

Multivariate Network Traffic Analysis using Clustered Patterns

Jinoh Kim1, Alex Sim2, Brian Tierney2, Sang Suh1, Ikkyun Kim3

1 Texas A&M University at Commerce, Commerce, TX, USA
2 Lawrence Berkeley National Laboratory, Berkeley, CA, USA

3 ETRI, Daejon, Korea

Disclaimers
This document was prepared as an account of work sponsored by the United States Government.
While this document is believed to contain correct information, neither the United States
Government nor any agency thereof, nor the Regents of the University of California, nor any of
their employees, makes any warranty, express or implied, or assumes any legal responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by its trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof, or the
Regents of the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or any agency thereof or
the Regents of the University of California.

Computing manuscript No.
(will be inserted by the editor)

Multivariate Network Tra�c Analysis using Clustered Patterns

Jinoh Kim · Alex Sim · Brian Tierney · Sang Suh ·
Ikkyun Kim

Received: date / Accepted: date

Abstract Tra�c analysis is a core element in network operations and management for various purposes
including change detection, tra�c prediction, and anomaly detection. In this paper, we introduce a new
approach to online tra�c analysis based on a pattern-based representation for high-level summarization
of the tra�c measurement data. Unlike the past online analysis techniques limited to a single variable to
summarize (e.g., sketch), the focus of this study is on capturing the network state from the multivariate
attributes under consideration. To this end, we employ clustering with its benefit of the aggregation of
multidimensional variables. The clustered result represents the state of the network with regard to the
monitored variables, which can also be compared with the observed patterns from previous time windows
enabling intuitive analysis. We demonstrate the proposed method with two popular use cases, one for
estimating state changes and the other for identifying anomalous states, to confirm its feasibility. Our
extensive experimental results with public traces and collected monitoring measurements from ESnet
tra�c traces show that our pattern-based approach is e↵ective for multivariate analysis of online network
tra�c with visual and quantitative tools.

1 Introduction

Monitoring network tra�c is an integral part of network operations and management. The basic require-
ment for network monitoring is to e↵ectively capture the tra�c dynamics in a timely manner. For exam-

Jinoh Kim
Texas A&M University, Commerce, TX 75428, USA
E-mail: jinoh.kim@tamuc.edu

Alex Sim
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
E-mail: asim@lbl.gov

Brian Tierney
ESnet, Berkeley, CA 94720, USA
E-mail: bltierney@es.net

Sang Suh
Texas A&M University, Commerce, TX 75428, USA
E-mail: sang.suh@tamuc.edu

Ikkyun Kim
ETRI, Daejeon, 305-700, Korea
E-mail: ikkim21@etri.re.kr

2 Jinoh Kim et al.

ple, some anomalies are the indication of performance bottlenecks with a huge number of simultaneous
connections, which may be caused by several reasons such as flash crowds, denial of service attacks,
or network component failures. The monitored results are then used for reconfiguring the network to
optimize performance or to reinforce security with the historical information.

A crucial challenge for tra�c analysis for monitoring is the exponential increase in the volume of
data [1, 2]. This should be more critical to online monitoring with a large number of incoming/outgoing
packets to be processed within a limited time interval. For example, it can be over tens of millions of
packets per second for a single 10 Gbps link. For this reason, in-depth analysis (e.g., on a per-flow basis)
would not be feasible for online monitoring, particularly in a large-scale network (e.g., ISP or enterprise
networks). In response to this, data streaming computation has been studied to provide a summary of
network tra�c within a time interval. For instance, sketch is a statistical summary technique based on
counting with hashing to analyze the network tra�c [3, 4, 5, 6, 7]. While decent for streaming computa-
tion without keeping extravagant per-flow data, a sketch is limited to producing the statistics for a single
tra�c variable. The probabilistic density information was also considered as the snapshot of the network
tra�c in a fixed amount of time [8]. However, the techniques in this class have the same problem, and are
limited to one dimensional variable to analyze. As a result, the individual variables need to be analyzed
independently, and how to combine the observations from multiple variables is left to the administrators.

In this paper, we propose a new approach that o↵ers a high-level summary of the online network tra�c
in regard to the multivariate attributes under consideration. With this approach, what the administrators
see is an abstract pattern compiled from the tra�c variables being monitored, rather than observing a
bunch of the independent statistical information for the variables. By doing so, the detection problems in
tra�c analysis (e.g., change detection and anomaly detection) can be reduced to the pattern comparison
problem. For ease of exposition, we use a term “network state” defined as the recap of the network
tra�c with respect to the monitored variables. The observed pattern represents the network state for the
associated time interval, and it can be compared with the patterns in the archive to interpret the tra�c
dynamics.

To represent the network state, we employ clustering with its benefit of the aggregation of multidi-
mensional attributes. The clustering result is taken as a pattern that tells the network state for a given time
interval. In addition, the connected clustering statistics (e.g., centroid positions) can be used to compare
patterns to provide a tool for the quantitative analysis. Note that the focus of this paper is fundamentally
di↵erent from the past studies employed clustering for anomaly detection [9, 10, 11, 12], the primary
concern of which is to test individual data points to classify into either normal or anomalous. The main
interest of our research is to develop a method to define network states from the given multivariate tra�c
variables.

In this paper, we present our new approach along with two use cases: change detection and anomaly
detection. The first use case is the estimation of tra�c changes between two di↵erent time intervals. The
network state is captured with a static number of clusters, and the change is measured with the “degree
of changes” established based on the movement of the centroid coordinates. The second use case we
demonstrate is anomaly detection. In this use case, we assume a dynamic number of clusters for a time
window, and the abnormality of a cluster is estimated with the patterns of suspicious activities clusters
using a new measure of “likelihood” constructed based on the centroid positions and the sum of squares
information.

The key contributions of this paper can be summarized as follows:

– We present a new multivariate tra�c analysis technique using clustered patterns to provide a high-
level summary of the tra�c data to enable intuitive network monitoring with visual patterns;

– We establish a set of quantitative measures (“degree of changes” and “likelihood of suspicious activ-
ities”) as supportive means to the visual patterns for comprehensive analysis;

Multivariate Network Tra�c Analysis using Clustered Patterns 3

– We demonstrate the proposed technique with two common network tra�c analysis applications of
change detection and anomaly detection with two public data sets (UNIBS data [13] and KDDCup
1999 data [14]);

– We apply our technique to the tra�c measurement collection from Energy Sciences Network (ES-
net) [15] recently collected (May 2016) to confirm the feasibility.

This paper is organized as follows. Section 2 summarizes the related studies with respect to network
monitoring techniques based on graphical tools, probabilistic distributions, hashing-based sketch, and
clustering techniques. We then discuss a traditional approach to network tra�c analysis using probabilis-
tic distributions as preliminary studies in Section 3, and introduce our new approach of clustered pattern
for multivariate tra�c analysis with the use case of change detection in Section 4. Section 5 presents how
the clustered patterns can be used to identify anomalous network states using the pattern-based approach.
Section 6 demonstrates the analysis of the ESnet [15] tstat trace using the clustered pattern technique.
Finally, we conclude our presentation in Section 7.

2 Related Work

Monitoring network tra�c using graphical means have been studied in several past studies. In the BLINC
work [16, 17], the authors focused on the patterns of host behavior at the transport layer, using four tu-
ples of source and destination IP addresses and port numbers, particularly for tra�c classification. The
BLINC idea was further extended using a tra�c dispersion graph (TDG) that models “social behavior
of hosts” using graph notations, which can capture patterns of node interactions [16]. A benchmark tool
known as NeTraMark [18] implements BLINK and TDG, as well as machine learning algorithms includ-
ing C4.5 Decision Tree, k-Nearest Neighbors, and Support Vector Machines, for the purpose of network
tra�c classification. Recently, the authors in [19] developed a visualization tool (ReView) to discover
tra�c dependency. The focus of this study is on detecting malicious events based on the causality anal-
ysis. Compared to the past work, we take a di↵erent approach that aggregates multivariate variables into
clustered patterns to show a high-level summary of network states to enable intuitive analysis.

With the heavy increase in tra�c volumes, flow-level tra�c analysis would not be feasible for high-
speed network monitoring. The sketch technique has been extensively studied to build high-level sum-
maries of the tra�c data (rather than maintaining expensive per-flow information) to deal with the change
detection and heavy-hitter detection problems [3, 4, 5, 6, 7]. Sketch is a probabilistic summary technique
using a set of hash functions. A single variable is aggregated in the sketch data structure based on hashing
for a time interval. The change is then measured by comparing the summary with the predicted summary
using forecasting techniques (e.g., ARIMA). A recent study [20] enhances the sketch technique to catch
up the rising line rates (10–100 Gbps per port over 10–100 ports) using a concept of HashPipe that main-
tains counts of heavy flows in a pipeline of hash tables to track the k heaviest flows (i.e., for heavy-hitter
detection).

Probabilistic models and samplings have also been considered to summarize the network tra�c data
by employing frequency counting [21], histogram [22], sliding windows [23], random sampling [24],
wavelets [25], and dimensionality reduction [26]. One of the promising studies in [8] proposed a dy-
namic sampling technique to reduce the size of streaming data based on the di↵erence of the probabilistic
density. The authors employed the Kolmogorov-Smirnov test (KS test) to calculate the distance of two
summaries observed in di↵erent time intervals to measure the change. The sketch and probabilistic mod-
eling techniques are however limited to capture a single tra�c variable only, and individual variables
should be independently analyzed. The key di↵erence of the proposed approach is the ability to capture
the multivariate tra�c variables to provide a comprehensive view of the tra�c data.

A large body of studies employed clustering for intrusion/anomaly detection [27, 28, 29, 30, 31]. The
main focus of many of the past studies was on identifying intrusive events individually with a trained

4 Jinoh Kim et al.

model consisting of normal or anomalous behaviors. The first use of clustering was by [9], in which
the authors made an assumption that anomalous events would be much smaller than the normal events
in quantity. The clustering information is then used to test whether the input is anomalous or not, based
on this assumption. Similarly, a recent work [32] proposed a method using co-clustering to improve the
detection performance for individual connections. The main focus of our work is fundamentally di↵erent
from the past work. Our interest in this work is in building aggregated summaries to enable the tra�c
analysis process in a collective way.

Clustering is the most widely used tool for unsupervised learning. Several di↵erent types of clustering
have been developed, including centroid-based, hierarchical, density-based, and model-based method.
According to a recent comparison study of clustering techniques with a large data set in smart grid [33],
the centroid-based method (e.g., k-means) works better than the other clustering methods with respect
to compactness (i.e., the elements in a cluster are very close to one another). The authors in [34] stress
the speed and simplicity of k-means technique for clustering in practice, which is the main reason why
it has maintained its popularity. In addition, it can be more scalable through optimizations including
parallelism (e.g., a parallel version of the k-means++ [34]). In this work, we employ k-means clustering
to create clustered patterns with its simplicity and popular use. As we will discuss shortly, the centroid-
based clustering is also beneficial with a low complexity for the representation of a pattern, which is a
vector of cluster centroid position and density that is derived from the population and the sum of squares
in the cluster.

3 Preliminary Study using Distributions

A simple form of network tra�c monitoring that keeps track of the volume of incoming/outgoing tra�c
in the network would not be comprehensive, and can only provide a partial characteristic of the network
state. One of the traditional approaches is to scrutinize probabilistic distributions of essential variables re-
lated to tra�c statistics, obtained from the data set collected within a predetermined time interval (known
as a time window). For example, the distribution of packet lengths can be referred to the characterization
of the network state in the current time window. However, a non-trivial challenge with this approach is
an exponential increase of computational complexity with additional variables to be monitored and larger
time windows [8]. Since the network administrator may want to include multiple tra�c-related attributes
in the monitoring process, multivariate analysis is commonly needed for network monitoring, making it
less attractive to employ such distribution-based monitoring.

For this study, we employed a 16-hour trace excerpted from the UNIBS tra�c trace, between 10AM
on September 30, 2009 and 2AM on October 1, 2009 [13]. The data set contains the information for
network flows1 with timing, and the ground-truth data with the associated application for each connection
is provided [35]. The average number of flows is 789 flows/hour with a high degree of variance (min=20,
max=7052).

Figure 1 shows cumulative distributions for two variables (flow duration and average number of pack-
ets in flows) over 16 monitoring time windows, each of which has one-hour in length. From the figure,
we observed that some time windows show somewhat similar plots, while some others look di↵erent one
another. For instance, we can see that the two CDF plots at 10AM and 11AM look largely di↵erent. In
contrast, for example, the plots from 11AM to 5PM are fairly similar each other although not quite clear.

To better understand the characteristics of the given tra�c data set, we analyzed the composition of
applications in each window. The breakdown of applications was performed using the associated ground-
truth data provided together with the traces [35]. We agree that it is hard to explain the network state
only through the compositions of applications. However, we believe that it is a good reference to infer

1 A flow is identified with five tuples of source IP address, source port number, destination IP address, destination port number,
and protocol in TCP/IP header

Multivariate Network Tra�c Analysis using Clustered Patterns 5

Fig. 1 Normalized cumulative distributions of two network tra�c attributes (flow duration and average number of packets in flows)
over 16 consecutive time windows, on UNIBS trace between 10AM on Sep. 30, 2009 and 2AM on Oct. 1, 2009

Fig. 2 Breakdown of applications for time windows (10AM–1AM), compiled from the ground-truth data

6 Jinoh Kim et al.

network states. Figure 2 shows the compositions of applications over the time windows. It shows that
some time frames are highly related, such as 11AM–5PM and 8PM–10PM, with respect to application
compositions. In contrast, some show strongly unrelated breakdowns with other windows, such as in
10AM, 11PM, 12PM, and 1AM.

From the distributions shown in Figure 1, those related time windows in the application breakdowns
also show similar patterns (e.g., 11AM–5PM) in the plots. However, some plots do not seem to agree on
the breakdown information. For example, two windows for 12AM and 1AM show a very close pattern
although the compositions of applications for those windows are highly distinctive each other. From the
result, network monitoring using distributions would be useful but only to some extent. In addition to
visual monitoring, one may want to measure the di↵erence of the distributions of time windows using
distribution comparison methods such as KS test [36]. In general, this traditional approach is optimized
with a single variable but hard to extend it to the analysis of multiple variables [37, 38].

These challenges motivate us to explore possible alternative approaches that may have greater poten-
tial in scalability and feasibility. As will be introduced, clustering, with its strong benefit of aggregation,
enables to yield a predetermined number of clusters regardless of the number of variables considered in
monitoring. Therefore, network monitoring using clustering would provide a consistent way to keep track
of patterns for network states.

4 Clustered Patterns for Tra�c Analysis

In this section, we present our approach to network tra�c analysis using clustered patterns. The key idea
of the proposed approach is to capture the network state from the monitored variables and represent it
with a clustered pattern. Again, “network state” is defined as the recap of the network tra�c with respect
to the monitored variables. What makes our new approach unique and more e�cient than traditional
approaches, such as sketches and distribution-based analysis, is that the clustering method has the ability
to combine multivariate attributes in a straightforward manner without an excessive extra cost, which is
a critical challenge when relying on the probabilistic distributions as discussed in the previous section.
In addition, the calculated patterns can be utilized to evaluate “similarity” of network states over time for
the purpose of network monitoring. Thus comparing similarity of given network states can be reduced to
a straightforward pattern comparison problem.

Figure 3 demonstrates the basic idea of clustered patterns. Each window shows the snapshot of the
network state with a set of clusters. The number of clusters for each window in the example is preset to
three. In the figure, each cluster has the centroid position and size of the cluster. A partition-based cluster-
ing such as k-means algorithm provides a set of properties for a cluster, such as the centroid coordinate,
the number of data points within the cluster, the sum of squared errors, and so forth, which could be used
to define the property of the cluster (i.e., the centroid position and size of cluster). Thus, a pattern is sim-
ply a vector of clusters with the defined cluster properties. The two patterns can then be compared based
on the cluster property information. In this study, we chose a conventional partitioning-based clustering
(k-means) with its manageable complexity and scalability [34].

We next discuss our approach of the clustered patterns with the UNIBS data discussed in the previous
section. The degree of changes measure will then be introduced as a quantitative analysis tool.

4.1 Clustered patterns of the UNIBS data

In our preliminary work, we used the cumulative distribution function to analyze the UNIBS data trace,
with two tra�c variables of flow duration and the average number of packets in flows (as shown in
Figure 1). We apply the clustering technique against the same data set to construct multivariate patterns.
Figure 4 demonstrates the clustering patterns over 16 time windows. We set the number of clusters to

Multivariate Network Tra�c Analysis using Clustered Patterns 7

Fig. 3 An example of clustered patterns in two di↵erent time windows. Each window shows the snapshot of the network state
with a set of clusters and the number of clusters for each window in the example is three. A pattern is a vector of clusters with
cluster properties, such as the centroid coordinate, the number of data points within the cluster, the sum of squared errors, etc. The
patterns can be compared with the defined cluster properties. For example, the centroid position moves between two patterns (as
the arrow lines in the figure) can be considered as a measure to quantitatively compare two clustered patterns (which is discussed
in Section 4.2).

4 (k = 4) for a single time window, which is derived from the total sum of squares using an “elbow”
method. As shown in the figure, the clustered results show the captured network states, as well as the
correlated patterns (� in the figure will be explained shortly). For example, the pattern for 10AM time
window is quite di↵erent from the one for 11AM time window. In contrast, the clustered patterns from
11AM to 5PM are visually similar. The three patterns for 8PM–10PM time windows are also resembling,
whereas the last three time windows (11PM–1AM) have somewhat distinctive patterns.

From Figure 2 and Figure 4, we can see a strong correlation. For example, the breakdown graph
(Figure 2) shows a high degree of similarity from 11AM to 5PM and from 8PM to 10PM, respectively,
which agrees with similarity of the clustered patterns in Figure 4. On the other hand, there is a high degree
of di↵erence in the breakdown graph between 10AM and 11AM. Similarly, we can see huge di↵erences
from the windows of 11PM–1AM in Figure 2.

The clustering-based monitoring is helpful to intuitively identify similarity of patterns among time
windows. However, some patterns may not be clear enough to determine the similarity of them only
through the visual monitoring. Any quantitative measures would be helpful to perceive the degree of
similarity with greater confidence if provided. For this purpose, we define a metric based on the centroid
position move (in the Euclidean space) between two compared windows in the next section.

4.2 Quantitative measure: degree of changes (�)

We introduce a new measure of “degree of change” (�) that computes the di↵erence of two patterns
based on the movement of the centroid positions of the clusters. The basic intuition behind this is that
the centroid coordinates of two patterns would be close without a heavy change if the network states in
comparison are tightly related. That is why we fixed the number of clusters in this use case.

Suppose two time windows Wi and Wj, and the associated cluster sets Ci = {c0
i , c

1
i , ..., c

k
i } and C j =

{c0
j , c

1
j , ..., c

k
j}, respectively, where k is the number of clusters. Each cluster cyx has its centroid pyx. Without

knowing which cluster in Wi is mapped with one in Wj, we find a set of pairs showing the minimal move.
Suppose a distance function D : Ci ⇥ C j ! R. Then the problem is reduced to the assignment problem
that finds a bijection f : Ci ! C j with the minimal distance function:

�i, j =
X

l2Ci

D(l, f (l))

8 Jinoh Kim et al.

Fig. 4 Clustered patterns for 16 consecutive hourly time windows on UNIBS data trace for flow duration on x- axis and the average
number of packets per flow on y-axis, between 10AM on Sep. 30, 2009 and 2AM on Oct. 1, 2009. The number of clusters is set to
4, based on the sum of squares in groups. Note that cluster IDs were randomly selected by the clustering tool. � stands for degree
of changes calculated based on the centroid positions move between two clustered patterns, to quantitatively measure the similarity
of the patterns. The smaller, the more similar the patterns are (see details in Section 4.2).

Hungarian algorithm is a well-known method for this type of problem with O(k3) of the computational
complexity [39]. As k (the number of clusters) is generally not large (k=4 in Figure 4), the complexity
overhead would not be unacceptable.

The � values in Figure 4 represent the degree of changes for two adjacent windows. From the �s,
we see relatively small �s from 11AM to 6PM and from 8PM to 10PM (�  0.2). On the other hand,
large �s were observed for the adjacent windows of (10AM, 11AM), (7PM, 8PM), (11PM, 12AM) and
(12AM, 1AM) (� > 1.0). While strong correlations are observed overall, the �(10PM, 11PM) is the
only exception with a small value (�=0.1) although the two windows are slightly di↵erent visually. This
indicates that the visual patterns and quantitative measures are complementary and need to be considered
together to properly read the state of the network.

Multivariate Network Tra�c Analysis using Clustered Patterns 9

Fig. 5 Clustered patterns for 16 consecutive 5-minute time windows on UNIBS data trace, between 8:00AM and 9:20AM on
October 2, 2009

4.3 Evaluation with another day trace

To further investigate the e↵ectiveness of identifying patterns and the correlation between the clustered
patterns and the metric of the degree of changes, we experiment on a data set collected in a di↵erent day
in the UNIBS data set. In this experiment, we did not consider application breakdowns, but compared the
plotted patterns with the associated quantitative information. The new data set is a part of the UNIBS data
trace, collected in a di↵erent day of October 2, 2009. Since the data set includes a relatively large number
of flows, we performed clustering with every five minute trace from 8:00AM to 9:20AM. The average
number of flows is 973 flows/hour with a low variance (min=599, max=1,350). The configuration for
clustering is the same as the previous experiment with four clusters, based on the sum of squares within
groups.

Figure 5 demonstrates the clustering results on the 5-minute time window data set. For ease of pre-
sentation, we identify individual time windows with the unique ID in addition to their beginning time. As
in Figure 4, the figure shows clustered pattern changes over time with discernible similarity/dissimilarity
between windows. We can see that several pairs of time windows such as (3,4), (6,7), (8,9) and (10,11)
look pretty similar. On the other hand, some others such as (1,2), (2,3), (12,13) and (15,16) show highly
distinctive patterns.

10 Jinoh Kim et al.

Fig. 6 Degree of changes (�) based on the centroid positions move with the trace from 8AM to 9:20AM on Oct. 2, 2009. All the
observed variances are negligible and almost zeros (� ⇡ 0).

Figure 6 shows the corresponding degree of changes (�s) computed. In the figure, x-axis shows a pair
of adjacent windows compared to one another, and y-axis shows the calculated � for the associated pair
of windows (normalized). For the clustered results with two attributes of flow duration and the number of
packets in flow (“2 attributes”), pairs of windows of (1,2), (4,5), (5,6), (9,10), (12,13) and (15,16) show
relatively high �s, whereas windows of (3,4), (6,7), (8,9), (10,11) and (13,14) reported minor changes,
overall agreeing on the visual patterns. Although not adjacent, two windows of 1 and 4 look alike in
Figure 5, and its calculated degree of changes is fairly low with �(1,4) = 0.34 (not shown in Figure 6).
Also, the windows of (5,11) has a moderate di↵erence of �(5,11) = 0.42, supporting the soundness of our
approach.

The figure also includes a plot (“3 attributes”) with an additional variable of the number bytes in flow
for clustering, showing concurring trends with the other (“2 attributes”). We observed very negligible
variations (� ⇡ 0) in this experiment with a relatively large number of flows in each window, indicating
that the impact of randomness introduced by the k-means algorithm would not be significant with a
su�ciently large number of samples.

To sum it up, we observed a strong correlation between the clustered patterns and tra�c composition
that confirms the feasibility of the proposed method for change detection of network states. We also
introduced the measure of “degree of changes” (�) to quantitatively estimate the similarity of two patterns.
In the next section, we apply the clustered pattern technique to identify anomalous network states as
another use case model.

5 Anomalous State Detection using Clustered Patterns

Clustering has been employed for network anomaly detection in previous studies [32, 27, 29, 31]. The
main focus of the past studies is on determining whether individual connections are anomalous or not.
For example, a connection in question would be anomalous if it is closer to an anomaly cluster than a
normal cluster. We are not interested in the binary classification of individual connections in this study.
Rather, our primary interest is to help the network operator to determine whether the current network
state is anomalous (due to many reasons such as intrusions and failures) or not in a collective way.

For this use case, we employed the KDDCup 1999 data (“kddcup.data 10 percent corrected”) [14]
that has been widely used in the anomaly detection study. A data instance in the data set is a record of a sin-
gle TCP connection. The individual record also contains a label for: a normal connection (”NORMAL”),
a denial of service attack (“DOS”), an unauthorized access from a remote host (“R2L”), an unauthorized

Multivariate Network Tra�c Analysis using Clustered Patterns 11

access to root functions (“‘U2R”), and one employed for probing for vulnerabilities (“Probe”). Since no
timing information is provided in the data set, we formed 16 partition windows (“AA” – “AP”) serially
from the beginning of the data file, each of which contains 1,000 connections.

Two connection-related attributes were considered in this case study: “src bytes” is the number of
bytes from the source to destination host and “dst bytes” is the number of bytes from the destination to
source. Due to a high degree of skewness, we normalized the data using a log function. For example, the
summary of src byte before normalizing is: 0 (min), 45 (1st quartile), 520 (median), 3,026 (mean), 1,032
(3rd quartile), 693,400,000 (max); the summary after the normalization is: 0.00 (min), 1.65 (1st quartile),
2.72 (median), 2.16 (mean), 3.01 (3rd quartile), and 8.84 (max). The normalization makes sense since
a 10-byte di↵erence is still critical to the connections in the 1st quartile group ( 46 bytes), while it is
insignificant to the right-skewed connections such as one with 693,400,000 bytes (max).

5.1 Representation using clustered patterns

As in the previous section, we employ the k-means clustering to obtain the patterns. One di↵erence is that
the number of clusters is dynamically determined for each time window, while it was fixed in the first use
case that focuses on the degree of changes. The number of clusters for a time window is estimated by the
optimum average silhouette width. The procedure for clustering is as follows: For each window Wi, the
number of clusters (ki) is estimated with the data instances in that window (Di and |Di| = 1,000). Then the
clustering algorithm is executed with an input of ki to obtain a clustered pattern for Wi.

Figure 7 shows the clustering result and Table 1 provides a summary of the windows with labels.
From Table 1, we can see the windows from AH to AL have a lot of DOS connections and three windows
of AA, AE and AP include some malicious connections. From the figure, we can see noticeable similarity
from many clean windows (AB–AD, AF, AM–AO). The windows containing malicious events (AA, AE,
AH–AL, and AP) yield quite di↵erent shapes from the ones observed in the clean windows. We can see
that DOS makes a specific pattern as shown in the windows of AH–AL. Window AA has a cluster around
the position of (1.5,0) (red-circled); it does not include any of DOS connections but some of U2R attack
connections. AE and AP both contain several malicious connections and look similar each other, although
the windows have di↵erent types of attacks. AG has no attack connection and looks partly similar to AE
and AF, thus making it somewhat unclear to figure out.

5.2 Measuring likelihood of attacks

We next present a metric of “likelihood” as a quantitative tool for operators to test the potential of a
cluster as an attack class. One simple way to compare two clusters would be to use the Euclidean distance
d(c1, c2), where ci is the centroid position of cluster Ci in a multi-dimensional space; hence, d 2 R and
d � 0. Then we can assume a greater likelihood for two clusters with a smaller distance. When d = 0, it
implies that the given clusters have the same centroid position, and it will result in the greatest likelihood
by definition. While simple, the limitation of this method is that none of d other than zero may not be
adequately interpreted to estimate the likelihood since it can be any positive real number. For instance, it
could be d = 1 or d = 100; what do they mean in terms of the likelihood? To establish a metric of the
likelihood, we want to scale it between zero (the least likely) and one (the most likely) for the relative
comparison.

We assume that a cluster is represented by two parameters of <c, v>, where c is the centroid position
and v is a degree of variation in the cluster. A larger v thus indicates that the elements in the cluster are
further dispersed in the space. Obtaining the centroid position is straightforward with the k-means cluster-
ing as any cluster has a centered point that minimizes the total squared sum of the elements (“within-SS”
or simply wss). We utilize this parameter (wss) to characterize a degree of variation, which is defined as

12 Jinoh Kim et al.

Fig. 7 Clustering results: Each window contains 1,000 connections without overlapping. The k-means algorithm is used and the
number of clusters is estimated using the partitioning around medoids technique. The clusters in a thick circle are not found from a
cluster with normal connections only.

v = wss
n , where n is the number of elements in the cluster. With this representation of a cluster, we es-

tablish two measures for the likelihood defined, one is based on a percentile in the Gaussian distribution
(lpv), and the other is based on a diameter of a cluster (ldr).

To define the first measure for the likelihood (lpv), we employ a concept of the statistical percentile
in a Gaussian distribution using p-value. The first measure (lpv) is derived from the statistical percentile,
by assuming that the centroid position of the compared cluster as the mean and the

p
v as the standard

deviation. Suppose a cluster C0 =<c0, v0> and an attack cluster C =<c, v>, and we would like to determine
the likelihood of an attack of C for C0. The normal score (z-score) is calculated by c�c0p

v
, where (c�c0) is the

distance in the Euclidean space. With the calculated normal score, lpv is defined as the two-fold percentile
using the associated p-value. Note that we assumed v = min(v, 0.01) to prevent the divide-by-zero error.

Then we test a p-value with the centroid position of the comparing cluster The basic idea for this
measure is that we assume a cluster The attack cluster is represented with (c, n, e), where c is the centroid
coordinate, n is the number of data points, and e is the minimum of either the total sum of squares in
the cluster or 0.01 (an arbitrary small value to avoid divide-by-zero for calculating normal score below).

Multivariate Network Tra�c Analysis using Clustered Patterns 13

Table 1 Tra�c composition & likelihoods of attacks

Window AA AB AC AD AE AF AG AH AI AJ AK AL AM AN AO AP
Normal 997 1000 1000 1000 998 1000 1000 792 0 0 0 511 1000 1000 1000 979

DOS 0 0 0 0 0 0 0 208 1000 1000 1000 489 0 0 0 20
U2R 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
R2L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Probe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lpv (2D)
DOS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.51 1.00 1.00 1.00 0.22 0.00 0.00 0.00 0.00
U2R 0.71 0.60 0.62 0.70 0.47 0.68 0.48 0.43 0.00 0.00 0.00 0.71 0.60 0.72 0.70 0.31
R2L 0.85 0.51 0.56 0.60 0.71 0.59 0.72 0.40 0.17 0.17 0.17 0.59 0.51 0.62 0.60 0.29

Probe 0.44 0.48 0.42 0.40 0.23 0.41 0.66 0.28 0.00 0.00 0.00 0.33 0.49 0.41 0.38 0.50
Ldr (2D)

DOS 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.81 1.00 1.00 1.00 0.70 0.00 0.00 0.00 0.00
U2R 0.38 0.48 0.32 0.67 0.53 0.42 0.09 0.51 0.00 0.00 0.00 0.44 0.49 0.49 0.51 0.13
R2L 0.72 0.27 0.20 0.58 0.88 0.27 0.39 0.74 0.00 0.00 0.00 0.60 0.27 0.25 0.46 0.54

Probe 0.13 0.00 0.00 0.00 0.28 0.00 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.57
Lpv (3D)

DOS 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.51 1.00 1.00 1.00 0.22 0.00 0.00 0.00 0.00
U2R 0.40 0.38 0.37 0.37 0.40 0.37 0.38 0.36 0.02 0.02 0.02 0.40 0.38 0.37 0.38 0.39
R2L 0.42 0.18 0.13 0.12 0.41 0.13 0.27 0.37 0.29 0.29 0.29 0.45 0.19 0.14 0.26 0.15

Probe 0.17 0.10 0.09 0.09 0.16 0.09 0.12 0.05 0.00 0.00 0.00 0.66 0.11 0.09 0.12 0.11
Ldr (3D)

DOS 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.81 1.00 1.00 1.00 0.70 0.00 0.00 0.00 0.00
U2R 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R2L 0.23 0.00 0.00 0.00 0.59 0.00 0.22 0.17 0.00 0.00 0.00 0.28 0.00 0.00 0.00 0.45

Probe 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00

Fig. 8 Estimating likelihood based on the radius of the circle (ldr): The blue circle is a cluster in question and the orange circle is
an attack cluster. In the left figure, the center of the attack cluster is located within the blue circle and the likelihood is defined as
the relative distance compared to the radius of the blue circle (ldr = 1� c�c0p

v0
). The right figure show an example that the two circles

have no overlap since the center of the attack cluster is located outside the blue circle (ldr = 0).

Then we assume e/n as its variance. Thus, the smaller cluster size, the smaller variance is, and vice versa.
To test likelihood of the attack for a cluster with centroid position c0, we compute p-value by calculating
the normal score by z = c�c0p

v
, where c � c0 is simply a Euclidean distance. Finally, we define lpv is the

two-sided p-value of z.
We next introduce the second measure (ldr) based on the centroid positions and the radius of the

cluster. While lpv tests how close the center of the cluster is to the attack cluster’s center, we consider a
cluster as a circle with a radius that is assumed equal to the deviation of the cluster to establish ldr. Thus,
cluster C0 =<c0, v0> is represented as a circle with the center of c0 and the radius of r0 =

p
v0. To test the

likelihood of an attack represented with C =<c, v>, we compare the two center points c and c0 with the
radius r0. In the comparison step, we compute ldr as follows:

14 Jinoh Kim et al.

Table 2 Number of clusters in attack patterns

Attack 2D <sbytes,dbytes> 3D <sbytes,dbytes,dur>
DOS 6 6
U2R 4 2
R2L 10 9

Probe 10 10

Table 3 Evaluation of measures (number of cases and percentage)

L � 0.5 L � 0.7
Measure FP FN FP FN
Lpv (2D) 8 (50%) 3 (19%) 6 (38%) 4 (25%)
Ldr (2D) 1 (6%) 2 (13%) 0 (0%) 3 (19%)
Lpv (3D) 0 (0%) 4 (25%) 0 (0%) 5 (31%)
Ldr (3D) 0 (0%) 3 (19%) 0 (0%) 3 (19%)

ldr = max
⇣
1 � c � c0p

v0
, 0
⌘

Figure 8 demonstrates two examples for ldr. In the figure, the blue circle is a cluster in question,
and the orange circle is an attack cluster. As shown in the left figure, we compute the likelihood by
ldr = 1 � c�c0p

v0
, since the center of the attack cluster is located within the blue circle. In contrast, it is a

zero (ldr = 0) in the right figure as the two circles have no overlap, and the center of the attack cluster is
located outside the blue circle.

To evaluate the defined measures, we precalculated the patterns of the attack clusters for each attack
class. Using the patterns for individual attacks, we compute likelihood using lpv and ldr for each window.
As there can be multiple clusters for a single attack type and a window can have more than a single
cluster, we define a collective measure L that takes the max from the set of the likelihood values. In detail,
suppose a window with a set of clusters {C01,C02, ...,C0m}, and an attack class (e.g., DOS) with another set
of clusters {C1,C2, ...,Cn}. Then the collective likelihood L↵ for attack type ↵ is defined as:

L↵ = max
i, j

l(C0i ,C j), where 0 < i  m and 0 < j  n

The following illustrates the steps to evaluate likelihood:

1. If the window has no attack and none of L is greater than or equal to the threshold, it is a true negative
(TN);

2. If the window has any types of attacks and any of the associated L is greater than or equal to the
threshold, it is a true positive (TP);

3. If the window has any types of attacks and any of the associated L is less than the threshold, it is a
false negative (FN);

4. Otherwise, it is a false positive (FP).

We examined with two threshold values, L � 0.5 and L � 0.7, using two attributes (src bytes and
dst bytes) and using three attributes (plus “connection duration”). We refer to the former as “2D” and the
latter as “3D”. Table 3 shows the calculated FPs and FNs. From the result, we can see using three features
reduces the number of the false decisions but with a slight increase of false negatives. Also we can see
that Ldr works conservatively compared to Lpv.

Multivariate Network Tra�c Analysis using Clustered Patterns 15

Table 4 Tra�c composition & likelihoods of attacks (dataset B)

Window BA BB BC BD BE BF BG BH BI BJ BK BL BM BN BO BP
Normal 906 1000 1000 1000 1000 999 1000 1000 1000 1000 1000 1000 1000 722 275 979

DOS 0 0 0 0 0 1 0 0 0 0 0 0 0 276 724 0
U2R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
R2L 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2

Probe 94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
Lpv (3D)

DOS 0.00 0.01 0.00 0.00 0.00 0.39 0.00 0.00 0.05 0.00 0.87 0.00 0.00 0.47 0.93 0.92
U2R 0.50 0.39 0.38 0.37 0.37 0.38 0.39 0.38 0.38 0.40 0.38 0.38 0.37 0.40 0.39 0.46
R2L 0.42 0.23 0.26 0.16 0.11 0.58 0.15 0.26 0.25 0.08 0.32 0.19 0.15 0.26 0.35 0.45

Probe 0.09 0.59 0.12 0.10 0.08 0.06 0.28 0.12 0.11 0.10 0.68 0.10 0.09 0.07 0.58 0.92
Ldr (3D)

DOS 0.71 0.36 0.00 0.00 0.00 0.92 0.55 0.00 0.77 0.00 0.98 0.00 0.00 0.95 0.98 0.91
U2R 0.77 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.59 0.50 0.00
R2L 0.60 0.00 0.00 0.00 0.00 0.78 0.00 0.00 0.07 0.39 0.57 0.00 0.00 0.46 0.32 0.46

Probe 0.73 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.68 0.64 0.91

5.3 Evaluation with another trace

We also conducted the same experiment with another data set (“dataset B”) from KDDCup 1999 for
estimating the likelihood of attacks with the three variables (3D). All the evaluation methods are equal to
the ones used in the past section, and the only di↵erence is the data set itself.

Like the result with the first dataset, we can see that the estimated measures largely agree with the
network states, showing greater likelihood for anomalous windows. As shown in Table 4, Lpv made 3
FNs and 2 FPs with L � 0.5 and 3 FNs and 1 FP with L � 0.7. With Ldr, we obtained 3 FPs and 2
FPs respectively for the two thresholds with no FN. From the results, the proposed measures are overall
working well, although there is also a room for future optimizations.

In sum, the clustering result with dataset B yielded somewhat distinctive patterns between normal and
anomalous states, and the normal patterns are closely similar to the ones observed in the first data set (i.e.,
dataset A). From the experimental results with two independent datasets, we can see that the patterns can
be helpful for network operators to intuitively estimate the network state whether it is anomalous or not.

6 Evaluation with ESnet Trace

ESnet [15] provides the high-bandwidth, reliable network connections that link scientists at national lab-
oratories, universities and other research institutions. ESnet is funded by the DOE O�ce of Science, and
managed and operated by the Scientific Networking Division at Lawrence Berkeley National Laboratory.
The tstat data used in this paper comes from the test ESnet Data Transfer Nodes (DTNs)2. Data Trans-
fer Nodes are an important part of ESnet’s Science DMZ network design pattern [40]. ESnet is collecting
tstat logs in order to analyze how various network tuning settings impact TCP behavior and network
throughput.

To collect TCP instrumentation data for each flow, the tstat tool is used [41]. tstat can be used
to analyze either real-time or captured packet traces. It rebuilds each TCP connection by looking at the
TCP header in the forward and reverse direction. tstat reports the source and destination host / port
information, and the number of bytes/packets sent and received. It also reports a number of useful TCP
statistics, including congestion window size and number of packets retransmitted, which can be used to
analyze the health and performance of the link.

In this study, we analyze the tstat data to monitor the network state change over time. We selected
a subset of the measurement collection between 12:00PM and 2:40PM on May 9, 2016, to form sixteen

2 The details of DTNs are described at https://fasterdata.es.net/performance-testing/DTNs/

16 Jinoh Kim et al.

Fig. 9 Clustering results over 16 consecutive 10-minute time windows on ESnet data trace, with two variables of the number of
packets on x- axis and max throughput on y-axis. We randomly selected data between 12:00PM and 2:40PM on May 2, 2016. The
number of clusters is set to 4, based on the sum of squares in groups. Note that cluster IDs were randomly selected by the clustering
tool.

10-minute windows. The windows have 367 connections for each on average. We chose two variables of
<number of packets, max throughput> to keep track of changes. From the distribution of the variables,
we observed a very high degree of skewness. Thus, we normalized data using a log function. We set the
number of clusters to 4 (K = 4) using an elbow method, as in the previous sections.

Figure 9 demonstrates the clustered patterns for the 16 windows. We can see some patterns look
closely similar each other, e.g., (5,6), (9,10), and (14,15), while some adjacent patterns are visually dis-
tinctive, e.g., (3,4), (7,8), and (11,12).

Figure 10 shows the associated degree of changes between the adjacent windows. Since the ESnet
data set does not contain any annotation information, we conducted KS test for the two tra�c variables.
The first two plots in the figure show the KS test statistic for (a) the number of packets and (b) max
throughput. Lower statistic values indicate greater similarity in terms of probabilistic distribution. The
next plot (Figure 10(c)) shows the degree of changes (�). The horizontal lines in each figure represent the

Multivariate Network Tra�c Analysis using Clustered Patterns 17

Fig. 10 Comparison between KS test similarity for individual variables and degree of changes

averages over the 16 time windows. From the plots in Figure 10, the probabilistic distribution similarity
largely agree on our degree of changes measure for this data set.

7 Conclusion

This paper proposes a new approach to the high-level online network monitoring using clustered patterns.
The main goal of this study is to enable network tra�c analysis with multivariate attributes. We demon-
strated the feasibility of the proposed technique for two popular network monitoring applications. For
the detection of state changes, we demonstrated our analysis on the clustering results with the associated
ground-truth information, with the established measure of “degree of changes”. We also presented the
network anomaly detection as the second use case. We defined a new metric to estimate the likelihood
of a cluster to be an attack class and set up two measures with the clustering information, one based
on percentile in the Gaussian distribution and the other based on the radius of a cluster. The presented
method was also applied to a recent ESnet tra�c trace to keep track of state changes. The evaluation
results support the e↵ectiveness of the new approach with the pattern-based representation of network
states and the quantitative measures.

This research is an on-going project, and there are several interesting challenges to be addressed in
future. Scalable analysis is one of the key requirements in network operation. For example, we observed
that it takes approximately 10 seconds to construct clusters with 16,000 data points in a commodity PC
with the simple k-means that is known as a scalable method for clustering. Sampling could be an option
for scalability, but we observed that a simple sampling may result in somewhat deviated ones compared
to the output with the entire data points. In addition, clustering can be a↵ected by a small set of noises.
Thus, developing a noise-resistant method for representing network states would be an interesting topic
to explore for greater robustness.

8 Acknowledgment

This work was supported in part by the O�ce of Advanced Scientific Computing Research, O�ce of
Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and by Insti-

18 Jinoh Kim et al.

tute for Information & communications Technology Promotion(IITP) grant funded by the Korea gov-
ernment(MSIP) (No.2016-0-00078, Cloud based Security Intelligence Technology Development for the
Customized Security Service Provisioning).

References

1. Cisco white paper: Cisco vni forecast and methodology, 2015-2020,
http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/visual-networking-index-
vni/complete-white-paper-c11-481360.pdf.

2. Kenjiro Cho, Kensuke Fukuda, Hiroshi Esaki, and Akira Kato. Observing slow crustal movement in
residential user tra�c. In Proceedings of the 2008 ACM Conference on Emerging Network Experi-
ment and Technology, CoNEXT 2008, Madrid, Spain, December 9-12, 2008, page 12, 2008.

3. Da Tong and Viktor Prasanna. High throughput sketch based online heavy hitter detection on fpga.
ACM SIGARCH Computer Architecture News, 43(4):70–75, 2016.

4. Minlan Yu, Lavanya Jose, and Rui Miao. Software defined tra�c measurement with opensketch.
In Proceedings of the 10th USENIX Conference on Networked Systems Design and Implementation,
nsdi’13, pages 29–42, 2013.

5. Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir Braverman. One
sketch to rule them all: Rethinking network flow monitoring with univmon. In Proceedings of the
2016 conference on ACM SIGCOMM 2016 Conference, Florianopolis, Brazil, August 22-26, 2016,
pages 101–114, 2016.

6. Bingdong Li, Je↵ Springer, George Bebis, and Mehmet Hadi Gunes. Review: A survey of network
flow applications. J. Netw. Comput. Appl., 36(2):567–581, March 2013.

7. Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen. Sketch-based change detec-
tion: Methods, evaluation, and applications. In Proceedings of the 3rd ACM SIGCOMM Conference
on Internet Measurement, IMC ’03, pages 234–247, 2003.

8. J. Choi, K. Hu, and A. Sim. Relational dynamic bayesian networks with locally exchangeable mea-
sures. LBNL Technical Report, LBNL-6341E, 2013.

9. Leonid Portnoy, Eleazar Eskin, and Sal Stolfo. Intrusion detection with unlabeled data using clus-
tering. In In Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA-2001,
pages 5–8, 2001.

10. Latifur Khan, Mamoun Awad, and Bhavani Thuraisingham. A new intrusion detection system using
support vector machines and hierarchical clustering. The VLDB Journal, 16(4):507–521, October
2007.

11. Kingsly Leung and Christopher Leckie. Unsupervised anomaly detection in network intrusion de-
tection using clusters. In Proceedings of the Twenty-eighth Australasian Conference on Computer
Science - Volume 38, ACSC ’05, pages 333–342, 2005.

12. Pedro Garcia-Teodoro, Jesús E. Dı́az-Verdejo, Gabriel Maciá-Fernández, and Enrique Vázquez.
Anomaly-based network intrusion detection: Techniques, systems and challenges. Computers &
Security, 28(1-2):18–28, 2009.

13. Maurizio Dusi, Alice Este, Francesco Gringoli, and Luca Salgarelli. Using GMM and svm-based
techniques for the classification of ssh-encrypted tra�c. In Proceedings of IEEE International Con-
ference on Communications, ICC, pages 1–6, 2009.

14. KDD Cup 1999 Data. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
15. ESnet. https://www.es.net/.
16. Marios Iliofotou, Prashanth Pappu, Michalis Faloutsos, Michael Mitzenmacher, Sumeet Singh, and

George Varghese. Network monitoring using tra�c dispersion graphs (tdgs). IMC ’07, pages 315–
320, 2007.

Multivariate Network Tra�c Analysis using Clustered Patterns 19

17. Thomas Karagiannis, Konstantina Papagiannaki, and Michalis Faloutsos. Blinc: Multilevel tra�c
classification in the dark. SIGCOMM Comput. Commun. Rev., 35(4):229–240, August 2005.

18. Suchul Lee, Hyunchul Kim, Dhiman Barman, Sungryoul Lee, Chong-kwon Kim, Ted Kwon, and
Yanghee Choi. Netramark: A network tra�c classification benchmark. SIGCOMM Comput. Com-
mun. Rev., 41(1):22–30, January 2011.

19. Hao Zhang, Maoyuan Sun, Danfeng (Daphne) Yao, and Chris North. Visualizing tra�c causality for
analyzing network anomalies. In Proceedings of the 2015 ACM International Workshop on Interna-
tional Workshop on Security and Privacy Analytics, IWSPA ’15, pages 37–42, New York, NY, USA,
2015. ACM.

20. Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukrishnan, and Jennifer
Rexford. Heavy-hitter detection entirely in the data plane. In Proceedings of the Symposium on SDN
Research, SOSR ’17, pages 164–176, New York, NY, USA, 2017. ACM.

21. S. Das, S. Antony, D. Agrawal, , and A. E. Abbadi. Cots: A scalable framework for parallelizing fre-
quency counting over data streams. In IEEE International Conference on Data Engineering (ICDE),
pages 1323–1326, 2009.

22. S. Guha, N. Koudas, and K. Shim. Data-streams and histograms. In ACM symposium on Theory of
computing, pages 471–475, 2001.

23. M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over sliding windows.
In ACM-SIAM symposium on discrete algorithms, pages 635–644, 2002.

24. R. Motwani and P. Raghavan. Randomized algorithms. In Cambridge University Press, 1995.
25. G. S. Manku and R. Motwani. Approximate frequency counts over data streams. In VLDB, pages

346–357, 2002.
26. S. Papadimitriou, J. Sun, and C. Faloutsos. Dimensionality reduction and forecasting on streams.

Data Streams, Models and Algorithms, 31:261–288, 2007.
27. Sunhee Baek, Donghwoon Kwon, Jinoh Kim, Sang C. Suh, Hyunjoo Kim, and Ikkyun Kim. Unsu-

pervised labeling for supervised anomaly detection in enterprise and cloud networks. In 4th IEEE
International Conference on Cyber Security and Cloud Computing, CSCloud 2017, New York, NY,
USA, June 26-28, 2017, pages 205–210, 2017.

28. Gilberto Fernandes, Luiz F. Carvalho, Joel J.P.C. Rodrigues, and Mario Lemes Proença. Network
anomaly detection using ip flows with principal component analysis and ant colony optimization. J.
Netw. Comput. Appl., 64(C):1–11, April 2016.

29. Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu. A survey of network anomaly detec-
tion techniques. Journal of Network and Computer Applications, 60:19–31, 2016.

30. Tao Qin, Xiaohong Guan, Wei Li, Pinghui Wang, and Qiuzhen Huang. Monitoring abnormal net-
work tra�c based on blind source separation approach. J. Netw. Comput. Appl., 34(5):1732–1742,
September 2011.

31. Bo Li, Peng Liu, and Li Lin. A cluster-based intrusion detection framework for monitoring the
tra�c of cloud environments. In 3rd IEEE International Conference on Cyber Security and Cloud
Computing, CSCloud 2016, Beijing, China, June 25-27, 2016, pages 42–45, 2016.

32. Evangelos E. Papalexakis, Alex Beutel, and Peter Steenkiste. Network anomaly detection using co-
clustering. In Proceedings of the 2012 International Conference on Advances in Social Networks
Analysis and Mining (ASONAM 2012), ASONAM ’12, pages 403–410, 2012.

33. Ling Jin, Doris Lee, Alex Sim, Sam Borgeson, Kesheng Wu, C. Anna Spurlock, and Annika Todd.
Comparison of clustering techniques for residential energy behavior using smart meter data. In AAAI
Workshops - Artificial Intelligence for Smart Grids and Buildings, March 2017, San Francisco, CA,
2017.

34. Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei Vassilvitskii. Scal-
able k-means++. Proc. VLDB Endow., 5(7):622–633, March 2012.

20 Jinoh Kim et al.

35. F. Rgringoli, L. Salgarelli, M. Dusa, N. Cascarano, F. Risso, and k cla↵y. Gt: picking up the truth from
the ground for internet tra�c. ACM SIGCOMM Computer Communication Review, 39(5), October
2009.

36. Kolmogorov-Smirnov Goodness-of-Fit Test. http://www.itl.nist.gov/div898/handbook/
eda/section3/eda35g.htm.

37. A. Justel, D. Pena, and R. Zamar. A multivariate kolmogorov-smirnov test of goodness of fit. Statis-
tics & Probability Letters, 35:251–259, 1997.

38. T. J. O’Neilla and S. E. Sterna. Finite population corrections for the kolmogorovsmirnov tests.
Journal of Nonparametric Statistics, 24(2):497–504, 2012.

39. G. Ayorkor Mills-Tettey, Anthony Stentz, and SM. Bernardine Dias. The dynamic hungarian algo-
rithm for the assignment problem with changing costs. Technical report, Carnegie Mellon University,
East Lansing, Michigan, July 2007.

40. Eli Dart, Lauren Rotman, Brian Tierney, Mary Hester, and Jason Zurawski. The science dmz: A
network design pattern for data-intensive science. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, SC ’13, pages 85:1–85:10, 2013.

41. M. Mellia, R. Lo Cigno, and F. Neri. Measuring ip and tcp behavior on edge nodes with tstat. Comput.
Netw., 47(1):1–21, January 2005.

