mutual information, and
dimensionality reduction techniques. This task reveals the extent to which a number of data quality
issues such as missing values, data consistency issues, and mixed data types make it challenging to
compare time series sequences. For example, how the missing values are handled could signi�cantly
a�ect or bias the ”dissimilarity” measures and therefore change the clusters derived. We see value to
this investigation across a variety of applications. For example we anticipate that similar challenges
are present in analysis of other trajectory data, such as sensor data where sensor malfunction could
be common especially in large-scale deployments and for continuous data collection. Other possible
applications include characterizing market segments from customers’ purchasing history data for
the purposes of targeted advertising, identifying symptom triggers for asthma patients using data
collected through a mobile health applications, hourly electricity data where readings are often
missing and customers may have di�erent time ranges, or other similar long-term tracking and
categorization exercises using real world data.
In social science research, time series clustering is used to study the spans of individuals’ life

trajectories in the form of sequence analysis [Bras et al. 2010; Schumacher et al. 2012; Widmer
and Ritschard 2009] . By analyzing long-term life trajectory dynamics based on demographic
characteristics, education and other lifestyle variables, it is possible to discover representative
patterns within a population based on the overall life trajectory of a given individual’s characteristics
and the pathway through which one arrives at a given state, decision or behavior. Given the many
factors and their interdependences that a�ect life trajectories, such as family planning, education,
or employment, joint sequence analysis (formalized by [Gauthier et al. 2010; Pollock 2007]) often
represents a more appropriate method than single-variable sequence analysis. Its power relies on its
capability to di�erentiate longitudinal experiences represented by multiple variables and therefore
accounts more realistically for the inherent complexity of life trajectory patterns [Johnson and
Onwuegbuzie 2004; Lauder et al. 2004; Wiles 2004].

One challenge in clustering life course trajectories with most common sources of such data is the
missing data problem. Discarding sequences with missing values comes with the sacri�ce of losing
sample representativeness. Despite the bene�t of providing a contextual and dynamic view of
individuals’ life courses, most panel data sources are especially prone to missing values, as missing
data often arise from the di�culty in repeated collection of data on a continuous and consistent
basis for each individual. This is a particularly common problem in the context of panel surveys
where the same individuals are contacted repeatedly over long-term time horizons. This type of
missing data will be referred to as survey gaps. Another type of missing value, even with otherwise
”perfect” longitudinal survey with complete data records for individuals during the survey period,
arises from sequence alignment by development time (e.g., age) instead of calendar time. When
the sequences are aligned by age, di�erent age cohorts will appear with unequal sequence lengths.
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Individuals that enter the data collection at an older age will inevitably miss the leading segment of
their life course data. Censored data have similar contiguous missing observations at the beginning
and/or ending of the sequences, which can be due to reasons other than alignment by age. For
simplicity, this type of missing data will be referred to as alignment missing. Both types of missing
values (survey gaps and alignment missing) are often encountered in real-world data, however
their e�ects are not adequately evaluated especially in the joint sequence analysis literature.
Another challenge in clustering life course trajectories is the mixed data type problem in joint

sequence analysis. Categorical variable types with di�erent numbers of state spaces (e.g. binary
variables versus nominal variables with multiple states) a�ect their contributions to the distance
measures determined in the joint domain. Consequently, clustering derived from the joint domain
may have di�erent representation of individual variables and associated cluster interpretations
as illustrated in [Piccarreta 2017]. As survey gaps or alignment missing usually a�ect multiple
variables the same way, missing values may complicate the association among variables considered
in the joint sequences and lead to potentially incorrect interpretations. Such interactive e�ects
from both missing values and mixed data types have yet to be examined in the literature.

Lastly, in joint sequence analyses, the data dimensions increase as the number of time dimensions
begins to multiply with the number of variables included, leading to di�culties in exploration
and diagnosis of the clustering results in their original sequence representation. Dimensionality
reduction is an essential tool to capture the qualitative cluster structure in a low dimensional space
that can be easily visualized when working with the high dimensionality aspect of the ”largenes” of
data. Limited usage of such techniques is present in the social sequence analysis literature especially
with the application of non-linear dimension reduction techniques.

The goal of this paper is to provide a systematic investigation of the aforementioned two
challenges, missing values and mixed data types, in joint sequence analysis. This study contributes
to the social sequence analysis literature by: (1) including an under-studied type of missing value
that arise from data alignment, where imputation is often not practical; (2) assessing missing
value problems present in multiple-variable as opposed to single-variable sequence analysis; (3)
highlighting the interactions between the challenges of both missing value treatments and mixed
data types; (4) demonstrating the usage of nonlinear dimensionality reduction techniques for social
sequence analysis applications.
The rest of the paper is organized as follows. Section 2 provides a survey of related literature.

Section 3 describes the real-world data we use for the study. Section 4 explains the methods we use,
including the distance measures, the systematic experimental clustering design, the comparison
metrics we use, and dimensionality reduction techniques used for visualization and diagnosis.
Section 5 evaluates clustering results, their dependence on missing value treatments and mixed
data types, and bias mitigation methods. Section 6 concludes.

2 RELATEDWORK
The notion of clustering hinges on the notion of distance, and therefore the concept and quanti�-
cation of dissimilarity is important for time-series data clustering. Metric distances such as the
Euclidean distance �t well as dissimilarity measures and are applied widely to identify patterns
in longitudinal numeric data [Fu 2011; Jin et al. 2017; Liao 2005; Rani and Sikka 2012]. Given the
categorical (as opposed to continuous numeric), longitudinal characteristics of the life trajectory
sequences commonly encountered in social sciences, the classical clustering approach based on
metric distances does not work well. Since its introduction by Andrew Abbott [Abbott and Forrest
1986; Abbott and Hrycak 1990] the edit based dissimilarity measure through Optimal Matching
(OM) has become the most common way of computing dissimilarities between sequences describing
life trajectories of multiple individuals.
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OMwas used �rst in molecular biology for comparing and analyzing DNA sequences [Needleman
and Wunsch 1970] and also in natural language processing for approximate character string
matching [Wagner and Fischer 1974]. The OMmethod uses counts of sequence alignment operations
such as inserts, deletions (indels) and substitutions to transform one sequence to resemble another
one. The fewer steps needed for the transformation, the closer the two sequences are considered. The
�nal distance value calculated based on the OM procedure is deeply a�ected by the costs assigned
to the indel and substitution transformations. Di�erent setups and combinations [Studer and
Ritschard 2016] proposed for speci�c problems hold various results. Adjusting the transformation
cost allows researchers to tune if the algorithm will use more or fewer indels or substitutions.
Sequence similarity can be described in terms of when elements occur or in terms of the order of
these elements. When order is more important than timing it is recommended to reduce the number
of substitutions by increasing their cost while keeping the indels cost equal to 1. Setting substitution
cost to the same value of 1 or 2 assumes that all these substitution transformations are equally
important. However, some transitions between states are more realistic therefore computing the
substitution cost based on each transition probability would be better. More research is required to
fully understand the consequences of di�erent cost regimes. Also, assigning substitution costs for
transitions to the missing states has not been investigated.
Traditional sequence analysis as well as new method development or evaluation have mostly

focused on single variable trajectories [Elzinga 2007; Gauthier et al. 2009; Halpin 2014; Studer and
Ritschard 2016; Studer et al. 2011]. This approach allows for relatively easy evaluation of missing
observations that a�ects many real-world data sequences. For aforementioned types of data missing,
it is relatively straightforward to address the short internal survey gaps as they can be imputed
using the before and after data present in the sequence. Evaluation of the imputation strategy of
these internal gaps has been the focus of a small number of past studies [Halpin 2012; Royston and
others 2004]. Using a single life course variable (employment), Halpin [Halpin 2012] illustrated
the bene�t of multiple imputation of missing values in minimizing biases in clustering. However,
he only studied gaps of multiple states occurring in the middle of the sequences and not at the
beginning or the end. Also, despite of no previous evaluation, imputation of short survey gaps on
single-variable sequences can be easily extended to multiple sequences.
For alignment missing and long internal data gaps that consist of more contiguous missing

values, the amount of information in the sequence is often not enough to impute the gaps. The
usual treatments were to include the missing values as a separate state [Aisenbrey and Fasang
2010] and/or apply normalization [Elzinga 2014]. These practices were criticized being problematic
[Studer et al. 2018] as the clustering results were often based on the length of the sequences (i.e.,
observation time) rather than observed values. To mitigate such biases, most of the studies analyze
only complete trajectories to preserve the holistic perspective. However, such practice will cause
the sample size to be reduced and/or age cohorts and age spans biased towards those with all
trajectories being fully observed [Studer et al. 2018].
According to review by Aisenbrey and Fasang [Aisenbrey and Fasang 2010], the sequence

analysis literature is sparse when it comes to investigating to what extend such unavoidable
contiguous gaps, especially in the form of alignment missing due to un-equal sequences, will change
or bias clustering results and how such bias can be mitigated. The distance/dissimilarity measures
calculated based on the OM procedure is deeply a�ected by the costs assigned to the indel and
substitution transformations involving missing value states. Stovel and Bolan [Stovel and Bolan
2004] suggested lowering the indel only when dealing with incomplete sequences in order to
reduce the biases caused by un-equal sequence lengths. However, tuning missing value substitution
costs, which is for the �rst time proposed and utilized by this paper, provides the �exibility of
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adjusting distance contribution from missing values without a�ecting the transformation (indel or
substitution) taken for non-missing values.
The OM distance structure of the data, in the form of a distance/dissimilarity matrix, that

determine the clustering is critical for understanding the root causes induced by missing values.
However, such distance structures are challenging to visualize due to high-dimensionality of the
time series data. Various dimension reduction techniques have been proposed including linear
and nonlinear mapping to the lower dimension spaces. Linear techniques that focus on preserving
global data structures, such as Principal Component Analysis (PCA) [Hotelling 1933] and classical
multidimensional scaling [Torgerson 1952], provide a good representation for linear data but do
not work well when the underlying structure of the data is more complicated. For such data,
nonlinear techniques that aim to preserve local data structures, are more appropriate. Nonlinear
manifold methods include methods such as non-metric MDS [Kruskal 1964a,b], kernel PCA and
Spectral Embedding [Belkin and Niyogi 2002; Schőlkopf et al. 1997], and t-distributed Stochastic
Neighborhood Embedding (t-SNE) [Maaten and Hinton 2008]. Piccarreta and Lior [Piccarreta and
Lior 2010] employed classic MDS for exploratory analysis of sequences. So far none of the nonlinear
techniques have been applied to social sequence analysis to demonstrate their potential usage,
which will be explored in this paper.

3 DATA DESCRIPTION AND PREPROCESSING
We analyze real world data extracted from the Panel Study of Income Dynamics (PSID) [PSID 2017]
which includes a rich set of demographic and socio-economic information repeatedly collected from
a large population of individuals tracked over multiple years, from 1968 through 2015. The initial
dataset contained over 17,000 records for individual people, with missing values both over time
and within each variable (i.e. some individuals only responded to the survey in some years, some
individuals were not presented with certain survey questions, and individuals could choose not to
answer any of the questions). Several preprocessing steps were needed to clean and transform the
downloaded data to the format required for analysis.

Age is one of the variables collected every year the survey was conducted, which is used to align
the sequences. The age variable was prone to noise and missing data, given human error and the
timing of the survey relative to a respondent's birth month within a given calendar year. Using the
age values collected over time, we calculated the birth year for each individual and used that to
make subsequent corrections on the age variable.
For the joint sequence analysis, we considered a combination of �ve variables: two nominal

(family size and number of children under 8), and three binary variables (employment status, high
school degree and marriage status). The two nominal variables were represented by seven di�erent
states or values, including missing values. Life courses of these �ve variables are constructed by
aligning the sequences by age between 20 and 60 for each individual in the �nal dataset. We aligned
the data by age instead of calendar year in order to identify patterns in life course trajectories
over individual lifetimes independent of the calendar years in which the relevant lifecycle events
occurred.

After cleaning, we selected 1034 individuals whose data contained more than 23 contiguous non-
missing values to be the focus of this study. This procedure limits survey gaps to short imputable
ones for subsequent analysis. It is worth noting that, due to the necessity of identifying individuals
with complete sequences between ages 20 and 60, and without excessive numbers of missing
values, the resulting subsample is highly selected and not likely representative of the population
or the sample of respondents to the PSID overall. The primary focus of this work is to compare
methodologies for categorizing patterns in this structure of data. We therefore are not focusing on
the representativeness of those patterns in the overall population at this point.
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Because we aligned the sequences by age and focus on the age range between 20 and 60,
individuals who are older than 20 at the beginning of the survey collection e�ort (year 1968) miss
the leading part of the sequences (alignment missing or left censoring). Short survey gaps are
present at the ending part of the sequences because after 1997 the survey was conducted only every
two years rather than annually.

Figure 1 provides a plot of the family size variable for the �nal sample of 1034 individuals used
in the analysis. It illustrates the mixed types of missing data arising in these data sources: short
survey gaps (one value missing), and contiguous missing due to alignment by age. We also provide
sample sequences for each of the �ve variables used here in the Supplementary Figure B.1. The
missing patterns are similar for four of the variables: family size, number of children under 8, high
school degree and marriage status. Only the employment variable has large chunks of missing
values on both sides.

Fig. 1. Family size sequence representation for all the individuals in the dataset, to illustrate the missing
value pa�erns that arise from survey gaps and missing segments a�er alignment by age.

4 METHOD
4.1 Distance Measures for Clustering
The OM distances described in the Related Work section were initially designed for one-variable
categorical sequences. To extend this idea to multivariate sequences that include, for example,
employment status, education, marriage and number of children, a new dissimilarity matrix has to
take into consideration the contribution of each included variable. For this procedure, the indel cost
is set to 1 and substitution costs are determined and set independently for each individual variable.
We employ a data-driven approach by assigning substitution costs according to the transitional
frequency between given states [Piccarreta and Billari 2007; Stovel et al. 1996]. Next, the substitution
costs for the multivariate distance is calculated by averaging the substitution costs for the individual
variables. This joint analysis approach follows [Pollock 2007] and is performed using the R package
TraMineR version 2.0-6 [Gabadinho et al. 2011]. The choice for the substitution cost of the missing
values (referred to as NA cost hereafter) is further explained in the next section.
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4.2 Clustering Experiments
To systematically assess the e�ects of missing values and variable types on clustering solutions in
the context of distances derived from Optimal Matching, we design 12 experiments.

As mentioned earlier, there are two types of missing values in our dataset, the treatment of which
are described below.

Short survey gaps: These gaps can be addressed by imputation. The best predictors for imputing
missing values are those observations that are the closest on the timeline to those that are missing,
therefore for these one value internal gaps, our approach was to �ll the gap with the value of the
preceding immediately adjacent value (the No Survey Gaps case). Alternatively, missing can be
included as a special state in OM with a user de�ned substitution cost for missing values (Survey
Gaps case).

Alignment missing: these contiguous missing values are observed at the beginning of the se-
quences and not enough information is available for imputation. The treatment of alignment missing
therefore consists of including ”missing” as a special state with a user de�ned substitution cost for
missing values. The alignment missing, if applicable, is always present and therefore a substitution
cost for the missing values (i.e. NA cost) must inevitably be chosen.
The default NA cost is set to 2 in OM [Gabadinho et al. 2011]. In this case, the cost of treating

alignment missing is maximized. In contrast, in separate experiments, we set the NA cost to 0,
which eliminates the cost of transforming any paired segments involving missing values from one
to another. In this case, the cost of treating alignment missing or any survey gaps is minimized. In
light of the above reasoning, we have 4 cases regarding treatment of missing values:

{Sur�e� Gaps, No Sur�e� Gaps} ⌦ {NA cost = 2,NA cost = 0}

To construct complete experiments, we apply these 4 missing value treatment cases to three
data domains of distinct joint sequence data types: (1) binary domain (employment, marriage,
education); (2) nominal domain (number of children under 8, and family size); and (3) both of the
above combined. The full 12 combinatorial set allows for systematic comparison of the e�ects
of both missing values and mixed data types in relation to each other on life course trajectory
clustering. Note here, missing values are in practice handled with same strategy across variables
within the joint domain. Therefore, we do not consider further varying missing value treatments
within the same data domain mentioned above.

4.3 Comparison Metrics
4.3.1 Cluster�ality Metrics. For clustering long-term life-course sequences, usually there is no

”ground truth” to be used for the direct evaluation of the proposed method. In this case, to evaluate
clustering algorithms, several internal measures have been proposed to provide a statistical quality
measure for the generated partitions, two of which are explained in detail below and utilized in our
analysis. Internal clustering measures [Studer 2013] not only evaluate the quality of the returned
clustering structure with no external help, but can be used to choose the best clustering algorithm
and the optimal number of clusters for a given problem.
Hennig and Liao [Hennig and Liao 2010] suggest using Pearson’s correlation to evaluate and

compare cluster solutions, which is an internal measure also known as ”Point Biserial Correlation”
(equation 1). PBC is an index that is an easy measure of the resemblance between the distance
matrix and the resulting hierarchical clustering dendrogram. This index measures the correlation of
the distance matrix d with a matrix consisting of zeros and ones indicating whether two objects are
in the same cluster or not and represented by a binary matrix dbin . Let sd and sdbin be the standard
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deviation of d and dbin respectively, and sd ,dbin be the covariance between d and dbin . Given the
above notations the PBC is computed as follows:

PBC =
sd ,dbin

sdbin · sdbin
(1)

The Average Silhouette Width (equation 2) validates clustering performance based on the pair-
wise di�erence of between- and within-cluster distances. Originally proposed by Kaufman and
Rousseeuw [Kaufman and Rousseeuw 1990], this index is based on a notion of coherence of the
assignment of an observation to a given cluster. This coherence is measured by comparing the
average distance of an observation to the other members of its group with the average weighted
distance to the closest group.

ASW =
1
NC

’
i
( 1
ni

’
x 2Ci

b(x) � a(x)
max(b(x),a(x)) ) (2)

a(x) = 1
ni � 1

’
�2Ci ,�,x

d(x,�) (3)

b(x) =minj , j,i
1
nj

’
�2Ci

d(x,�) (4)

Where NC is the number of clusters, ni , is the number of objects in cluster i ,Ci denotes cluster i ,
and d(x,�) is the distance between x and �.
Additional measures are available but these two measures provide an objective way to choose

the best combination of both the clustering algorithm and the number of clusters. Once the optimal
number of clusters is selected, these parameters are used to generate the clustering groups.

4.3.2 Mutual Information Between Two Clustering Solutions of Di�erent Missing Value Treatments.
Comparison of the clustering results between any two experiments can be done by visual inspection
and examination of membership distribution changes across the cluster solutions through cross
tabulation as was previously done in [Halpin 2012]. Given the large number of experiments
we intend to compare, we employ a simple metric, called normalized mutual information, to
quantitatively assess how much the clustering solution changes from one treatment to another.
Mutual information between two clustering solutions (R and L) can be computed from their
contingency table by interpreting it as a table of joint probabilities p(R, L). The probability of each
cluster label can be computed by Equation(5) and Equation(6).

p(L) =
’
L
p(R, L) (5)

p(R) =
’
R

p(R, L) (6)

From these probabilities we compute entropies H (R) 7 and H (L) 8 and their mutual information
MI (R;L) 10.

H (R) = �
’
R

p(R) · lo�((p(R)) (7)

H (L) = �
’
L
p(L) · lo�((p(L)) (8)
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H (R;L) = �
’
R

’
L
p(R, L) · lo�((p(R, L)) (9)

MI (R;L) = H (R) + H (L) � H (R;L) (10)
Finally, for ease of cross comparison, we use normalized mutual information (nMI) de�ned in

(11).

nMI (R;L) = MI (R, L)
1
2 [H (R) + H (L)]

(11)

4.4 Dimension Reduction Techniques
As the input data are 1034 individuals each associated with �ve categorical sequences, visualizing
and diagnosing the clustering results of all 12 distance experiments in the original data space is
challenging. In order to facilitate assessing clustering performance, cluster membership assignment,
and their associations in di�erent data domains, we employ dimension reduction techniques
to display data points on a two-dimensional space. Dimensionality reduction is a process used
to translate data from a high dimensional space to a low dimensional space with the goal of
selecting the most important variables, and extracting relevant information or visualizing data
in a meaningful way. Given the complexity of our dataset we considered only approaches to
dimensionality reduction that are able to derive meaningful non-linear representations. Among
non-linear algorithms,manifold learningmethods, such asMultidimensional Scaling (MDS), Spectral
Embedding and t-SNE have recently attracted great attention by providing excellent results on
arti�cial and real-world datasets. [Bengio et al. 2006] provides an excellent review of them. We
apply all of these dimensionality reduction techniques and select the most suitable one to enable
us to assess and visualize the results of the clustering experiments.

4.4.1 Kernel Principal Component Analysis (kernel PCA) and Spectral Embedding (SE). Kernel
PCA [Schőlkopf et al. 1999, 1997] is a non-linear dimensionality reduction technique well-known
for its ability to deal with complex data. This method is an extension of the linear dimensionality
reduction technique called Principal Component Analysis, which works by transforming the high
dimension data into a lower dimension linear subspace using eigenvectors and eigenvalues. Kernel
PCA works in two steps, �rst it rede�nes the input space using the kernel function k and second
by performing PCA in the new feature space.

This idea was �rst applied as part as of the popular classi�cation algorithms known as support
vector machines (SVM). Kernel PCA uses a function � to transform the input vector x as a new
vector �(x)whose size is n by n, where n is the number of input vectors from the dataset. Depending
on the choice of function �, the data transformed in this higher space may become linear allowing
us to perform the standard PCA to obtain the set of reduced feature vectors,� . In the kernel space
there is no need to compute the covariance of the � vectors, but we can compute their inner
products of these vectors instead. Again, thanks to the kernel ”magic”, only the dot product of the
transformed vectors is needed during the PCA step. Kernel PCA provides good results especially
for non-linear data that lies along a manifold, however if the dataset includes too many data points
it becomes computationally expensive to apply PCA to the kernel matrix.

Spectral Embedding (SE) [Belkin and Niyogi 2002], also known as Laplacian eigenmaps, is another
approach to calculate non-linear embeddings that only preserves local distances. It �rst builds a
similarity graph Laplacian to capture the local, neighborhood information existing in the dataset.
This graph can be considered as a discrete approximation of the low dimensional manifold in
the high dimensional space. As the second step it solves a generalized eigenvalue problem for
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the Laplacian matrix. The optimization process applied on the graph guarantees that the points
connected on the graph Laplacian are mapped close to each other in the low dimensional space,
preserving the local distances.

4.4.2 Non-metric MDS. The multidimensional scaling (MDS) method [Kruskal 1964a] is consid-
ered a classical statistical technique by now and it is usually employed for analyzing and visualizing
the similarity or dissimilarity of data in a geometric space. The non-metric MDS version [Kruskal
1964b] identi�es a non-parametric monotonic relationship between the data points using the a�nity
matrix. The algorithm is based on isotonic regression, which minimizes the stress function. In the
stress formula 12, x represents the vector of similarities, f (x) denotes a monotonic function and d
is the matrix of distances between the data points.

Stress =

sÕ(f (x) � d)2Õ
d2

(12)

The goal of the algorithms is to preserve the initial distances from the high dimensional space in
the low dimensional space as much as possible. First the optimal monotonic transformation of the
proximities has to be found. Secondly, the points of a con�guration have to be optimally arranged,
so that their distances match the scaled proximities as closely as possible. Additionally, MDS can
also be computed even if the data matrix is unknown, all is needed is the Gram matrix.

4.4.3 t-SNE. t-SNE is one of the newest dimensionality reduction methods [Maaten and Hinton
2008], known for its good visualization capabilities. This method preserves the signi�cant overall
topology of the data points in the high-dimensional space when transformed to the low dimensional
space. The algorithm works in two steps: �rst, it converts the similarities between data points to
conditional probabilities; second, the stochastic neighbor embedding minimizes the sum of Kullback-
Leibler divergences between the conditional probabilities of the low-dimensional embedding and
the high-dimensional data using a gradient descent method. The t-SNE cost function 13 is not
convex, therefore di�erent initializations provide di�erent output results.

C =
’
i
KL(Pi | |Qi ) =

’
i

’
j
pj |ilo�

pj |i
qj |i

(13)

In formula 13, Pi are the conditional probability distributions over all other data points given
data point, and Qi are the conditional probability distributions over all other mapped points given
the map point in the lower dimensional space. t-SNE is often very successful at revealing clusters
and subclusters in data, however it is not very good in at preserving the real distances between the
data points that are far apart.

5 RESULTS AND DISCUSSIONS
5.1 Number of Clusters
Following previous research by [Piccarreta 2017] and [Pollock 2007] all the experiments were run
using the Ward 's linkage hierarchical algorithm applied to multichannel distance matrices.
First, we report the Point Biserial Correlation (PBC) and the Average Silhouette Width Index

(ASW) cluster validity indexes for the number of clusters k taking values in the [1, 10] interval.
One multichannel distance matrix was computed for each of the 12 combination cases described
in section 4.2. These distance matrices were then used as inputs for the clustering evaluation
procedure. The results are presented on Figure 2.
For both PBC and ASW indexes the optimal clustering number is determined by maximizing

the value of the index. Both index plots suggest that the best results are obtained for the distance
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matrices determined in the binary data domain (Dbinar� ), followed by the combined domain
(Dcombined ) and ending with the nominal data domain (Dnominal ).

The PBC index clearly shows that for the nominal domain better clustering results are obtained
when the cost of NA is set to 2. PBC indicates that in the combined and nominal domains it is
harder to cluster when the NA cost is 0. Higher values for the ASW index are obtained in the
binary domain when the NA cost is set to 0. The curves for the combined and nominal domains are
overlapping in terms of Gaps and NA cost di�erences.
The best number of clusters indicated by the PBC and ASW measures varies not only with the

domain, but it is also a�ected by the missing gaps and the NA cost choice. The plots suggest that
most of the curves stabilize when k takes values between 3 and 5, and other than the nominal
curves for NA cost 0, all of the curves start to decrease when k is greater than 5. These results have
motivated our choice to run the further experiments using 4 clusters.

5.2 Choice of Dimensionality Reduction for Visualization
The clustering solutions can be examined in the original data space for each of the 12 experiments.
An example is provided in Figure 3 using the nominal domain under ”with Gap, NA cost = 0”
condition. Sequences of two nominal variables: family size (”Total in FU”) and number of children
(”Children under 8”) are plotted separately for each of the clusters. The cluster solutions are
visualized by (1) the state distribution by age in Figure 3 (a) and (2) the individual sequences in
Figure 3 (b). Example visualization of the combined domain can be found in the Supplementary
Figure B.2. This type of visualization is useful for interpreting the clustering results. For example,
we can see that cluster 1 is dominated by individuals with large families having kids early in life,
while individuals in cluster 2 individuals tend to have medium-sized families and have kids later and
so on. However, for examining all 12 experiments and diagnosing their inter-relationship among
various missing value and data type conditions, these visual tools are not very e�ective.

We explore 4 di�erent types of dimension reduction techniques with the goal of �nding the most
e�ective one for visualizing the internal data structure represented in the distance matrices as
captured by the clustering solutions. Dimension reduction techniques map the data points onto a
two-dimensional space for easy visualizations. We color the points by clustering labels derived for
each of the 12 experiments. Both Kernel PCA and SE fail to capture any clustering patterns in the
lower dimensions. t-SNE appears to best capture the ”closeness” pattern of the points assigned to
the same clusters (Figure 4) across all the data domains. MDS also performs well in the binary and
combined domains but fails to capture the high dimensional data structure in the nominal domain.
From the reduced dimension plots of t-SNE and MDS we can see more dispersed patterns within
the nominal domain relative to binary and combined domains, which explains lower performance
metrics of clustering in Figure 2.

The t-SNE approach focuses on capturing the local structures of the data. The resulting topology
and the global geometry (e.g. distances between clusters) are sensitive to the hyperparameters
used. We examine an array of hyperparameter combinations and determine the ones that have the
most stable performance and can best capture both local and global geometry as represented by
the clustering results. Speci�cally, t-SNE mapping of original distance matrices to two-dimensional
space is sensitive to two input hyperparameters: maximum number of iterations and perplexity
number. The perplexity number is usually interpreted as a smooth measure of neighborhood size
around a given data point and it should be smaller than the average size of the clusters. Given
the size of our clusters are usually greater than 150, we vary the perplexity from 10 to 110. We
also examine how the t-SNE results change with the maximum number of iterations by varying it
from 500 to 1000 (Supplementary Figure B.3). We �nd that smaller sub-clusters appear within the
same cluster when perplexity is small (10 or 30), while such pattern disappears when perplexity
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Fig. 2. Cluster validity metrics PBC and AWS as a function of number of clusters.

numbers are greater. This suggests that the choice of perplexity number should be greater than
30. There is also evidence that iteration = 500 can sometimes produce outlier patterns as shown in
perplexity = 30 and 50 cases under ”with gap and NA cost = 0” conditions for the combined domain.
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Fig. 3. Cluster solutions in the Dnominal with survey gaps and NAcost = 0. (a) sequence state distribution
by age; and (b) individual sequence by age. Variables shown are: family size ("Total in FU") and number of

children ("Children under 8").

In general, perplexity choice of 90 produces the most stable and compelling representation of the
cluster patterns in that points of the same cluster labels are generally close together. Therefore, we
choose maximum iteration number of 1000 and perplexity number of 90 for subsequent analyses.

5.3 E�ects of Missing Values on Clustering
In this section, we examine the e�ects of missing value treatments on clustering solutions in
relation to variable type selection (binary, nominal, and combined) and their respective resulting
dissimilarity structures within the data. In general, we �nd the clustering results derived from
the nominal domain are most sensitive to missing value treatments especially the choices of NA
cost. More importantly, aided by dimensionality reduction, we are able to identify artifacts in
dissimilarity structures and associated clustering solutions driven by age cohorts when NA cost is
maximized. More detailed comparison is presented below.
”Gap vs No Gap” (�rst two rows in Table 1) represents the commonality (measured by nMI )

observed in clustering solutions between cases where short survey gaps are imputed and not
imputed. Lower values of nMI indicate greater di�erences and thus greater e�ects of the gap
imputation treatment. As discussed earlier, changes due to short gap imputation need to be evaluated
conditioned on the choice of NA cost because alignment missing is present in all cases.

The ”Gap vs No Gap | NA Cost=2” case measures the e�ect of gap imputation when the in�uence
of alignment missing on distance measures are maximized, while the ”Gap vs No Gap | NA Cost=0”
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Fig. 4. Clustering results visualized by dimensionality reduction techniques. Data points are color coded by
cluster memberships within respective data domains (binary, nominal, and combined). Dimension reduction
techniques applied from le� to right: Kernel PCA, Spectral Embedding (SE), Non-metric MDS, and t-SNE.
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case measures the same e�ect when the in�uence of alignment missing is minimized. In general, we
see imputation of short survey gaps changes clustering in Dnominal much more than in Dbinar� or
in Dcombined . Imputation e�ects in the Dnominal are also sensitive to the choice of NA substitution
cost. In Dnominal , clustering solutions using data with and without survey gaps become more
di�erent when NA cost changes from 2 to 0.

”NA cost = 2 vs NA cost = 0” (bottom two rows in Table 1) represents the commonality between
the choices of NA cost speci�cation when missing values are included as a special category. In
Table 1, the ”NA cost = 2 vs NA cost = 0 | no gap” case represent NA cost e�ects due to alignment
missing alone, while ”NA cost = 2 vs NA cost = 0 | gap” case represents NA cost e�ects due to the
presence of both short survey gaps and alignment missing. Similar to the imputation e�ects, the
choice of NA cost a�ects clustering solutions derived from Dnominal the most, especially when
survey gaps are also present. Dcombined also becomes more sensitive to the choice of NA cost
when survey gaps are present. Therefore, imputation of short survey gaps helps stabilize clustering
solutions.

Table 1. Normalized Mutual Information nMI Between Clustering Solutions Derived With Di�erent Missing
Data Treatments (<0.5 values are masked in pink)

Comparison of Treatments Data Domain
Dbinar� Dnominal Dcombined

Gap vs No Gap | NA Cost=2 0.64 0.36 0.71
Gap vs No Gap | NA Cost=0 0.62 0.13 0.63
NA cost = 2 vs NA cost = 0 | No Gap 0.66 0.26 0.50
NA cost = 2 vs NA cost = 0 | Gap 0.51 0.10 0.37

Due to alignment by age, as shown in Figure 1, the degree of missing data due to alignment
missing and/or survey gaps are largely driven by individual’s birth year timing. Age cohorts born
1947-1952, 1940-1946, and 1931-1939, respectively are subject to varying degrees of both alignment
missing and survey gaps (Figure 1). To explore the potential biases in distance measures caused by
the choice of NA cost, we examine these age cohorts within the data structures captured by the
reduced dimension via t-SNE representation in Figure 5 (a) in Dcombined . In doing this, it is evident
that data points of the same age cohorts are located relatively close to each other when NA cost is
2. This means when NA cost is 2, the distance structure within the data is largely driven by the
birth year patterns. In contrast, this e�ect disappears when NA cost is 0. Therefore, the missing
patterns in the sequences as di�erentiated by the age cohorts have a clear impact on the distance
measures when NA cost is maximized.
The birth year distribution of clustering solutions under 4 cases of missing value treatments

further illustrates this e�ect in Figure 5 (b) using Dcombined as an example. A birth-year driven
clustering solution is especially evident in the NA cost = 2 case when survey gaps are also present in
addition to alignment missing. In this case, Clusters 2, 3, and 4 are driven by age cohorts born 1947-
1952, 1940-1946, and 1931-1939, respectively. E�ects from both types of missing data are maximized
when NA cost = 2, leading to the most signi�cant biases by age cohorts in the distance calculation.
Such bias due to ”NA cost = 2” is alleviated when survey gaps are imputed. However, we can still
observe Cluster 4 being largely driven by the age cohort born 1931-1939, due to the most serious
alignment missing alone in this age cohort. These biases can be con�rmed by comparison to the
”NA cost = 0” cases, where age cohort e�ects completely disappear as ”NA cost = 0” minimizes the
contribution from missing values to the distance computation. We also observe similar behavior for
the binary and nominal domains (Supplementary Figure B.4). Therefore, ”NA cost = 2” maximizes
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Fig. 5. (a) Birth year relations within the dissimilarity structure in Dcombined . Colors indicate cluster
membership and shapes indicate age cohorts; (b) Birth year distribution of cluster assignments derived from

Dcombined under four missing value treatments:
{Sur�e� Gaps, No Sur�e� Gaps} ⌦ {NA cost = 2,NA cost = 0}.

the missing value contribution, meaning that cluster de�nition and assignment is being largely
driven by age cohorts (i.e., alignment missing cohorts) rather than relevant information with the
input data itself, leading to a prominent pattern shared by dissimilarity matrices of all domains.

5.4 E�ects of Mixed Data Types on Clustering
The interpretation of the clusters in the combined domain can become problematic if they are not
equally representative of all relevant contributing domains. Therefore, understanding how the data
domains are associated with each other is critical for cluster interpretation. The best clustering
solution of a speci�c domain (Dcombined , Dbinar� , or Dnominal ) represents an optimal simpli�cation
of respective dissimilarity structures. Therefore, domain associations in the presence of missing
values can be investigated by: (1) the commonality among the best clustering solutions obtained
from the combined and contributing domains, (2) the performance of clustering solutions derived
from the combined domain on its contributing domains, and (3) how the previous two factors
change with missing value treatments.

Figure 6 demonstrates that overall, the clustering solution derived from Dbinar� and Dcombined
are more similar and they are both di�erent from clustering derived from Dnominal , indicating
greater association of the combined domain with the binary domain. We have seen in previous
sections that distance matrices derived from the binary data domain Dcombined are easier to cluster
than those from the nominal domain (Dnominal ). The greater association of the combined domain
with the binary domain observed here is consistent with joint sequence analysis literature that the
clustering solution from a combined data domain may favor the contributing domains that are easier
to cluster [Piccarreta 2017]. A more important observation is that the commonality of clustering
solutions between Dnominal and other domains is especially sensitive to the treatment choice of
missing values (Figure 6). In general, commonality in clustering solutions between Dnominal and
other domains is greater under the ”NA Cost = 2” cases than the ”NA cost =0” cases (indicated
by the darker blue �rst row of plots relative to the second row in Figure 6). In fact, the 4-cluster
solution derived from Dcombined also shows better performance, as measured by PBC and ASW, on
Dbinar� than on Dnominal , for all missing value treatment cases (Supplementary Table A.1)
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Fig. 6. Normalized Mutual Information (nMI) between clustering solution derived from binary, nominal, and
combined domains under di�erent missing value treatments. Darker blue indicates greater di�erences

between the pair.

To visually diagnose domain associations, we color the data points in binary and nominal domains
based on the cluster solutions derived from the combined domain for each of the missing value
treatment experiment (Figure 7). The combined domain cluster solutions can largely capture the
data structures in the binary domain as expected from the large nMI in the cluster solutions between
the two domains. However, we can see that points of the same color (and therefore belong to the
same cluster in the combined domain) are largely dispersed in the nominal domain when NAcost is
0. When NA cost is 2, the combined domain cluster solution starts to capture the clustered patterns
in the nominal domain especially in the ”purple” area. This pattern underlies the reason why the
association (indicated by nMI ) between Dcombined and Dnominal increases as NA cost changes from
0 to 2 in Figure 6. Birth year brushing in Supplementary Figure B.4 indicates that these purple
points are largely ”older” people in the survey (birth year < 1939) and belong to the same cluster in
the nominal domain.
When NA cost is 2, the cost to align segments involving missing values are maximized, which

systematically increases the edit distance between sequences with and without certain missing
segments. Consequently, sequences with similar missing patterns become relatively more similar.
Such shared biases in distance measures lead to an arti�cial association between the domains
and thus increases the commonality in clustering solutions. Joint sequence analysis is found
mostly useful when the individual domains are interdependent or associated [Gauthier et al. 2010].
However, missing values can complicate these domain association patterns. This �nding highlights
the importance of the choice of missing value treatment when interpreting the clustering solutions
in joint sequence analysis, as the association pattern can be entirely driven by missing values.

5.5 Mitigation of Alignment Missing
While imputation can mitigate short survey gaps, we have seen that alignment missing coupled
with the choice of NA cost can signi�cantly a�ect the dissimilarity measures and subsequently the
clustering solutions (i.e. the age bias in clustering solutions). We have demonstrated that clustering
in the nominal domain is especially sensitive to the choice of missing value treatment.
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Fig. 7. t-SNE representation of data structures in the nominal and binary domains colored by the 4-cluster
solution derived from the combined domain

The choice of NA cost we have considered so far are two extreme cases: (1) setting NA substitution
cost to 2 is equivalent to considering missing values as a complete di�erent state from other states
and therefore requires the maximum ”edit” cost to transform any missing values to the target state
values; (2) setting NA substitution cost to 0 is equivalent to treating missing values as a ”wild card”
that is the same state to any given target state and therefore needs zero ”edit” cost to transform.
We have shown that the �rst case introduces biases in dissimilarity measures. The second one is
not very realistic in practice. In reality, the NA cost can be more �exible and take values between
0 and 2, e�ectively allowing some probability for missing values to be in one versus other of the
non-missing states. The appropriate choice of NA cost can be identi�ed on a case-by-case basis.
From the perspective of eliminating biases caused by alignment missing, we can choose the proper
NA cost value by varying it by small increments from 2 to 0 and identifying the one when the age
biases start to disappear. In Figure 8 (a), we show that the missing value induced distance patterns
(as colored by birth year) start to dissolve as NA cost decreases from 2 to 0.4.

Another data-driven way to mitigate the biases introduced by alignment missing is to �nd a more
appropriate age span so that the consequence of contiguous missing patterns in the sequences no
longer dominate the dissimilarity measures. Figure 8 (b) vary the age span by increasing the lower
age limit from 20 to 35. We can see at lower age limit of 29 to 32, the arti�cial patterns induced by
missing values begin to disappear.
These two data driven approaches graphically guided by t-SNE visualizations ensure the dis-

similarity measures computed through optimal matching are no longer driven by missing values.
The state distribution by age plots are shown in Figure 9 and individual sequence plots are shown
in Supplementary Figure B.5. We can see the resulting trajectory patterns during the overlapping
age span (32 to 60) are very similar between the two approaches, con�rming that the patterns are
mostly driven by the values in the input variables instead of the length of missing values.

Under the conditions of these two approaches, the combined domain shows little true association
with the nominal domain. The nMI between the combined and nominal domains reduces from 0.17
(NA cost =2 and age span = 20 to 60) to 0.003 (NA cost =0.4 and age span = 20 to 60) and 0.008
(NA cost =2 and age span = 32 to 60). This means that the clustering solutions derived from the
combined domain represent little patterns in its contributing nominal domain, which indicates that
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Fig. 8. Changes in data structures with varying (a) NA cost (from 0 to 2 at a 0.4 increment) and (b) age limits
(starting age from 20 to 35 at a 3-year increment), visualized by t-SNE for the nominal domain a�er the short

survey gaps are imputed. Data points are colored by age cohorts.

Fig. 9. State distribution plot of cluster solutions in the nominal domain under no survey gap condition for
(a) NA cost = 0.4, age span = 20 to 60; and (b) NA cost = 2, age span = 32 to 60.

the binary and nominal variables used here should be ideally clustered separately to derive more
meaningful and representative patterns.
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6 CONCLUSIONS
This paper evaluates two issues facing joint social sequence analysis using real-world data: missing
values and mixed data types. Changes in clustering solutions are systematically assessed in a full
combination of experiments designed so that the two types of problems can be examined in relation
to each other. We applied the experiments to a real world data set obtained from the PSID where
both short and long data gaps are present due to either survey gaps or alignment by age. Past
evaluation of missing values has focused on short gap imputation strategies in the context of
single variable sequence clustering. Our study addresses the e�ects of ”unavoidable” missing values
arising from sequence alignment in addition to imputable short gaps, and missing value e�ects
are examined in relation to joint sequence analysis with various types of variables. Among the
application of four nonlinear dimensionality reduction techniques, t-SNE is found most successfully
visualize the clustering solutions. t-SNE is applied to visually display and diagnose the dissimilarity
measures and their subsequent e�ects on clustering.
We �nd missing values and their choices of treatment (imputation and NA cost speci�cation)

mostly a�ects the clustering solution in the nominal sequences that have greater state spaces.
Imputation of short survey gaps helps stabilize clustering solutions. With the alignment missing
data problem, choices of NA cost are important. The traditional default way of including missing as
a special state maximizes NA cost (=2), leads to arti�cial clusters driven by di�erent cohorts based
on the alignment dimension (in our case age), while setting NA cost to 0 eliminates such behavior.
Maximizing NA cost in the presence of missing values is also found to in�ate the ”apparent” cluster
performance measured by quality metrics. Such treatment needs to be practiced with caution in
future OM applications.
We �nd distance matrices derived from the binary data domain are easier to cluster than those

from mixed or nominal data types. As a result, clustering solutions from the combined domain
favors the contributing domain of binary variables, indicated by greater commonality in their
respective optimal clustering solutions. However, association between the nominal domain and
the combined domain can sometimes be arti�cially in�ated in the presence of missing values
together with a speci�cation of high NA cost, leading to ”apparent” association between the two
domains. This �nding highlights the importance of the choice of missing value treatment in correct
interpretation of the clustering solutions represented in the contributing domains.

We employ t-SNE dimensionality reduction to demonstrate two practical data driven approaches,
tuning NA cost and identifying proper age span, to realistically mitigate serious biases in distance
measures caused by missing values. Such approaches can at the same time maximize data utilization
by avoiding removing entire sequences or age spans that involve missing values as commonly
practiced in the current literature. The analysis framework illustrated here can be easily extended
to di�erent datasets and other variants of OM to guide proper missing value handling and result
interpretation in social sequence analysis studies.
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A SUPPLEMENTARY TABLE

Table A.1. Performance of the 4-cluster solution of Dcombined on its contributing domains (Dbinar� and
Dnominal ) under di�erent missing value treatments

Contributing With Gaps With Gaps No Gaps No Gaps
Domains NACost=0 NACost=2 NACost=0 NACost=2

Point Biserial Correlation
Dbinar� 0.62 0.57 0.73 0.62
Dnominal 0.03 0.39 -0.05 0.21

Average Silhoue�e Width
Dbinar� 0.47 0.27 0.55 0.35
Dnominal -0.03 0.07 -0.05 0.00

B SUPPLEMENTARY FIGURES

Fig. B.1. Sample individual sequence plots to illustrate the missing pa�erns in the PSID dataset. Variables
are family size ("Total FU"), number of children under 8 ("Children under 8"), employment status

("Employment"), high school degree ("High School"), and marriage status ("Married").
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Fig. B.2. Cluster solutions for combined domain with survey gaps and NA cost = 2. (a) state distribution plot;
(b) individual sequence plot.
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Fig. B.3. t-SNE results from varying perplexity number and maximum iteration number (colored by the
clustering solutions).
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Fig. B.4. Birth year and cluster assignment relationship in binary and nominal domains.
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Fig. B.5. Individual sequence plot of cluster solutions for nominal domain under no survey gap cases.
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