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Abstract

To understand the impact of new pricing structure on residential electricity demands, we need a
baseline model that captures every factor other than the new price. The standard baseline is a randomized
control group, however, a good control group is hard to design. This motivates us to devlop data-driven
approaches. We explored many techniques and designed a strategy, named LTAP, that could predict the
hourly usage years ahead. The key challenge in this process is that the daily cycle of electricity demand
peaks a few hours after the temperature reaching its peak. Existing methods rely on the lagged variables
of recent past usages to enforce this daily cycle. These methods have trouble making predictions years
ahead. LTAP avoids this trouble by assuming the daily usage profile is determined by temperature and
other factors. In a comparison against a well-designed control group, LTAP is found to produce accurate
predictions.

1 Introduction

With measurements recorded for most customers in a service territory at hourly or more frequent intervals,
advanced metering infrastructure (AMI) captures electricity consumption in unprecedented spatial and tem-
poral detail. This vast and fast growing stream of data, together with cutting-edge data science techniques
and behavioral theories, enables behavior analytics: novel insights into patterns of electricity consumption
and their underlying drivers [Costa and Kahn, 2013, Todd et al., 2014].

As electricity cannot be easily stored, electricity generation must match consumption. When the demand
exceeds the generation capacity, a blackout would occur, typically during the time when consumers need
electricity the most [Joskow, 2001, Wolak, 2003]. Because increasing generation capacity is expensive and
requires years of time to implement, regulators and utility companies have devised a number of pricing
schemes intended to discourage unnecessary consumption during peak demand periods.

To measure the effectiveness of a pricing policy on the peak demand, one can analyze electricity usage
data generated from AMI. Our work focuses on extracting baseline models of household electricity usage
for a behavior analytics study [Cappers et al., 2013, Costa and Kahn, 2013, Todd et al., 2014]. The baseline
models would ideally capture the pattern of household electricity usage including all feastures except the
new pricing schemes. There are numerous challenges in establishing such a model. For example, there are
many features that could affect the usage of electricity, and many of these features, such as the purchase of
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new equipement, is information not available to us. Other features, such as outdoor temperature, are known;
but their impact is difficult to capture in simple functions.

Although this work shares some similarities with works on forecasting electricity demands and prices [Sug-
anthi and Samuel, 2012, Bianco et al., 2009, Taylor and McSharry, 2007], there are a number of important
differences. The fundamental difference between a baseline model and a forecast model is that the baseline
model needs to capture the core behavior that persist for a long time, while the forecast model typically aims
to forecast for the next few cycles of the time series in question. Typically, techniques that make forecasts
for years into the future are based on highly aggregated time series with month or year as time steps [Al-
fares and Nazeeruddin, 2002, Bianco et al., 2009], whereas those that work on time series with shorter time
steps typically focus on making forecasts for the next day or the next few hours [Cottet and Smith, 2003,
Oldewurtel et al., 2010, Panagiotelis and Smith, 2008, Taylor, 2010].

In the specific case that has motivated our work, the overall objective is to study the impacts of pricing
policies. The process of designing these pricing schemes, recruiting participants for a pilot study, imple-
menting the pricing schemes, and monitoring the impacts have taken a few years. The baseline model is
based on observed consumption prior to the implementation of the new pricing schemes, and applied to
predict what consumer behavior would have been without the pricing changes. This is challenging because
the baseline model not only captures intraday electricity usage but also needs to be applicable for years.
Furthermore, in preliminary tests, we have noticed that the impact of the pricing schemes is weaker than the
impact of other factors such as temperature, therefore, the baseline model must be able to incorporate the
outdoor temperature, which has a complex relationship with the electricity demand.

This work examines a number of methods for developing the baseline models that could satisfy the above
requirements. We use a large set of AMI data to exercise these methods and evaluate their relative strengths.
The bulk of data in this work is hourly electricity usage from randomly chosen samples of households from
a region of the US where the electricity usage is highest in the afternoon and evening during the months
of May through August. The current work extracts the baseline models for average behavior of different
customer groups, not behavior specific to any individual household.

In the remainder of this paper, we briefly present the background and related work in Section 2 and
describe the residential electricity usage data used in this study in Section 3. We also present some analysis
with conventional statistical methods in Section 3. We describe the methods used to extract the new type
baseline in Section 4 and discuss the output from these methods in Sections 5 and 6. A short summary is
provided in Section 7.

2 Application Driver

Energy management has become an important problem all around the world. The recent deployment of
residential AMI makes hourly electricity consumption data available for research, which offers a unique
opportunity to understand the electricity usage patterns of households. In particular, understanding how
and when households use electricity is essential to regulators for increasing the efficiency of power distri-
bution networks and enabling appropriate electricity pricing. One concrete objective from several current
pricing studies is to design new rules and structures to reduce the peak demand and therefore level out total
electricity usage [Espey and Espey, 2004, Todd et al., 2014].

The influx of massive amounts of electricity data from AMI has led to a variety of research on energy
behavior such as electricity consumption segmentation [Chicco et al., 2004, Figueiredo et al., 2005, Verdú
et al., 2006, Chicco et al., 2006, Tsekouras et al., 2007, Smith et al., 2012, Kwac et al., 2014], forecasting
and load profiling [Espinoza et al., 2005, Irwin et al., 1986, Flath et al., 2012], and targeting customers for
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an air-conditioning demand response program to maximize the likelihood of savings [Kwac and Rajagopal,
2013].

An important tool for this problem is classifying and representing different households with different
load profiles [Capasso et al., 1994, Flath et al., 2012, Kwac et al., 2014]. Accurately identifying the load
profiles will allow the researchers to associate observed electricity usage with consumer energy behavior.
Load profiling could identify policy relevant energy lifestyle segmentation strategies, which can lead to
better energy policy, improve program effectiveness, increase the accuracy of load forecasting, and create
better program evaluation methods [Kwac et al., 2014].

Accurate prediction or load forecasting of electricity usage is very important for the industry [Nogales
et al., 2002, Ramchurn et al., 2012]. For example, long-term usage forecasting for more than one year ahead
is important for capacity planning and infrastructure investments. Short-term forecasting is used in the day-
ahead electricity market, determining available demand response, and increasing demand side flexibility. We
can broadly divide these forecasting techniques into black-box techniques and white-box techniques. The
black-box approaches focus on what could be extracted from data, typically based on statistical and machine
learning methods [Alfares and Nazeeruddin, 2002, Edwards et al., 2012, Espinoza et al., 2005, Irwin et al.,
1986, Nogales et al., 2002, Ramchurn et al., 2012, Swan and Ugursal, 2009]. For example, some authors
prefer supervised machine learning methods such as support vector machines [Chen et al., 2004, Humeau
et al., 2013], some use statistical models such as dynamic regression [Nogales et al., 2002], while others
advocate for neural networks and artificial intelligence approaches [Ramchurn et al., 2012]. Typically, these
methods transform the time series of historical data into a time scale such that the predictions are made for
the next time step or the next few time steps.

White-box approaches are typically based on some understanding of the relationship between some
cause and its direct effect. For example, becuase increased outdoor temperature leads to increased indoor
temperature, which in turn leads people to turn on their airconditioners, one might come up with a model
relating outdoor temperature and electricity usage, and then try to fit the parameters of the model using the
observed data. However, such a model most likely would not be able to capture all relevant features, because
some of the features, such as length of the day, have weak or unclear effect on electricity usage, and others,
such as number of occupants in the building, clearly affect the eletricity usage but their values are unknown
or their impact on electricity usage is multifacted or unknown [Borgeson, 2014, Fels, 1986, Rabl and Rialhe,
1992]. For this reason, many researchers refer to these models as “gray-box” models because these models
always contain a certain amount of unexplained features left as “errors.”

Household electricity usage depends on many features beyond what was mentioned above, for example,
appliances in the house, the energy behavior of the occupants, the time of day, day of the week, seasons, and
so on [Cappers et al., 2013, Todd et al., 2012]. Some of the existing prediction models focus on aggregated
demand and therefore could parameterize many factors affecting the usage of an individual household [Swan
and Ugursal, 2009]. From the study of earlier models, we learned that a household’s electricity usage is
strongly periodic, in that the daily electricity usage repeats every day and every week. Given any two
consecutive days, their usage patterns are very similar to each other; given any two consecutive weeks, their
electricity uses are also similar to each other. Throughout a year, the overall electricity usage follows the
pattern of seasonal temperature change. To accurately predict electricity usage, we need to capture all these
factors in our own models.
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3 Dataset

Our electricity usage data was collected through a well-designed randomized control trial [Cappers et al.,
2013]. It has hourly electricity consumption records of individual households for three years. The unit
of electricity is in kilowatt-hour (KWh). The total number of hourly data points is 160,125,432, from
which we focus on data generated during the summers, which accounts for most of electricity usage (from
June 1 to August 31), yielding 41,698,080 data records. The data records from three years are labelled by
(T −1, T, T +1), where year T −1 corresponds to the year when the electricity has a fixed price throughout
the day, and the new prices are used in year T and T + 1.

3.1 Groups

The households involved in this study are divided into a number of different groups, in this work, we only
use three of them, the Control group, the Passive group and the Active group. Following the general design
of a randomized controll trial, the Control group is a random selected set of households that are meant to be
used as the baseline [Costa and Kahn, 2013, Concato et al., 2000]. In later discussion, this group is labelled
as Control. This control group is unaware of the study and stays with the previously available fixed-price
scheme throughout the testing period∗. The other two groups are generally referred to as the treatment
group.

The treatment groups use a time-based price, where during the peak-usage hours, 3PM to 7PM in the
region of this study, the per KWh charge is higher than the rest of the day. In the Active group, households
have to opt in to the new pricing scheme offered. While the households in the Passive group are informed
of their participatioin in the new price trial and offered a chance to opt out of the trial.

As in a typically consumer bahvior study, the response rate of the households invited to participate in the
new price trial, only a small fraction of the invitees actually opted in. To avoid the imbalance among the three
groups, we randomly selected about 1600 households from each of the three groups. We dropped households
that do not have measurement data for the whole duration of the study. The number of households dropped
is relatively small.

3.2 Overall statistics

Fig. 1 shows the average daily electricity usages of three groups over three summer seasons. The data from
each of the three years are plotted as a separate line. We note that even though different pricing schemes
are used, the impact of the pricing schemes is not obvious. This can be partially explained by Fig. 2, where
average hour temperatures and electricity usages are plotted against hour.

In Fig. 2, the temperatures of T and T + 1 are higher than the temperature of T − 1, which means
households have experienced hotter summers in T and T + 1. As a result, the electricity usage increases in
T and T+1. Even though the new pricing schemes are designed to reduce electricity usage, but the increases
in temperature complicates the analysis. Furthermore, the impact of temperature on electricity usage does
not appear to be instantaneous; but its impact on electricity usage appears a few hours later. The increased
electricity usage during the summer afternoon is mostly from airconditioning, which is more directly related
to the indoor temperature, while the temperature reported in our dataset is outdoor temperature. It takes time
∗There was an adjustments of the actual prices of the fixed-price scheme. The standard fixed-price scheme typically has a base

charge per month and an additional per KWh charge based on the actual usage, where this per KWh charge is generally known as
the rate. Early in year T+1, before the summer, there was an increase in the base charge and descrease in the rate. This price change
might encourage households to consume more electricity since the increamental cost has gone down.
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Figure 1: Daily electricity usages of three groups for year (T − 1, T, T + 1).

for the increased outdoor temperature to impact the indoor temperature. Additionally, residents of a house
typically return from work in late afternoon, which increase the number of occupants in a household.

Because there is no obvious differences from Figs. 1 and 2, we conclude that the influence of common
features such as season, outdoor temperature, day of the week and so on are much stronger than the features
that distinguish the groups. This means the baseline models have to be very accurate in order to recognize
the different groups. We will discuss these methods carefully in Section 4.
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Figure 2: Hourly temperatures (triangle markers) and electricity usages (square markers) for (T − 1, T, T +
1). Note the time lags between the peaks of temperatures and the peaks of electricity usages, which should
be taken into consideration when we express a baseline usage model with outdoor temperatures. The tem-
peratures of T and T + 1 are higher than that of T − 1, which results in the higher electricity usages in T
and T + 1.

Table 1: The hourly electricity usages for three groups averaged over all hours of the summer days in each
year, and their differences relative to the control group. The values in bold are expected to be less than 0.021
in absolute value.

Average hourly usage Subtract control

year T-1 T T+1 T-1 T T+1

Control 1.128 1.205 1.197

Passive 1.100 1.152 1.154 -0.028 -0.053 -0.043

Active 1.125 1.160 1.173 -0.003 -0.045 -0.024

Table 2: The hourly electricity usages for three groups averaged over the peak-demand hours of the summer
days in each year, and their differences relative to the Control group. In later discussions, these average
usage values measured by the smart meters are referred to as MT−1, MT , and MT+1.

Average hourly usage Subtract control

year T-1 T T+1 T-1 T T+1

Control 1.790 1.973 1.937

Passive 1.742 1.822 1.818 -0.048 -0.151 -0.119

Active 1.752 1.696 1.739 -0.038 -0.277 -0.198
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3.3 Comparison against the control group

In the tradition of randomized controlled trials, our dataset contains a control group. This control group is
a valid counterfactual group and can provide a baseline for group-wise comparisons using a Randomized
Encouragement Design (RED) evaluation methodology [Todd et al., 2012]. However, we are interested in
developing a new baseline methodology that does not rely on a randomized control group [Horwitz and
Feinstein, 1979, Liddle et al., 1996]. We are interested in developing such a methodology for two reasons:
(i) we would eventually like to use our technique to build a baseline for each household individually, which
necessitates the development of new baseline models that do not rely on a control group counterfactual;
(ii) it is often the case that programs, such as the pricing programs used in this paper, are implemented by
electricity providers without a randomized evaluation methodology. It is often the case that randomization
is either impractical, too expensive, or hampered by regulatory requirements. For this reason, it is extremely
valuable to have a methodology that can be used to evaluate program effectiveness without relying on ran-
domization. Therefore, we will be using this dataset in order to demonstrate such a methodology. We will
use the control group as a comparison group in order to validate the baseline methodology we develop, but
will use only the households in the treatment group that self-selected into treatment. If these households
were compared directly to the control group, one would be concerned about self-selection bias. Using an
accurate baseline methodology is one potential way to avoid such a bias, by allowing for the estimation of
the effect of the pricing scheme within those households that self-selected into the study.

Looking first at the broad changes in consumption across the groups. Tables 1 and 2 contain the average
hourly electricity consumption for all hours of a day and peak-demand hours, respectively. The values in
Table 1 is averaged over all hours and all days of the summer months in each year, while the values in
Table 2 is averaged over the peak-demand hours of each summer day. From these numbers, we see that the
average hourly usages are higher in year T and year T+1. However, the increases of the two treatment groups
are smaller than that of the control group. Relative to the control group, the treatment groups have reduced
electricity consumption. This is particularly true during the peak-demand hours as shown in Table 2. These
observed changes match the design goal of the new pricing schemes.

In order to underline why a baseline method such as the one we develop is needed, we show here
the extent of the self-selection bias that exists if one were simply to compare the self-selected treatment
households to the control households. To do this we examine if the differences in year T-1 (before the
introduction of the treatments) are within the expected confidence intervals.

The standard deviations of hourly usage values for all households are all about 0.85 (KWh)† and each
of the group has about 1600 households, therefore, we expect the confidence interval of the these average
values to be about 0.85/

√
1600 = 0.021. For a control group to be considered as properly selected, the

differences between the various groups before the introduction of the treatments should be less than 0.021,
however among the two relevant difference values in year T-1 only one has a absolute value less than 0.021 in
Table 1. This suggests that the three groups are not well randomized, and self-selection bias of the treatment
groups could be strongly present in the data. We propose that the baseline method we develop is a solution
to this problem.

3.4 Differences among the groups

Next we directly compare the time series of the average hourly usage of each group to understand their
differences. For this test, we have selected to compare time series with the Kolmogorov-Smirnov test (KS
test) [Conover and Conover, 1980]. Given two time series, the KS test measures the distance between their
†The actual values are 0.83 for Year T-1, 0.85 for year T, and 0.91 for year T+1.
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Table 3: KS test scores for comparing the hourly electricity time series over three summers. When the
KS score is larger than 0.05, the two time series are considered as likely to be generated from the same
probability density distribution.

year T-1 year T year T+1
Control v. Passive 0.09 0.03 0.02
Control v. Active 0.01 0.04 0.04
Passive v. Active 0.09 0.02 0.03

cumulative distribution functions (CDFs) and produces a score between 0 and 1. In many applications, when
this score is greater than 0.05, the two input time series are considered as following the same distribution (or
loosely, the “same”).

Table 3 shows KS test results for each of the three years. In year T-1, where all groups receives the
same pricing scheme, we expect the control group to behave similar to the control groups. In terms of KS
test scores, we expect all three KS test scores to be greater than 0.05. However, the control group is clearly
different from the active group (because the KS test comparing the two time series has a score less than
0.05), even though the difference between average values of these two time series are fairly close to zero as
shown in Table 1. Combining the values from these tables, we have plenty of evidences to suspect that the
three groups are not well randomized and the self-selection bias might be prevalent.

The KS test scores for year T and year T+1 are all less than 0.05, which indicate that the time series of
hourly electricity usages should be considered different. These differences could possibly be extracted and
attributed to the price differences and consumer behavior differences.

4 Methodology

The statistics provided in the previous section suggest that the groups in this study might not be well random-
ized and therefore the control group might not be a good baseline for comparison. This is one motivation
for our attempt at developing alternative baseline models. The second motivation for considering alterna-
tive baseline models is that we would like to eventually develop a model that is suitable for studying each
individual household, but the randomized control group is only a good baseline for the average behavior of
a treatment group, not individual households. In this section we first introduce a few black-box approaches
and then introduce a white-box approach. The black-box methods are three statistical machine learning
methods: linear regression, gradient linear boosting, and gradient tree boosting. The white-box method is
named LTAP.

4.1 Linear Regression

One of popular and simple regression models is the linear regression (LR) where a model is represented
in the form of linear equations. Multiple LRs can be used to forecast electricity consumption of house-
holds [Bianco et al., 2009]. Given a data set {yi, xi,1, ..., xi,K}ni=1 of n statistical units, an LR can be
represented as follows:

ŷi = ε+
K∑
k=1

βkxi,k (1)

where ŷi is an estimated value of yi, βk is a kth regression coefficient of xi,k, and ε is a bias.
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Figure 3: An example of Gradient Tree Boosting (GTB) model. The directed arrow represents a possible
path of a sample during the test. Each decision tree decides which path a sample should traverse. Values of
leaf nodes are summed to get the prediction.

4.2 Gradient Linear Boosting and Gradient Tree Boosting

Boosting is a prediction algorithm derived from machine learning literature based on the idea of combining
a set of weak learners to create a single strong learner. The boosting method has attracted much attention
due to its performance on various applications in both machine learning and statistics literature [Schapire,
1990, Freund et al., 1996, Schapire and Freund, 2012].

Gradient Boosting (GB) is one of the boosting methods which constructs an additive regression model
by sequentially training weak learners in the gradient descent viewpoint [Friedman, 2001]. GB can be
further distinguished by choosing different week leaners. Here we choose two different weak learners:
linear function and decision tree. Each model is called Gradient Linear Boosting (GLB) and Gradient Tree
Boosting (GTB) respectively.‡ Fig. 3 shows an example of binary decision trees where each arrow shows a
possible path of a sample during testing.

In general, GB can be represented as follows:

ŷi =
K∑
k=1

fk(xi), fk ∈ F , (2)

where K is the number of weak learners, fk is a function (linear function or decision tree) in the functional
space F which is the set of all possible regression functions, xi is an input value from a training set, and ŷi
is the estimation of an output value yi from the training set.

The objective of GB is to minimize the following objective function obj(·) of Θ which denotes the
parameters of GB:

obj(Θ) = L(Θ) +
K∑
k=1

Ω(fk), (3)

where L(·) is a training loss function, Ω(·) is a regularization term. Specifically, we use the root-mean-
square error (RMSE) as the training loss function L(·) which is written as:

L(Θ) =

√∑n
i=1(yi − ŷi)2

n
, (4)

‡XGBoost library (https://github.com/dmlc/xgboost) is used in this paper.
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where n is the number of elements in the training set. We employ hourly training datasets (xi, yi) for
experiments.

4.3 Linear Relation between Temperature and Aggregated Power (LTAP)

Next, we describe the white-box model that is effective in our tests. It is well-known that the electricity
consumption depends on temperature [Fels, 1986]. Generally, this relationship is between the electricity
usage of a whole day and the average temperature of that day [Rabl and Rialhe, 1992, Bacher and Madsen,
2011, Borgeson, 2014]. In this work, we propose a simple strategy to make predictions of hourly usage
based on this relationship between the daily electricity usage and the average daily temperature. Next, we
provide a brief explanation of the rationale for this method before describing the method.

As we see from Figure 2, the relationship between outdoor temperature and the hourly electricity usage
is complex, but the daily electricity usage and the average outdoor temperature is relatively straightforward.
Since this work is primarily concerned about the peak usages during the summer when airconditioner uses
cause the electricity demand to peak in the later afternoon. From the earlier studies on the residential
electricity usage, we know there is a significant amount of constant demands from refrigerators, electric
water heaters, water pumps, and so on. We assume that this constant usage is the minimum hourly usage
during a day and is fixed during the summer season being considered for this work. The usage that is beyond
the minimum varies from hour to hour, we call this portion the variable electricity usage. For the region
where this data is from, we assume the primary demand for this variable usage is from the airconditioners
and therefore is related to the outdoor temperature.

The reason that the daily variable electricity usage is likely a simple function of the average daily tem-
perature can be stated as follows. The higher outdoor temperature causes heat to enter into a house and
increases the indoor temperature. When the indoor temperature rises to a certain threshold, the aircondi-
tioner starts to cool the room. There is a delay between the rise of outdoor temperature and the rise of the
indoor temperature because of the insulation of the house, however, during the warm period of the day, the
higher the average temperature causes more heat to enter the house, and more electric power is needed to
cool the house. Therefore, we expect the aggregate variable electricity usage per day to have a relatively sim-
ple relation with the average outdoor temperature. From the research literature and our own tests presented
in the next section, we see that this is true. In fact, we have a set of linear functions relating the aggregate
variable electricity usage and the average outdoor temperature. We will use these linear relationships to
forecast the total variable electricity usage from the reported outdoor temperature values.

To distribute the aggregate daily usage to hourly usage values, we make the simple assumption that
the profile of daily usage per household remains the same, and scale the variable hourly electricity usage
proportional to the change in the aggregated usage. Next, we give a more precise definition of the procedure
we call LTAP.

Given a summer day in year T or year T+1, we compute the average temperature t1 of the day from
the hour temperature values. Call this the prediction day. Look for a summer day in year T-1 with the
closest average temperature t0. Call this day the reference day. Let the 24 hourly electricity usage be
h0[i], i = 0, . . . , 23. Let b0 ≡ minh0[i] and a0 ≡

∑
(h0[i] − b0). Let s denote the slope of the linear

relation between a0 and t0. We compute a1 as follows

a1 = a0 + s(t1 − t0). (5)

We assign the hourly electricity usage as follows

h1[i] = b0 + (h0[i]− b0)a1/a0. (6)
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Table 4: RMSE for Three Different Models: Linear Regression (LR), Gradient Linear Boosting (GLB), And
Gradient Tree Boosting (GTB).

LR GLB GTB

Control 1.841 0.952 0.845

Passive 1.862 0.951 0.838

Active 1.731 0.957 0.839

It is easy to verify that the above assignment of the aggregated electricity usage to each hour preserves
the shape of the daily usage profile while giving the correct total usage value as predicted by Equation 5.
Furthermore, this prediction algorithm does not involve any explicit values of days and therefore can be
applied to any day.

5 Black-box Regression Models

To establish our baseline, we need to first determine the features that this model depends on. From infor-
mation in the literature and our exploration of the dataset, we choose 8 features: 3 time variables (month,
hour, and day of week), 2 historical electricity usage variable (electricity usage of the same hours on a day
before (yesterday) and a week before), and 3 hourly averaged weather conditions (temperature, atmospheric
pressure, and dew point). The role of the historical usage data is to distinguish each household from others.
Here, the weather data vary only over time, not across households, since all households belong to a geo-
graphical region covered by a single weather station. Although some weather data such as the atmospheric
pressure and the dew point do not seem to play major roles at first glance, we also want to take them into
account to see whether there is a latent correlation between these data and electricity usage.

5.1 Errors of the models

We explore three different models: LR, GLB, and GTB, described in Section 4, and plan to choose a single
model that best represents the core behavior. Specifically, we trained the three models with the usage data
in T − 1 by randomly sampling 70% of data as a training set and using the remaining 30% of data as a test
set. In the case of GLB and GTB, we trained 1,000 decision trees for a single GTB. If the sum of child
nodes’ weights was less than 2, we kept partitioning a tree before the max depth of tree surpassed 5. For
each step, we randomly collected half of the data set and shrink the feature weights to 0.3 so as to avoid
overfitting. These parameters were provided by XGBoost package and we tuned hyper parameters using
5-fold cross-validation with a grid-search method in the parameter spaces.

Table 4 shows the result of RMSE for the three models. We see that the errors of LR, GLB are larger
than GTB. This is not unexpected since the relationship between electricity usage and temperature is not
only non-linear but also delayed. In this work, we choose GTB to extract the baseline.

5.2 Training Gradient Tree Boosting

Our goal is to predict residential electricity consumption with a model that captures the effect of outdoor
temperature, including its delayed effect. To achieve this goal, we trained a GTB model with the usage data
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Figure 4: F-score representing the importance of a feature in the decision trees of GBT, which is calculated
by counting the appearance of a feature.

of T − 1 for all households regardless of their groups. Again we randomly sampled 70% of the data as a
training set and used the remaining 30% as a test set.

Fig. 4 shows f-score of each feature in GTB, where the f-score is the number of appearances of a feature
in all of weak decision trees in GTB. If the f-score of one feature is higher, the feature is more important
than other features. The two most powerful features are historical electricity usage data (yesterday and
week before usage) and the third most influential feature is temperature. In Fig. 4, we can see how GTB
finds which features are important. It is also interesting to note that ‘day of week’ is not as effective as
other features, because we originally assumed that GTB might detect the difference between weekend and
weekday from the dataset.

5.3 Hourly Averaged Prediction

Fig. 5 shows the hourly usage prediction by GTB and hourly average temperature of different groups. In
year T and T + 1, we see that the control group uses slightly more electricity than predicted by GTB model,
while the treatment groups use less electricity, especially during the peak-demand hours, than the predictions
by GTB models. Furthmore, we see that the points representing the measured usages are noticeably blow the
lines representing the predictions. Clearly, the new pricing scheme has an impact on the consumer behavior,
and the active group has responded more than the passive group. We also see that the GTB model effectively
has learned the lagged effect of temperature explained in Fig. 2.

5.4 Modifying GTB for continuous prediction

The features used for our GTB model include the electricity usage from a day ago and a week ago. The
current implementation of GTB requires these values to be supplied together with other values that are
known beforehand. In the training steps where all the values from year T-1 are considered known values, we
should be able to supply the values of these lagged variables as well. However, when making predictions for
the future, say for year T, the prediction mechanism is expected to treat electricy usage values as unknown,
therefore, the usage values of a day ago and a week ago are only available as more predictions are made. We
have modified the GTB prediction procedure to make predictions one day at a time, and use the predicted

12



Control

0 5 10 15 20 25
Hour

55

60

65

70

75

80

85

90

Te
m

pe
ra

tu
re

 (°
F)

0.5

1.0

1.5

2.0

El
ec

tr
ici

ty
 U

sa
ge

 (K
W

h)

GTB(T)
GTB(T+1)
M(T)
M(T+1)

Passive

0 5 10 15 20 25
Hour

55

60

65

70

75

80

85

90

Te
m

pe
ra

tu
re

 (°
F)

0.5

1.0

1.5

2.0

El
ec

tr
ici

ty
 U

sa
ge

 (K
W

h)

GTB(T)
GTB(T+1)
M(T)
M(T+1)

Active

0 5 10 15 20 25
Hour

55

60

65

70

75

80

85

90

Te
m

pe
ra

tu
re

 (°
F)

0.5

1.0

1.5

2.0

El
ec

tr
ici

ty
 U

sa
ge

 (K
W

h)

GTB(T)
GTB(T+1)
M(T)
M(T+1)

Figure 5: Predicted (by GTB) and measured hourly average electricity usage during year T and T+1. The
lines and symbols represent data from the same year have the same color. The measured values are lower
than the predictions indicating the consumers have reduced electricity uses compared to the “business-as-
usual” predictions.

values for the day ago and week ago usage values. This modified version of prediction procedure as the
sequential prediction since it makes predictions one day at a time and immediately make uses of the predicted
values.

Fig. 6 shows an attempt to make prediction for a month of time using the above procedure of continuous
prediction. We note that as time progresses, the maximum values in each graph gradually increases. This
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Figure 6: Predicted electricity usage with a modified version of Gradient Tree Boosting (GTB) that uses
previous predictions as lagged variables. This is for the 2nd month of the summer, we see the predicted
usages are higher than normal at the beginning of the month and continue to grow over time.

appears to be an accumulation of the some sort of prediction errors over time. Typically, predictions are
only made for a small number of steps beyond the end of the known time series, however, to establish a
baseline for years requires us to make predictions many time steps beyond the end of the known time series.
To remedy this problem, we could avoid using lagged variables as features or devise “stable” prediction
methods that would not accumulate prediction errors. The LTAP method is a strategy that only makes use
of the temperature, and avoid building up new predictions from previous predictions.
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Table 5: The slopes and the coefficients of correlation for data points with average temperature above 65◦F
from the summer of year T-1.

slope coeff of corr
Control 1.13 0.92
Passive 1.07 0.92
Active 1.02 0.91

Table 6: The averaged (over all hours) hourly usage predicted by LTAP and their differences from the actual
measurements.

group DT DT+1 MT − PT MT+1 − PT+1

Control 1.185 1.220 0.020 -0.023

Passive 1.156 1.193 -0.004 -0.038

Active 1.181 1.211 -0.021 -0.038

6 White-box Prediction

In Section 4.3, we describe the white-box prediction called LTAP. In this section, we first provide evidence
that the assumed linear relationship between the aggregated variable electricity usage and the average daily
temperature is valid, and then describe the results of predictions with LTAP.

6.1 Linear relationship between aggregated power usage and temperature

In Section 4.3 we provide some arguments for the a linear relationship between the aggregated variable
electricity usage and average daily temperature. Figure 7 and Table 5 provide some empirical support for
these arguments. In Figure 7, we provide scatter plots of the aggregated variable electricity usage against
the average daily temperature. These scatter plots suggest that below 65◦F, there is no obvious relationship
between the electricity usage and temperature, however, at higher temperatures there is clearly a linear
relationship between electricity usage and temperature. When more seasons are considered, there are more
variety of relationships between electricity and temperature [Rabl and Rialhe, 1992, Bacher and Madsen,
2011, Borgeson, 2014], however, since we are only studying the electricity usage in the summer season of a
region where airconditioning is heavily used, it is unsurprising that we observe a simpler relation between
temperature and electricity usage.

What is somewhat surprising is that coefficients of correlation in all three groups are above 0.9, which
indicates the linear relationship is very strong. Therefore, we should expect this linear function could be
used to make accurate predictions about the electricity usage in year T and year T+1.

6.2 LTAP prediction results

The test results in the previous section clearly establishes that the relationship between the aggregated elec-
tricity usage and the average temperature to be piece-wise linear, therefore we could attempt to use the
LTAP prediction method. This method captures the impact of the temperature, which appears to be the most
reliable feature that could be used to make predictions. Other factors we initially suspected to be impactful,
such as the day of the week, have found to be less important. At this time, we only use the temperature as
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Figure 7: Scatter plots of aggregated variable electricity usage and average daily temperature from the
summer of year T-1.

Table 7: The average hourly electricity demand during peak-demand hours and their differences from the
actual measurements. The predictions are made with LTAP.

group PT PT+1 MT − PT MT+1 − PT+1

Control 1.960 2.052 0.013 -0.116

passive2 1.904 1.998 -0.081 -0.180

Active 1.910 1.990 -0.214 -0.251
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Figure 8: The predicted (by LTAP) and real measured (M) average hourly electricity usage over a day. The
predictions have the expected shape and expected delay.

the feature variable for predictions.
Figure 8 shows hourly electricity demand averaged over all summer days in year T and year T+1. In the

figure, lines are used to present the predicted values by LTAP, and the individual points are used for actual
measured values. Overall, we see that the largest differences appear during the peak-demand hours, where
the predicted usage and the real usage are about the same for the control group, while the active groups
clearly reduced the usage during the peak-demand hours and the passive group also reduced their usages but
not as significantly.
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Tables 6 and 7 provide more quantitative measures of the reduction in electricity demand. The LTAP
baseline predictions are able to capture the impact of temperature, we can regard the difference between
the predicted values and the actual measurements as the “true” measure of energy reduction due to the
new pricing schemes. Overall, we see the impact of the new pricing scheme on the overall daily usage is
relatively small, while the impact on the usage during peak-demand hours is quite significant.

From Table 7 we see that the active group is able to reduce their usage during the peak-demand hours
much more than the passive groups. The reduction by the active groups during the peak-demand hours
reaches almost 20%, which is very signficant. There are some households that reduce the usage during
peak-demand hours by as much as 40%. This indicates that the new pricing structure is effective in reducing
electricity usage during peak-demand hours. It is possible that these active participants choose to opt in
because they are better able to respond to the incentives provided by new pricing scheme.

A unexpected observation from this table is that all groups reduced electricity usage in year T+1, even the
control group. This particular change in the behavior of the control group appears to explain the decreases
in the reduction observed in year T+1 in Table 2. Based on he values in Table 2, we have speculated that the
decrease in reduction of electricity usage indicates the active participants have become tired of responding
to the changing price during the day. The new baseline with LTAP seems to suggest a new interpretation of
the consumer behavior. The control group must have heard about the new behavior of the active participants
and started to mimic their behavior even though there is no incentive for them to do so.

7 Summary and Future Work

We set out to study options of derive baseline models from data because the randomized control group is
hard to design and is even impossible in some cases. Ultimately, we would like to design a strategy that could
generate baseline models for individual participants of a study, while the randomized control group can only
serve as the baseline for a whole group. For this work, we have chosen a data set from a well-designed field
study of residential electricity usage because it contains a control group that we could compare our baseline
model against.

In this work, we explored a number of black-box approaches such as linear regression and Gradient
Boosting. Among these machine learning methods, we found Gradient Tree Boosting to be more effective
than others. However, the most accurate GTB models are produced with lagged variables as features, for
example, the electricity usage a day before and a week before. In order to use the model established on data
from year T-1 to make predictions for year T, the existing structure of the prediction procedure effectively
requires the actual usage data from year T in order to make predictions for values in year T. We have at-
tempted to modify the prediction procedure to use the recently predictions in place of the actual measured
values, however the tests show that the prediction errors accumulated over time, leading to unrealistic pre-
dictions a month or so into the summer season. This type of accumulation of prediction errors is common
to sequential prediction procedures for time series.

To address the above difficulty, we devised a number of white-box approaches. The method known
as LTAP is reported here. It is based on the fact that the aggregated variable electricity usage per day is
accurately described by a piece-wise linear function of average daily temperature. This fact allows us to
make predictions about the total daily electricity usage. By assuming the usage profile remains the same
during the study, we are able to assign the hourly usage values from the aggregated daily usage. This
approach is shown to be self-consistent, that is the prediction procedure exactly reproduces the electricity
usage in year T-1 and the prediction for the control in year T is very close to the actual measured values. As
one might expect, both treatment groups have reduced electricity usage during the peak-demand hours and
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the active group reduced the usage more than the passive group.
The analysis results also contain a unexpected revelation, the control group actually reduced its electric-

ity usages in year T+1, the second year after the introduction of the new pricing structures. Previously, using
the randomized control group as the baseline, researchers have concluded that there was a decrease in the
reduction of the electricity usage during the peak-demand hours. This decrease might be an indication that
the new pricing scheme has lost its attractiveness. The new analysis results suggest alternate possibilities,
for example, households might have acquired more energy efficient airconditioners, the change the fixed
rate at the beginning of year T+1 might have make the consumers more concerned about their electricity
usage, or participants of the control group might have adapted the behavior of the treatment groups.

The above hypothesis should be investigated and we are interested in further verify the effectiveness of
LTAP. One way to improve LTAP might be to capture additional features, such as the day of the week and so
on. So far, we have only considered the average usages of groups, LTAP could be used to make prediction
of individual household. We plan to exercise this feature, which might provide additional ways to verify
the new baseline model. From our tests on GTB, we noted that the prediction errors seem to accumulate
over time, it is of great theoretical interest to study sequential prediction methods that would not accumulate
prediction errors over time.
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Sergio Valero Verdú, Mario Ortiz Garcia, Carolina Senabre, Antonio Gabaldón Marin, and Francisco
J Garcı́a Franco. Classification, filtering, and identification of electrical customer load patterns through
the use of self-organizing maps. IEEE Transactions on Power Systems, 21(4):1672–1682, 2006.

Frank A Wolak. Diagnosing the California electricity crisis. The Electricity Journal, 16(7):11–37, 2003.

22

http://www.sciencedirect.com/science/article/pii/S1364032111004242
http://www.sciencedirect.com/science/article/pii/S1364032111004242
http://www.sciencedirect.com/science/article/pii/S037722170900705X
http://www.sciencedirect.com/science/article/pii/S037722170900705X
http://escholarship.org/uc/item/2nv5q42n
http://escholarship.org/uc/item/2nv5q42n
http://eetd.lbl.gov/sites/all/files/publications/behavior-based-emv.pdf
http://eetd.lbl.gov/sites/all/files/publications/behavior-based-emv.pdf

	Introduction
	Application Driver
	Dataset
	Groups
	Overall statistics
	Comparison against the control group
	Differences among the groups

	Methodology
	Linear Regression
	Gradient Linear Boosting and Gradient Tree Boosting
	Linear Relation between Temperature and Aggregated Power (LTAP)

	Black-box Regression Models
	Errors of the models
	Training Gradient Tree Boosting
	Hourly Averaged Prediction
	Modifying GTB for continuous prediction

	White-box Prediction
	Linear relationship between aggregated power usage and temperature
	LTAP prediction results

	Summary and Future Work

