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Abstract—We consider data sources connected to a software
defined network (SDN) with heterogeneous link access rates.
Deadline-driven data transfer requests are made to a centralized
network controller that schedules pacing rates of sources and
meeting the request deadline has a pre-assigned value. The
goal of the scheduler is to maximize the aggregate value. We
design a scheduler (RL-Agent) based on Deep Deterministic
Policy Gradient (DDPG). We compare our approach with three
heuristics: (i) P FAIR, which shares the bottleneck capacity in
proportion to the access rates, (ii) V D Ratio, which prioritizes
flows with high value-to-demand ratio, and (iii) V B EDF,
which prioritizes flows with high value-to-deadline ratio. For
equally valued requests and homogeneous access rates, P FAIR
is the same as an idealized TCP algorithm, while V B EDF
and V D Ratio reduce to the Earliest Deadline First (EDF)
and the Shortest Job First (SJF) algorithms, respectively. In
this scenario, we show that RL-Agent performs significantly
better than P FAIR and V D Ratio and matches and in over-
loaded scenarios out-performs V B EDF. When access rates are
heterogeneous, we show that the RL-Agent performs as well
as V B EDF even though the RL-Agent has no knowledge of
the heterogeneity to start with. For the value maximization
problems, we show that the RL-Agent out-performs the heuristics
for both homogeneous and heterogeneous access networks. For
the general case of heterogeneity with different values, the RL-
Agent performs the best despite having no prior knowledge of
the heterogeneity and the values, whereas the heuristics have full
knowledge of the heterogeneity and V D Ratio and V B EDF
have partial knowledge of the values through the ratios of value
to demand and value to deadline, respectively.

Index Terms—Deadline-driven data transfers, Software-
defined Networking (SDN), Reinforcement Learning, DDPG,
Scheduling heuristics, EDF, TCP, Value maximization

I. INTRODUCTION

Large distributed science is moving to the SuperFacility
model [1] in which distributed instrument facilities, HPC
systems, storage, and researchers are viewed as one integrated
facility. This is achieved by interconnecting these resources
using a very high-speed network, such as the ESnet [2], that
must provide performance guarantees on the data transfers
required by complex science workflows deployed on the
SuperFacility. Furthermore, due to exponential growth in the
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amount of data that is generated by the instruments, it is also
important that the interconnecting network is run at a high
utilization [3].

Next generation science workflows will require complex
processing pipelines that may be processed at different HPC
facilities [4]. More and more these workflows must be com-
pleted within a deadline. For example, the Large Synoptic Sur-
vey Telescope (LSST) [5] will take more than 800 panoramic
images each night with its 3.2 billion-pixel camera, recording
the entire visible sky twice each week. The new data will be
compared with previous images to detect changes in bright-
ness and position of objects as big as distant galaxy clusters
and as small as near-by asteroids. The processing of each 30
second image must be completed within 7.5 seconds so that
necessary alerts can be generated for down-stream processing.
The deadlines in processing the flows impose deadlines in the
data transfer from the instrument facilities (that are typically
in remote locations) to the HPC facilities. Furthermore, the
data transfer deadlines are becoming increasingly tight. For
example, in the Linac Coherent Light Source (LCLS) [6], the
location of next image is a function of the current image.

Deadline driven data transfer is not unique to large scien-
tific workflows and is becoming important for cloud service
providers with geo-distributed data centers. In order to keep
the distributed locations synchronized, large data sets must be
periodically transferred within a deadline [7], [8] while requir-
ing that the network is operating at a very high utilization [3].
This requires fine grain control of the transmission rate to
eliminate contention and resulting packet losses.

To support deadline-driven data transfers, ESnet sets up on-
demand circuits [9] supporting packet priority allowing the
circuit to be used by other traffic when the deadline flow is
inactive. For cloud service providers, the deadline transfers are
scheduled over private/dedicated WANs that interconnect the
geo-distributed data centers. These private dedicated WANs
are less noisy and more predictable compared to the gen-
eral Internet. Nevertheless, the deadline transfers must be
scheduled in the presence of other background and interactive
flows [7], [8].

In this paper, we consider an SDN-enabled pri-



vate/dedicated WAN with a centralized controller. There is
also in-network telemetry (INT) that can provide real-time
fine-grained information about network state including router
buffer lengths and packet drops [10]. Deadline-aware data
transfer requests are made to a central network controller,
which schedules the flows by setting pacing rates at the
sources of the deadline flows.

This work extends the Q-table based network scheduler pre-
sented in [11], which demonstrated the feasibility of using a
Reinforcement Learning based approach to schedule deadline-
driven flows. In particular, the Q-table based approach cannot
be applied to large networks with heterogeneous links. In
this paper, we design and implement a network scheduler
for deadline-driven flows based on Deep Deterministic Policy
Gradient (DDPG) and an Actor-Critic model, which is able to
handle larger networks with heterogeneous links. Furthermore,
this paper tackles a generalization of the scheduling problem
that assigns a utility value to each flow if the deadline is
met. The scheduler task is to schedule the flows so as to
maximize the aggregated utility value. We design a scheduler
(RL-Agent) based on DDPG and compare its performance
with three heuristics: (i) P FAIR, which shares the bottleneck
capacity in proportion to the access rates, (ii) V D Ratio,
which prioritizes flows with high value-to-demand ratio, and
(iii) V B EDF, which prioritizes flows with high value-to-
deadline ratio.

The main contributions of this paper are:
1) We propose a DDPG based network controller which

a) scales with respect to the size of the network (number
of sources and the bottleneck link capacity), b) can be
applied to heterogeneous networks, and c) can be applied
to a general value maximization problem.

2) For equally valued requests and homogeneous access
rates, we show that the RL-Agent performs as well as
and in some cases out-performs V B EDF (which is the
same as the Earliest Deadline First (EDF) algorithm) and
significantly better than P FAIR (same as an idealized
TCP algorithm).

3) For equally valued requests and heterogeneous access
rates, we show that the RL-Agent performs as well
as V B EDF even though it has no knowledge of the
heterogeneity to start with.

4) For the value maximization problem, we show that the
RL-Agent out-performs the heuristics for both homoge-
neous and heterogeneous access networks. This is despite
the fact that the RL-Agent has no prior knowledge of the
heterogeneity and the values, whereas the heuristics have
full knowledge of the heterogeneity and V D Ratio and
V B EDF have partial knowledge of the values.

II. SYSTEM MODEL

In this study we consider a heterogeneous dumbbell net-
work consisting of N sources and N destination nodes, as
illustrated in Figure 1. The capacity of the link between router
R1 and R2 is B Gbps. The access links between the sources
sni, i = 1 . . . N and R1 have rates ri ∈ (0, B). However, the

rates of the last-hop links from R2 to the destination nodes
Di are greater than B and, hence, are never the bottleneck.

Fig. 1: A dumbbell network with heterogeneous access link
rates. The thicknesses of the links represent different rates.
Note that the link rates from Router R2 to destination nodes
are same as the link between routers R1 and R2 and hence
are never the bottleneck.

Requests for file transfers are made to the network con-
troller. Each request j is a five-tuple (snj , dnj , fj , dj , vj)
where snj denotes the source node, dnj the destination node,
fj is the filesize, dj is the deadline, and vj is a value awarded
if the data transfer is completed within the deadline. Each
request corresponds to a single TCP/IP flow. We assume only
a single request from each source at any given time.

The basic unit of time is a scheduling interval; the network
controller assigns a pacing rate to each active source at the
start of each scheduling interval. We consider an episodic
(batch) model in which the scheduler receives a request from
each of the sources at the beginning of an episode [11].
Each request is to a different destination. The episode ends
when all the requests have completed successfully (within the
deadline) or not, after which a new episode begins. An episode
consists of an integer number of scheduling intervals denoted
as 1, . . . , T .

At the beginning of each scheduling interval, for each
request j, we define Rminj(t) as [11]:

Rminj(t) =
remaining file size
time until deadline

(1)

The value Rminj(t) denotes the minimum rate that is required
at every subsequent scheduling interval for request j to meet
its deadline. We let Rminj(1) =

fj
dj

, the initial minimum rate
for request j, be denoted by Rminj .

We use Sum Rmin =
∑n
j=1 Rminj to denote the sum of the

initial Rmin of each request. Sum Rmin < B, Sum Rmin =
B, and Sum Rmin > B correspond to the under-loaded,
fully-loaded, and over-loaded scenarios, respectively. Note
that if Sum Rmin ≤ B, it should be possible to meet all
the deadlines. However, as flows may end anytime during a



scheduling interval and pacing rate assignments are done only
at the beginning of the scheduling intervals, there is some
capacity waste which can result in lower than 100% success
rate for the fully-loaded and the under-loaded cases. In the
over-loaded case, the probability that not all the flows can
be completed by their deadline increases as the difference
Sum Rmin− B increases. For the subsequent discussion we
introduce the term demand of a request j as Dj = d fjB e [3].
This demand represents the number of intervals at the bottle-
neck link capacity that is required to transfer the file.

A. Justification of the Heterogeneous Dumbbell Network

The heterogeneous dumbbell network serves as a good ab-
straction of a large complex network such as the ESnet [2] due
to the following reasons. First, many distributed instrument
facilities are located at remote locations and it is the access
links that connect these facilities to the core network that
typically have low capacity. For example, the LSST cameras,
which are located on top of a mountain in the Andes [5],
have low capacity links connecting to the ESnet. Second, most
of the ESnet links have very high capacity. There are very
few links that are bottleneck links. For example, in ESnet
the trans-continental links between the US and Europe is
typically the only congested links. Finally, the destination
nodes representing HPC systems or Data Transfer (DTN)
nodes [12] are typically connected using very high speed
networks and are not bottlenecks.

B. Heuristic Scheduling Algorithms

We consider the following heuristics for comparison:
• Proportional Fair Share Allocation (P FAIR): The

P FAIR heuristic shares the bottleneck link capacity
fairly among the active sources in proportion to their
access link rates. If there are k active sources, then the
pacing rate ai to source i is:

ai = min

(
ri,

ri∑k
j=1 rj

×B

)
(2)

If all the access rates are equal, then this would cor-
respond to an equal partition. The P FAIR heuristic
simulates an idealized version of the TCP protocol and
does not take into account the value of each flow.

• Value-Demand Ratio Based Allocation (V D Ratio):
The V D Ratio heuristic is an adaptation of the Greedy
RTL algorithm outlined in [3]. In this algorithm, the
parameters pi = vi

Di
for each active flow i are sorted

in non-increasing order. Capacity is allocated in turn
starting with the flow with the largest p value. Let R
be the remaining capacity (which is initially set to B).
If with allocation of min(R, ri) flow i cannot meet its
deadline, then that flow is not scheduled. Otherwise, the
flow is assigned min(R, ri) and the algorithm considers
the next flow in the sorted list with the updated R. Note
that if all the values are equal and all the access link rates
are equal, then this heuristic is the same as the Shortest

Job First (SJF): the flow with the smallest demand will
have the largest p value.

• Value-Deadline Ratio Based Allocation (V B EDF):
The V B EDF heuristic is similar to the V D Ratio
heuristic, however, the p values are calculated differently.
Specifically, V B EDF heuristic calculates the parameter
pi = vi

di
for each active flow i, and sorts this list in non-

increasing order. The bottleneck capacity is allocated in
a water filling approach. Starting with the flow with the
highest p value, the corresponding flow is allocated up
to its access rate limit (if it can meet the deadline with
its access rate) and then moving down the priority list
with the remaining capacity until all the flows have been
considered or all the capacity is allocated. Note that if
all the values are equal and all the access link rates are
equal, then this heuristic will be the same as the well
known Earliest Deadline First (EDF): the flow with the
earliest deadline will have the largest p value.

C. Notes about the Heuristics

The V D Ratio heuristic is adapted from the Greedy RTL
algorithm outlined in Jain et al. [13]. The problem considered
by Jain et al. was to schedule deadline driven jobs with
different maximum parallelism (analogous to the heteroge-
neous access link rates) in large computing cluster of a fixed
processing capacity B so as to maximize the total value. The
jobs are malleable implying that processing time scales with
amount of capacity that is allocated (up to the maximum
parallelism). The algorithm is greedy because it allocates high
priority in allocating capacity to short jobs that have high
values. It takes the deadline into account only indirectly by
ignoring jobs that cannot meet the deadline. The key result is
that the GreedyRTL algorithm is O( B

B−k .
s
s−1 ) approximation

of the optimal, where k is the maximum parallelism and s is
a slackness factor that denotes the degree of flexibility the
scheduler has in scheduling a job. Consequently, as long as s
is large and k � B, this heuristic is near-optimal.

To the best of our knowledge, there is no prior research
on V B EDF heuristic for the value maximization problem
for deadline-driven jobs. This heuristic directly accounts for
the deadline by prioritizing jobs that have high value and
early deadline. As such it is the same as EDF when all the
values are equal. EDF has been widely studied in scheduling
deadline-sensitive jobs on multi-processor systems [14], [15]
and for packet scheduling in multihop networks with hard
deadlines [16]. For many of the above applications under
certain constraints EDF achieves the same performance as
the optimal offline algorithm [16]. For deadline driven data
transfers in a heterogeneous network with multiple paths
[8] and for the over-loaded cases [11], EDF is not optimal.
Nevertheless, as shown in Section V, it out-performs the
V D Ratio heuristic.

III. RL-AGENT BASED SCHEDULER

The overall architecture of the RL-agent is shown in Fig-
ure 2. In this section, we discuss the various components of



Fig. 2: The overall architecture of the RL-Agent. Equation
numbers correspond to the equations in the text.

the architecture and how the scheduling task is represented
for reinforcement learning.

A. Reinforcement Learning Formulation

In the following paragraphs we define the state and action
spaces and the reward function.

a) State: The state st of the system at the beginning of
the scheduling interval t, is defined as

st = [Rmin1(t),Rmin2(t), . . . ,RminN (t)], (3)

where Rmini(t) is defined in Eq. 1. When a flow i completes
or its deadline has expired, the ith component in the state
vector is set to 0. For each flow i, the state gives the minimum
pacing rate that the agent needs to allocate at every scheduling
interval until the deadline for the flow i to finish. This choice
of the state gives the agent direct information about the
urgency with which each flow must be allocated capacity in
the bottleneck link.

b) Action: Action at for the interval t is defined as

at = [a1(t), a2(t), . . . , aN (t)], (4)

where ai is the pacing rate allocated to the i-th flow. This
definition of action is similar to the work in [11]. However,
the key difference is that we consider at ∈ RN , where N
is the number of flows in the network. As such, this work
considers the problem in a continuous action space. The use
of a continuous action space formulation here, as opposed to
the discrete formulation in [11] holds several key advantages.
In the Q-table approach, each state-action pair had to be
individually enumerated and visited by the agent in order to
generate an estimate of the value. With an increasing network
size, the training of the agent could become infeasible. The
continuous formulation allows for similar state-action pairs to
be generalized over, and thus efficient learning over a larger
state-action space [17].

An action is valid if it satisfies the following constraints:

ai(t) ≥ 0, i = 1 . . . N (5)
N∑
i=1

ai ≤ B. (6)

The second constraint implies that at every scheduling interval
the scheduler uses all of the capacity of the bottleneck link. In
order to generate such actions from our reinforcement learning
agent, we apply the softmax function to the output layer of the
actor network and scale the result to the bottleneck capacity B.

c) Reward: In this reinforcement learning problem, we
ultimately wish to maximize the number of flows that the
agent is able to complete before their deadlines. This suggests
that a flow completion reward could be appropriate, where the
agent receives a positive reward every time a flow is completed
within its deadline and a zero reward otherwise. In this case,
however, the reward will be nonzero infrequently, resulting in
slow training. As a result, here we consider reward functions
that give the agent information at every time step.

The reward function utilized in [11] measured the extent to
which the action prioritized the completion of flows with the
earliest deadlines. This prior reward function is defined as:

R(st,at) =

N∑
i=1

(dmax − di) ∗ ai, (7)

where di denotes the time until the deadline for the ith flow,
dmax is the maximum time until deadline for any flow and ai
is the ith component of the action vector, or the amount of
bottleneck capacity allocated to the ith flow. Under this reward
function, for example, any allocation to the flow with the latest
deadline contributes zero to the reward because di = dmax
and so (dmax − di) = 0.

However, the reward function defined in Eq. 7 depends
only on the action that is specified by the agent and not on
variables from the state itself. This means that the reward
function does not depend on the effect that the action had
in the environment. For heterogeneous access link rates, for
example, not all actions specified by the agent may be possible
to implement.

In this paper, we consider the following reward function:

R(st,at) =

N∑
i=1

(dmax − di) ∗∆fi, (8)

where dmax and di have the same significance as the previous
reward function. ∆fi represents the difference between the file
size remaining for flow i before the action is taken and the file
size remaining for flow i after the action is taken. Thus, the
∆fi term measures how much progress the action taken made
toward finishing flow i. If the action taken by the agent was
fully implemented over the unit time interval, then ∆fi = ai
so Eq. 7 is a special case of this reward function.

In the case that each flow has a value, vi that represents
how much preference is given to completing the flow, it is
appropriate to scale the reward corresponding to a given flow



by the value for that flow. This gives the most general case
of the reward function used in this paper:

R(st,at) =

N∑
i=1

(dmax − di) ∗∆fi ∗ vi (9)

When flows are equally valued, the vi term can be ignored;
thus, reward functions in Eqs. 7 and 8 are special cases of
this reward function.

B. The DDPG Architecture

The deep deterministic policy gradient algorithm utilizes an
actor critic architecture [17]. We construct an actor network
that takes as input the state vector described by Eq. 3 and
outputs an action vector described by Eq. 4 that satisfies Eqs. 5
and 6. Additionally, we construct a critic network that takes
in both the action and state vectors and returns an estimate
of Q(st,at), the value of taking action at at state st. The
networks are trained using (si,ai, ri, si+1) tuples sampled
randomly from a store termed the replay buffer.

a) Actor Network: The actor network aims to learn a
policy function πθactor

: S −→ A that maximizes the total
expected discounted reward given by:

E[

T∑
i=t

γi−t ∗R(st,at)], (10)

where S is the set of vectors described by Eq. 3 and A is
the set of vectors described by Eq. 4, obeying restrictions in
Eqs. 5 and 6. This expectation computes the total reward that
is expected to be received by following a given policy, where
rewards occurring later are discounted by a constant hyper
parameter, γ, between 0 and 1. A gradient ascent process
is utilized to learn the parameters θactor that maximize this
expectation, by following the gradient given by

E[∇at
Q(st,at) ∗ ∇θactor

πθactor
(st)] (11)

In this formula, the ∇atQθcritic(st,at) is based off of a
learned approximation of the Qθcritic(st,at) function in the
critic network. The parameters of the actor network are
updated using the following equations:

θ
′

actor = θactor + α ∗ E[∇atQ(st,at) ∗ ∇θactorπθactor (st)],
(12)

where α represents a constant positive learning rate.
b) Critic Network: The critic network is trained to learn

the function Q(st,at), which is the expected reward from
taking action at during the state st and then following the
policy πθactor

. In the context of the reinforcement learning
formulation presented here, the critic network aims to learn
the extent to which an action taken at a given state would con-
tribute to the earliest deadline flow being completed first. The
critic network was trained to approximate a target Q(st,at)
value given by the Recursive Bellman Equation, as follows:

QBellman(st,at) = R(st,at)+γ∗Qθcritic(st+1,at+1) (13)

where Qθcritic indicates the value that is taken from the critic
network parameterized by parameters θcritic. These parame-
ters, θcritic are updated to minimize the squared error between
Qθcritic(st,at) and QBellman(st,at). Thus, the parameters
are updated as follows:

θUpdatedcritic = θcritic −∇θCritic
α ∗ E[(Qθcritic(st,at) (14)

−QBellman(st,at))
2]

c) Target Networks: As seen in the update equations
for the actor and critic networks, the networks are updated
directly and indirectly based off of their current values. For
example, the update to the critic network depends on the value
of the critic network itself. This has been identified as being
susceptible to divergence and instability [17]. One innovation
is to create separate target networks for both the actor and
critic networks that are used to compute values for the network
updates. The parameters of the target networks slowly trail
those of the actual networks through the following update:

θT = τ ∗ θ + (1− τ) ∗ θT (15)

where τ is a positive constant between 0 and 1. By utilizing
this separate network for calculating the updates for the
network parameters, we ensure the stability of the network
updates and avoid divergence [17].

d) Replay Buffer: When training the critic network on
samples directly taken from the agent’s trajectory, there exist
temporal correlations between the training samples that could
induce a higher variance in the critic network’s approximation
of the true Q(st,at) function. This can lead to divergence of
the critic network. An approach for addressing this issue is
the use of a replay buffer in which (si,ai, ri, si+1) tuples
are stored [17]. At each training step, a mini-batch of these
tuples are sampled with uniform probability from the replay
buffer and utilized for the update. This breaks the temporal
correlations between the samples and upholds the independent
and identically distributed (i.i.d) assumption expected by the
stochastic gradient ascent algorithms utilized [18].

e) Exploration Noise: An important tool employed in re-
inforcement learning applications is exploration noise, where
the action generated by the reinforcement learning agent is
perturbed by random noise prior to being implemented. Here,
the effect of exploration noise is to vary the pacing rates that
are assigned to each flow in a random fashion. Exploration
noise ensures that the reinforcement learning agent is able
to explore different regions within the state-action space,
preventing the agent from being trapped in a local optima.
Like other DDPG applications, we make use of an additive
Ornstein-Uhlenbeck temporally-correlated noise process [17].
Following the addition of exploration noise, the action was
re-scaled to meet the restrictions in Eqs. 5 and 6.

IV. METHODOLOGY

A. Tool

A prototype RL-Agent was implemented using the Tensor-
Flow machine learning library [19]. We generated actor and



critic networks consisting of an input layer, followed by a
fully-connected hidden layer with 400 units, followed by a
fully connected hidden layer of 300 units. A network simulator
was developed using the NumPy numerical library which,
given a value of the desired Sum Rmin of all of the requests,
generated request file sizes and deadlines and simulated an
episode by generating the state at each scheduling interval,
taking and implementing the action, and returning the reward
signal to the agent.

In this work, the RL-Agent was trained on a single network
configuration. The RL-Agent was trained in an iterative man-
ner with the environment initialized with randomly generated
requests of a given Sum Rmin workload level. The agent
would step through the scheduling intervals in the environment
until every flow was completed or expired and the episode
terminated. Afterwards, a new episode was generated and
training continued. In this work, we allowed training to
continue to up to 25,000 training episodes. However, the
learning curves demonstrate that the performance converges
well before then (in approximately 5000 episodes).

B. Metrics

We have used the following metrics in this study
1) Evaluation Run: Periodically during the RL-agent train-

ing, an evaluation run of 100 episodes was conducted.
During these 100 episodes, no exploration noise was
added to the actions and no network updates were per-
formed.

2) Success Rate: This is defined as the fraction of the
number of requests that meet the deadline. For the RL-
Agent, this was reported as an average over the 100
episode evaluation run.

3) Total Episode Value: This is defined as the sum of the
values of all completed flows. For the RL-Agent, this is
averaged over the 100 episode evaluation run.

C. Parameters

Table I gives a summary of all the hyper-parameters

TABLE I: Hyper-parameters and their corresponding values.

Parameter Description Typical values

sizerb Replay Buffer Size 106

sizemb Mini-batch Size 64
τ Target Network Update Weight 0.001
γ Bellman Equation Discount Factor 0.99
α Learning Rate 0.001

In the following section unless otherwise stated the filesize
for each request is sampled from Uniform distribution of range
2 to 50 Gbs (Gigabits).

V. RESULTS AND DISCUSSION

A. Homogeneous Link Rates with Equally Valued Flows

We first considered the case of five sources with homoge-
neous access link rates of 20 Gbps and the bottleneck link of
20 Gbps capacity. Workloads with different Sum Rmin values

corresponding to under-loaded, fully-loaded, and over-loaded
cases were generated. The learning curves for three cases 1)
Sum Rmin = 15 Gbps, 2) Sum Rmin = 20 Gbps, and 3)
Sum Rmin = 25 Gbps are shown in Figure 3. The results
show that the RL-Agent’s performance stabilizes quickly and
as expected to different values. The Success Rate performance

Fig. 3: Learning curve (Episode flow completion rate as a
function of training episodes) for homogeneous equally valued
flows. Parameters: B = 20, N = 5, Homogeneous access rate
of 20 Gbps.

of the RL-Agent compared to the three heuristics are shown
in Figure 4. The RL-Agent achieves superior performance to

Fig. 4: Success Rate as a function of Sum Rmin for the RL-
Agent and the three heuristics. Parameters: B = 20 Gbps and
N = 5, Homogeneous access rate of 20 Gbps.

P FAIR and V D Ratio heuristics. Moreover, it is able to
achieve comparable performance to the V B EDF heuristic
for under-loaded and fully-loaded cases and out-perform for
over-loaded cases. These results replicate the work done
in [11], utilizing a DDPG architecture as opposed to a Q-
table. Note that the inferior performance of V D Ratio in



this and the subsequent cases is because the requirement
k(= max{r1, . . . , rN})� B is not met.

One key advantage of the continuous action formulation
of the DDPG model is that the RL-Agent scales well to
networks with more sources and larger bottleneck capacities.
We considered a homogeneous network with 7 sources and
a bottleneck capacity of 40 Gbps. This configuration was
infeasible with the the simple Q-table approach in [11]. As
before we considered a range of Sum Rmin values corre-
sponding to the under-loaded, fully-loaded and overloaded
cases. The results shown in Figure 5 demonstrate that the

Fig. 5: Success Rate as a function of Sum Rmin for the RL-
Agent and the three heuristics. Parameters: B = 40 Gbps
and N = 7, Homogeneous access rate of 40 Gbps, Filesize
fi ∼ Unif(10, 100) Gb.

scheduler is able to achieve a Success Rate similar to the
5 source case. The RL-Agent achieves performance close
to the V B EDF heuristics, for the under-loaded and fully-
loaded cases and out-performs it in the over-loaded cases
(Sum Rmin > 40). It is notable that only minor changes
had to be made to allow the agent to accommodate the
network with 7 sources. Specifically, the input and output
layers of the (neural) network were modified to match the
number of sources and the exploration noise variance was
scaled proportionally to the bottleneck capacity B. However,
the training time for the network remained the same as in the
case of the 5 source network. Hence, the RL-Agent can be
applied in even larger networks.

B. Heterogeneous Link Rates with Equally Valued Flows

In the case of networks with heterogeneous access rates, the
pacing rate assigned to a source may be larger than its access
rate. As a result, the heterogeneity must be taken into account
to avoid wasting the bottleneck capacity. To investigate this,
we trained RL-Agent for a heterogeneous network with 5
sources with access rates (20, 20, 20, 20, 0). This is an extreme
case as requests from the source with 0 access rate can never
be completed. This is particularly disadvantageous to the RL-
Agent since it does not have direct information about the

Fig. 6: Learning Curve (Success Rate as a function of training
episode) for the RL-Agent for Heterogeneous network (Blue)
and for Homogeneous network (Orange) for Sum Rmin = 20.
The Success Rate of the heterogeneous case is calculated by
considering that in each episode at most 4 requests can be
completed. Parameters B = 20, N = 5.

heterogeneity. This case would give a sharp contrast of the
performance of the RL-Agent in comparison to the heuristics
if it did not adapt to the heterogeneity.

We considered both the reward function in Eq. 7 [11] as
well as the new generalized reward function given in Eq. 8.
This new reward function implicitly gives the agent informa-
tion about the heterogeneity. We examined the correlation be-
tween the total reward that an agent earned over an evaluation
episode and the number of flows that it completed. The total
episode reward when utilizing the reward function in Eq. 7 had
a weak correlation (correlation coefficient r = 0.362) with
the number of flows that the agent successfully completed.
Utilizing the new reward function in Eq. 8, on the other
hand, resulted in a strong positive correlation (r = 0.857)
between episode reward and number of completed flows. The
low correlation value indicates that the reward function in
Eq. 7 is unsuitable for use in maximizing the number of
flows completed. This finding motivated the modification of
the reward function to that shown in Eq. 8. In Figure 6, the
learning curve of the RL-Agent trained with reward function
in Eq. 8 is shown in comparison to the learning curve for the
homogeneous network for the fully-loaded case. The Episode
Flow Completion Rate for the heterogeneous case is corrected
to account for the fact that it could at most complete 4 flows.
The similarity of the learning trends establishes that the reward
function in Eq. 8 is appropriate for training the RL-Agent for
a heterogeneous network.

We next considered a network with 5 sources with B =
20 Gbps and access rates of (20,20,20,20,0) and compared the
performance of the RL-Agent to the heuristics for different
Sum Rmin values. Results, displayed in Figure 7, indicate
that the RL-Agent attains superior performance to the P FAIR



and V D Ratio heuristics and comparable performance to
V B EDF. When comparing the results, it is important to
note that while the heuristics had full knowledge of the
heterogeneity, the RL-Agent could only learn this through the
reward signal.

Fig. 7: Success ratio as a function of Sum Rmin for the RL-
Agent and three heuristics. Parameters: B = 20 Gbps and
N = 5, Access rates = [20, 20, 20, 20, 0].

C. Flows with Different Values

In the case of differently valued flows, the total episode
value metric is used. We considered the same network of 5
sources with homogeneous access link rates of 20 Gbps and a
20 Gbps bottleneck link. Sources were each assigned a unique
integer value between 1 and 5. During the training process,
the value associated with each source remained constant. The
performance of the RL-Agent in comparison to the heuristics
is displayed in Figure 8. The RL-agent surpasses P FAIR,
V D Ratio, and the V B EDF although RL-agent had to
learn about the different values through the reward.

TABLE II: Average Episode Value for heterogeneous access
links rate given in R and different value assignments given in
V . Parameters: B = 20, N = 5, Sum Rmin = 20.

Parameter P FAIR V D Ratio V B EDF RL-Agent
R=(20,20,20,20,0)
V=(5,4,3,2,1)

10.14 11.53 12.62 12.93

R=(20,20,20,20,0)
V=(1,2,3,4,5)

7.24 8.23 8.96 9.14

We examined the value maximization problem utilizing the
heterogeneous network with access rates [20,20,20,20,0]. This
heterogeneity was chosen as an extreme case, as failure of
the agent to learn about the heterogeneity would result in
a definitive drop in performance. We considered two value
assignments, one in which the source with 0 access rate had
the highest value (5) and the other in which it had the lowest
value (1). The average episode value for the RL-Agent as
well as the heuristics is presented in Table II. The RL-Agent

Fig. 8: The average Episode Value as a function of Sum Rmin
for the RL-Agent and the three heuristics. Parameters: B =
20 Gbps and N = 5, Homogeneous access rates of 20 Gbps.

is able to out-perform all the heuristics. This demonstrates
the significant robustness of the RL-Agent as it had no
prior knowledge of both the heterogeneity and the values,
whereas the heuristics had full knowledge of the heterogeneity.
V D Ratio and V B EDF had partial knowledge of the value
(through the ratios of value to demand and value to deadline,
respectively) while P FAIR did not take into account value.

VI. RELATED WORK

Deadline-aware flow scheduling has been investigated
for inter-datacenter traffic [7], [8], [20], for science work-
flows [21], and for data center networks [22]. The study in
Tempus [8] considered a mix packing and covering problem to
develop an online traffic engineering framework to efficiently
schedule and route long flows to maximize the fraction of
transfer delivered before deadline. The study in [7] formu-
lated an optimization problem and proposed a framework
called Ameoba for flexible bandwidth allocation to meet
deadlines. The study in [21] considered a multihop network
with deadline-driven requests and compared two classes of
heuristics - one that optimized globally and one that optimized
locally at each link - and compared the success rate in meeting
deadlines and network utilization. The study illustrated the
complexity of the scheduling problem for a general network.

Deadline-based packet transfers over multi-hop networks
have been studied [16]. Finding optimal policies for deadline-
driven transfers is a complex problem with multi-hop networks
where contention can occur at multiple links [16]. Scheduling
deadline-driven malleable job on a compute cluster has been
investigated [3]. As mentioned in Section II, this problem
is similar to the deadline-driven data transfers problem con-
sidered in this paper. However, the proposed heuristic is for
a special case and hence does not perform very well when
applied to the problem considered in this paper.

There has been significant recent work in applying RL-
Agent based approaches for resource allocation in wireless



networks and job scheduling in computing systems. The study
in [23] demonstrated that an RL-Agent can be trained to op-
timize scheduling jobs with processor and memory demands.
The study demonstrated that the RL-Agent can perform as
well as and sometimes out-perform known optimal heuristics.

This paper builds on [11] and significantly extends it in
multiple dimensions. First, using a DDPG (as opposed to
a simple Q-table in [11]) addressed a critical problem of
scalability. The framework now allows investigating more
general network with heterogeneous links with a large number
of sources and higher bottleneck link capacity as has been
demonstrated in this paper. Second, the generalization of the
reward function has allowed formulating the more general
value maximization problem. Finally, the results have been
compared with both new and known near-optimal heuristics
for a heterogeneous access network.

VII. CONCLUSIONS & FUTURE WORK

This paper describes a DDPG based reinforcement learning
agent that is capable of scheduling deadline driven flows
and achieves performance that matches or outperforms well-
known and near-optimal heuristics. In particular, the DDPG
method consistently attains superior performance in the over-
loaded cases. There are multiple avenues for further work
with regards to this specific scheduling problem. One possible
area of investigation is identifying exploration noise processes
that allow for the state-action space to be efficiently covered,
as well as the optimal settings for the parameters of these
processes. Although the Ornstein Uhlenbeck noise used in
this paper has been shown as effective in physical control
tasks [17], it remains unclear whether it is best suited to
scheduling tasks, such as this one. Further investigation can
also be conducted in determining the sensitivity of the agent’s
performance to a wider range of hyper parameter settings.
These more general investigations could potentially help in
the use of DDPG in other scheduling tasks, particularly an
extension of the problem to more complex network settings
that include routing. This would require scalable representa-
tions for the states and actions and a further investigation into
the flow completion reward.
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