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Abstract

An X-ray based system for the inspection of pistachio nuts and wheat kernels for internal
insect infestation is presented. The novelty of this system is two-fold. First, we construct an
invariant representation of infested nuts from X-ray images that is rich, robust, and compact.
Insect infestation creates a tunnel, in the X-ray image, with reduced density of the natural
material. The tunneling effect is encoded by linking troughs on the image and constructing
a joint curvature-proximity distribution table for each nut. The latter step is designed to
accentuate separation of those tunneling effects that are due to the natural structure of the
nut. Second, since the representation is sparse, we partition the joint distribution table
into several regions, where each region is used independently to train a backpropagation
(BP) network. The outputs of these subnets are then collectively trained with another BP
network. We show that the resulting hierarchical network has the advantage of reduced
dimensionality while maintaining a performance similar to the standard BP network.

1 Introduction

We present a system that has been developed for inspection of pistachio nuts and wheat
kernels viewed with an X-ray sensor. The X-ray device reveals internal defects that cannot
be otherwise detected by external evidences in the visible domain. Presently, pistachio nuts
are inspected for external damages, and a sample of wheat kernels are X-rayed for manual
inspection at the mill. In the case of pistachio nuts, we are interested in elimination of

aflatoxin contamination' [25]. However, there is a strong correlation between contamination
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and insect infestation. And in the case of wheat kernels, we are interested in rejecting those
wheat kernels that are infested with maized weevil.

The main novelty of this paper is two fold: First, we derive an invariant representation that
captures pertinent information on infested as well as non-infested nuts; second, we show
that by partitioning this invariant representation, a classifier with reduced dimensionality
can be constructed. From a geometric perspective, infestation can be characterized by a
dark tunneling appearance in the X-ray image. The tunnel corresponds to the reduced
density of the natural content of the nut and to the replacement of that content by a cocoon,
insect debris, and air, which have lower X-ray absorption properties. The construction of
an invariant representation is complicated by the fact that the tunnel can occur at any
spatial location and direction. In the case of pistachio nuts, some air gaps are due to natural
separations between the two halves (cotyledons) of the nut meat. And in the case of the
wheat kernel, the density of the kernel is reduced near its medial axis.

For pistachio nuts, these natural features may be visible depending upon its resting position.
However, the natural separations are generally accentuated by higher contrast than those
that are caused by infestation. In this context, our invariant representation first encodes
the tunnels and their magnitude, and then parameterizes this representation with respect
to location and orientation. Tunnels can be represented in terms of local positive curvature
maxima; these local maxima are then linked to form long curve segments. The invariant and
compact representation of these curve segments, with respect to rotation and translation,
is then encoded by constructing the distribution of local curvature maxima as a function
of distance to the outer boundary of the nut. This distribution is a two dimensional joint
histogram with the necessary invariant properties.

The second aspect of our work is in the design of the classifier, which is based on the
backpropagation network. In general, the corresponding representation for infested nuts
is sparse; and our classifier utilizes this property to partition the histogram into several
regions, training a network for each region independently, and combining these subnets in
a hierarchical fashion. The main benefit is that a classifier with reduced dimensionality
(number of weights) than a standard backpropagation network can be obtained.

In the next section, a brief summary of the image acquisition system is given. Then in
sections 3 and 4, we outline the details of the invariant representation and classification.
In each section, we present the intermediate result of our system followed by examples.
Representation of pistachio nuts is a far more complex and interesting problem than the
wheat kernels. The paper concludes in section 5 with a summary and a comparison to

human performance under similar constraints.



2 Images

In this section, the details of the imaging system for pistachio nuts are covered. The wheat
kernels are imaged at higher resolution and a description can be found in [13].

The X-ray images of clean and infested pistachios are captured on photographic film. Nuts
from each process stream (Table 2) are individually arrayed on clear adhesive contact paper
in one of three orientations (suture plane parallel, perpendicular or at an angle to the film
plane) and X-rayed®. Films are handled in the dark and exposed without film holders.
Twelve bit digital images are obtained from the films at a resolution® of (0.125mm)?/pizel.
The X-rayed nuts are then opened to determine the presence of insect damage. An image of
a clean nut will have the following characteristics: a bright area representing the nut meat,
surrounded by a small dark gap between the nut meat and the shell, and a little brighter
nut shell outside the kernel. Often there is a dark gap between the two halves of the kernel.
The dark areas generally have sharp edges. An insect-infested nut has additional dark areas
in the kernel which have been caused by insect bites or tunneling. Figures 1 and 2 show

representative images of pistachio and wheat kernels respectively.
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Figure 1: X-ray images of pistachios: (a) & (b) clean and (¢) & (d) infested
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Figure 2: X-ray images of wheats: (a), (b) & (¢) clean and (d), (e) & (f) infested

290 seconds at 25 keV [0.25 mm Be window] with a Faxitron series X-ray system 4380N, Hewlett Packard,
McMinnville, OR; Industrex B film, Eastman Kodak, Rochester, NY

3using a Lumiscan 200 film scanner, Lumisys, Sunnyvale, CA



3 Invariant Representation

In this section, we present the details of the invariant representation for the pistachio nuts.
Invariant representation, from low level image distribution, has been the subject of many
recent efforts [3, 7, 10], where scale space techniques are used to extract significant discon-
tinuities in the form of step and roof edges. In this context, the low level and high level
kernels correspond to Gaussian and scaled Gaussian derivatives, respectively. Our views of
the invariant representation is that it should address the physical properties of the domain
for efficient recognition. In this sense, pure measurements of discontinuities are not sufficient,
and further contextual measurements, in the form of proximity to the shell boundary, are

required. This will be the essence of the work that will be outlined in this section.

An ideal representation should capture meaningful features with maximum compactness for
effective classification. In this context, the low level representations should be rich, stable,
and invariant to the rotation and translation of the object in the image plane as well as in the
3-D space. Compactness in representation can be achieved by encoding the low level features
so that similar structures at different spatial locations have the same representation. For
example, a cocoon on the left or right side of the nut should be represented identically. In our
system, the ideal properties of the low level features are captured by computing the surface
curvature at each pixel position. Curvature measurements are invariant to translation and
rotation, and their positive local maxima identify the positions of troughs. However, other
maxima may also be the results of natural surface properties of the pistachio nut such as the
split cotyledon. Still, we assert that curvature maxima on the natural surface have higher
magnitude, statistically, at a given distance from the nut boundary when these are compared
to those curvature maxima, obtained at the identical distance from the nut boundary, that
are due to the infestation. Compactness is achieved by parametrizing curvature features as a
function of their distance from the boundary of the nut. This parametrization is constructed
as a two dimensional histogram that encodes the curvature-distance joint distribution. We
suggest that this histogram corresponds to the signature, or a finger print, that can charac-
terize an infested or clean nut, and we present results to that effect. The system architecture

is shown in figure 3, and the details of the above computational steps are outlined below.
The tunnels, either due to the natural structure of the object or due to infestation, are

localized by grouping local positive curvature maxima, where curvature corresponds to the
differential surface properties of the local intensity distribution for the projected image of the
tunnel. Curvature is computed from the first and second fundamental forms. These forms
uniquely determine certain local invariant quantities of a 3-D surface, where invariance is
expressed in terms of translation, rotation, and scaling for X-ray images. Faux and Pratt

[6] expressed the first and second fundamental forms in parametric space. However, from a
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Figure 3: Processing steps

computational perspective, it is desirable to express these forms in Cartesian space. Let a
point on the surface be defined as P = Ti+ yj—l— Z];; then the first and the second fundamental

forms are computed to be:
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The normal curvature of a surface is the curvature of the intersecting curve between the
surface and the plane containing the surface normal and tangent vector to the curve. The
directions in which the normal curvature becomes maximum or minimum are called principal

directions corresponding to the principal curvatures. The normal curvature is defined as [6]:
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where XT = [ g—fc g—; ] (3)

Through elimination and the solution of a pair of simultaneous equations, the following
quadratic equation is obtained, where the roots of this equation correspond to maximum

and minimum principal curvatures.

(911922 — 912921)]@21 — (q11d22 + d11g22 — 2g12d12) ks + (d11dag — di2da) =0 (4)

Figure 4 shows the curvature features corresponding to the images shown in figure 1, and
figure 5 shows the curvature features corresponding to the images shown in figure 2. On these
images, white pixels correspond to troughs (positive curvature maxima) and black pixels to

ridges (negative curvature maxima) respectively.



Figure 4: Maximum principal curvatures of surface intensity for pistachios: (a) & (b) clean

and (¢) & (d) infested

Figure 5: Maximum principal curvatures of surface intensity for wheats:

and (d), (e) & (f) infested

Once local curvature maxima are determined, they are linked together and long segments are

constructed. The steps leading to the extraction of trough segments are similar to previously

reported research [7, 10].

1. Smooth the original image with a Gaussian kernel, and compute the curvatures at each

pixel on the smooth image,

2. Threshold the curvature image for troughs,

3. Thin the thresholded image using the non-maximal suppression [4] method. The idea

is to keep only the troughs whose maximum curvature is the local maximum, and

4. Link the thinned troughs using a hysteresis [4] method. The hysteresis linking method
consists of a high and a low threshold. All points above the high threshold are marked

as trough points, and similarly, those points below the low threshold are marked as non-

trough points. The points between the low and high thresholds can only be traversed

from those troughs that are marked by the high threshold.

The result of linking troughs for pistachios and wheats are shown in figure 6 and figure 7.
These images are computed with high threshold of 0.99, low threshold of 0.89, and the kernel

size of 1.5 for Gaussian smoothing for pistachios, and for wheats, the kernel size of 1.0 is

used. These parameters are found to be experimentally appropriate for the nut size, and the

expected size of the cocoon that is generated through infestation.
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Figure 6: Result of linking for troughs: (a) & (b) clean and (c¢) & (d) infested pistachios
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Figure 7: Result of linking for troughs: (a), (b) & (c) clean and (d), (e) & (f) infested wheats
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In the next step of the computational process, we compute the distance from each trough
point to the boundary of the nut. This is accomplished by first extracting the boundary of
the nut with the zero-crossings of the Laplacian of Gaussian (LoG) filter, and then computing
the chamfer image. The chamfer image generates a distance map from edges. The map has
a zero value on the edge and increases monotonically from the edge. Figure 8 shows the

chamfer images obtained from the boundaries of the pistachios nuts shown in figure 1.
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Figure 8: Chamfer images of boundaries of the pistachios: (a) & (b) clean and (¢) & (d)

infested

Once the proximity map is computed, the two dimensional joint distribution of the curvature-
distance table is constructed. Figure 9 shows the cumulative curvature-distance joint his-
togram for a clean and an infested pistachio, corresponding to the second and the fourth
images from example respectively. In figure 9, the distribution indicates that high curvature
activities are more localized, at a given distance from the boundary, for clean pistachios than
infested pistachios.

In the next section, we show that the joint distribution has the necessary information content

to identify the infested nuts in the population.
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Figure 9: Joint histograms of curvature and proximity values
4 Classification

In the design of the classifier, we experimented with several indexing schemes, such as Bidi-
rectional Associative Memory [15] and backpropagation neural network paradigms. The
latter consistently produced more favorable results. This is in part due to the large variation
in pattern structure and the presence of similar patterns among clean and infested pistachios.
The basis for classification is the joint distribution of the curvature-distance table. The cur-
vature values range from 0 to 7.5, and are partitioned into 16 groups, with the distance values
ranging from 0 to 9, partitioned into 10 groups. The table is further quantized, as shown in
table 1, to reduce the size of the network used for classifying based on the joint distribution
and consequently, the size of the training set. The training is based on the backpropagation
algorithm. We have experimented with two strategies for further refinement of the classifier
design. The first one is the standard backpropagation technique for training a network from
a population. In the second approach, we partition the joint distribution table into several
regions, where each region is used independently to train a network. These subnets are then

trained with another backpropagation network. The backpropagation (BP) algorithm is

Distances
1234 567 8910
1234 group 1 | group 2 | group 3

Curvatures 5678 group 4 | group 5 | group 6

9101112 | group 7 | group 8 | group 9
13 14 15 16 | group 10 | group 11 | group 12

Table 1: Quantization of joint histogram of the curvature and proximity values

a supervised training technique. In the rest of this section, we first evaluate the performance

of a standard BP network, then compare its results with the hierarchical one.



In the standard implementation of the backpropagation algorithm, we use a three layer net-
work and create a sequential array of the joint distribution table as the input to this network.
The learning rate and the momentum factor are set at 0.1 and 0.9 respectively. These pa-
rameters are selected to maintain a balance between achieving fast convergence and arriving
at the desirable local minima. The samples are arranged in different trays, and manually
identified as clean or defective nuts. Table 2 tabulates the types of defective pistachio nuts
in these trays. The training set consists of a sample of 80 clean and infested pistachio nuts.
The clean and infested pistachio nuts are randomly selected from trays M and Q) respectively.
These nuts were opened to to confirm that they are either clean or infested. Since the nuts

are only placed in these trays based on a vague suspicion. We construct three sets of

Product % of Aflatoxin | Aflatoxin Insects
Stream | Total | NG/GM % of per
Product Crop Toxin | 100 nuts
M 31.06 0 0 0
Q 0.89 89 37 44
A 10.91 1.4 7 2
D 0.13 91 9 9
1 0.53 97 24 13

‘ Tray ‘ Description ‘

Good large nuts

Nuts manually removed
Nuts with stained shells
Lightly stained nuts

—| O] =0l =

Small nuts

Table 2: Processing Stream Information
testing data for pistachios. The first and second set have 98 and 100 samples from trays M

and ), respectively. The third set has 452 samples from all the trays. For the classification
for wheat kernels, 742 random samples are drawn for training, and another 744 random
samples are selected for testing. All samples are selected randomly without replacement,
and none of the testing samples are included in the training set. The classification results for
pistachios for the backpropagation network with various input size and nodes in the hidden
layer are shown in table 3. The poor performance of the third set is due to the presence of
other categories of pistachio nuts, as listed in table 2, that in addition of being infested or
clean, they may have other defects as well. In a usual agricultural setting, the inspection
of pistachio nuts is a multi-stage process, where at each stage, different types of defects or
nut grades are inspected. For example, nuts with external defects such as stained shells, are
removed by a different inspection system all together. The third set of data was constructed
as an experiment to test if the multi-stage inspection and grading process can be reduced

into one single stage. Our result indicates that a two class image-based recognition system



is not capable of discriminating different types of defects effectively. For wheats, the classi-
fication results with the standard backpropagation network are shown in table 4. The table
4 also shows specific classification results for each infestation category.

Other researchers have explored hierarchical networks for machine vision applications [24]
as well. However, our implementation does not use shared weights, nor use more than one
hidden layer, and it treats the output of each subnet as a probability measure. Furthermore,
the representation used by other researchers is at the pixel level, and no invariant properties
of image features are exploited. In our implementation, we divide the joint distribution of
the histogram into four or six regions (the number of regions is arbitrary). Each region is
then used independently to train a BP network. The results of these subnets are then used
as input for the next BP network, as shown in figure 10. The classification results for pista-
chios with various network sizes are tabulated in table 5. Also, the classification results for

wheats with the hierarchical backpropagation network are shown in table 6, along with the

results for each infestation category. The result from our hierarchical network approach
histogram
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Figure 10: Hierarchical Backpropagation Networks

shows a similar performance to the standard backpropagation network, while reducing the
dimensionality. As an example, from the classification results for pistachios, the fourth row
(20x5x2, 110 weights) from table 3 and the fifth row (L: 4x2x2, H: 8x4x2, 88 weights) from
table 5 indicates that the hierarchical BP network with similar performance to the standard
BP network has the reduced dimensionality. The y? test on this example confirms the result
as the y? value 6.3185 with 6 degrees of freedom. The reduced dimensionality of the network
has the benefit of improved convergence time and a reduction in the number of required

training samples.



NODES | WGTS [ NTRS | NTES | TPF | FPF |

98 0.80 0.33
24x12x2 312 80 100 0.92 0.22
452 0.82 0.44
98 0.88 0.41
24x6x2 168 80 100 0.94 0.24
452 0.86 0.47
98 0.73 0.33
20x10x2 220 80 100 0.80 0.18
452 0.74 0.37
98 0.80 0.31
20x5x2 110 80 100 0.82 0.24
452 0.81 0.43
98 0.78 0.35
16x4x2 72 80 100 0.90 0.28
452 0.85 0.44
98 0.63 0.37
12x4x2 56 80 100 0.72 0.30
452 0.64 0.42

NODES: number of nodes in the networks
WGTS: number of computed weights
NTRS: number of training samples
NTES: number of testing samples
TPF': true positive fraction as the percent of
infested nuts actually detected
FPF': false positive fraction as the percent of
clean nuts mistakenly identified as infested

Table 3: Performance of standard backpropa-
gation networks on pistachio nuts with vary-
ing number of nodes and hidden layers

11

| NODES | WGTS | NTRS | NTES | TPF | FPF |
24x6x2 168 742 744 0.79 0.090
Days TPF
42-45 0.93
31-38 0.85
21-28 0.65
20x5x2 110 742 744 0.79 0.071
Days TPF
42-45 0.91
31-38 0.88
21-28 0.63
16x4x2 72 742 744 0.81 0.075
Days TPF
42-45 0.95
31-38 0.89
21-28 0.64

NODES: number of nodes in the networks
WGTS: number of computed weights
NTRS: number of training samples
NTES: number of testing samples
TPF': true positive fraction as the percent of
infested nuts actually detected
FPF': false positive fraction as the percent of
clean nuts mistakenly identified as infested
Days: the age of infested wheats

Table 4: Performance of standard backprop-
agation networks on wheat kernels with vary-
ing number of nodes and hidden layers



[ NODES | WGTS | NTRS | NTES | TPF | FPF ]

NODES: number of nodes in the networks
WGTS: number of computed weights
NTRS: number of training samples
NTES: number of testing samples
L: lower subnetwork
H: upper network
TPF': true positive fraction as the percent of
infested nuts actually detected
FPF': false positive fraction as the percent of
clean nuts mistakenly identified as infested

Table 5: Performance of hierachical back-
propagation networks on pistachio nuts with
subnet size of 4 and 6 with varying number
of nodes and hidden layers

L 6x4x2 304 80 98 0.71 [ 0.29 [ NODES [ WGTS [ NTRS [ NTES | TPF | FPF |
H 12x8x2 100 0.84 | 0.26 L 6x2x2 152 742 744 0.81 | 0.081
452 0.68 | 0.37 H 12x4x2 Days TPF
T 6x3x2 200 80 98 0.82 | 0.37 42-45 | 0.95
H 12x4x2 100 0.86 | 0.24 31-38 | 0.85
452 0.76 | 0.45 21-28 | 0.68
L 6x2x2 152 30 98 0.81 | 0.33 T, 4x3x2 112 742 744 0.76 | 0.058
H 12x4x2 100 0.86 | 0.20 H 8x4x2 Days TPF
452 0.66 | 0.47 42-45 | 0.91
L 4x3x2 112 80 98 0.80 | 0.37 31-38 | 0.86
H 8x4x2 100 0.78 | 0.26 21-28 | 0.58
452 0.73 | 0.46 L 4x2x2 88 742 744 0.78 | 0.077
L 4x2x2 88 80 98 0.82 | 0.37 H 8x4x2 Days | TPF
H 8x4x2 100 0.84 | 0.26 42-45 | 0.93
152 0.71 | 0.38 31-38 | 0.82
21-28 | 0.63
T 4x1x2 44 80 98 0.71 | 0.22
H 8x2x2 100 0.70 | 0.24
52 059 | 030 NODES: number of nodes in the networks

WGTS: number of computed weights

NTRS: number of training samples

NTES: number of testing samples

L: lower subnetwork

H: upper network
TPF': true positive fraction as the percent of
infested nuts actually detected
FPF': false positive fraction as the percent of
clean nuts mistakenly identified as infested
Days: the age of infested wheats

Table 6: Performance of hierachical back-
propagation networks on wheat kernels with
subnet size of 4 and 6 with varying number
of nodes and hidden layers
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5 Human Recognition

A human recognition test was conducted using the same training and test sets that were used
for training and testing the neural network. Subjects were shown the clean training images
and then the infested training images. They were then shown the randomized training set
and asked to indicate if the image was clean or infested. The images and responses were
reviewed and the subjects were able to examine their errors. This process was repeated
with the training images in a different random order. Finally, the subjects gave responses
to the two test image sets. Subjects were required to respond clean or infested even if they
were unsure. Under these circumstances false positives and false negatives had equal weight.
Table 7 presents the results. Detection of infested images (TPF) averaged 90 and 92% while
misclassification of clean nuts (FPF) averaged 15 and 18%.

These results suggest that there is sufficient information in the images to detect a large
percentage of the insect infested nuts. However, a false positive fraction of 15 to 18% may
be higher than pistachio processors can accommodate if this fraction must be discarded.
Increasing the degree of certainty required before labeling a nut as infested would decrease
the false positive fraction while continuing to identify a reduced but important fraction of

the insect infested nuts.

Comparison of human performance in table 7 with network performance in table 5 estab-
lishes a benchmark or potential goal for machine performance. Further improvements in
machine performance might be achieved by 1) incorporation of additional image features
not considered here and/or 2) increasing the confidence level applied to the network output

before a nut is labeled as infested.

6 Conclusion

An inspection system for the classification of infested and clean pistachio nuts and wheat
kernels is presented. The novelty of this approach lies in the compact and invariant rep-
resentation of the image features for recognition. The invariance was expresses in terms of
the curvature-proximity joint distribution function. Results showed that by partitioning the
sparse input array and hierarchical organization of the BP network, the dimensionality in
the network could be reduced significantly, without the loss of accuracy. The best network

configuration slightly underestimated human performance.
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| Subject | NTRS | NTES | TPF | FPF |
Human 1 80 98 0.90 0.16
100 0.84 0.14
Human 2 80 98 0.96 0.16
100 0.98 0.10
Human 3 80 98 0.86 0.18
100 0.68 0.06
Human 4 80 98 0.96 0.31
100 0.92 0.24
Human 5 80 98 0.96 0.10
100 1.00 0.06
Human 6 80 98 0.90 0.18
100 0.98 0.12
Average 80 98 0.92 0.18
100 0.90 0.15

NTRS: number of training samples

NTES: number of testing samples

TPF': true positive fraction as the percent of
infested nuts actually detected

FPF': false positive fraction as the percent of
clean nuts mistakenly identified as infested

Table 7:

Performance of human recogni-

tionon on pistachio nuts
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