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Abstract 
An X-ray based s stem for the inspection of pis- 

tachio nuts and wKeat kernels for internal insect 
infestation is presented. The novelty of this sys- 
tem is twefold. First, we construct an invariant 
representation of infested nuts from X-ray images 
that is rich, robust, and compact. Insect infesta- 
tion creates a tunnel, in the X-ray image, with re- 
duced density of the natural material. The tun- 
neling effect is encoded by linking troughs on the 
image and constructing a joint curvature-proximity 
distribution table for each nut. The latter step is 
designed to accentuate separation of those tunnel- 
ing effects that are due to  the natural structure of 
the nut. Second, since the representation is sparse, 
we partition the joint distribution table into several 
regions, where each region is used independently to 
train a backpropagation (BP) network. The out- 
puts of these subnets are then collectively trained 
with another BP network. We show that  the re- 
sulting hierarchical network has the advantage of 
reduced dimensionality while maintaining a perfor- 
mance similar to the standard BP network. 

1 Introduction 
We present a system that has been developed for in- 
spection of pistachio nuts and wheat kernels viewed 
with an X-ray sensor. The X-ray device reveals in- 
ternal defects that cannot be otherwise detected by 
external evidences in the visible domain. Presently, 
pistachio nuts are inspected for external damages, 
and a sample of wheat kernels are X-rayed for man- 
ual inspection a t  the mill. In the case of pistachio 
nut, we are interested in aflatoxin contamination' 
[15]. However, there is a strong correlation between 
contamination and insect infestation. And in the 
case of wheat kernels, we are interested in reject- 
ing those wheat kernels that are infested with maize 
weevils. 
The main novelty of this paper is two fold: First, 
we derive an znvarzant representation that captures 
pertinent information on infested as well as non- 
infested nuts; second, we show that  by partition- 
ing this invariant representation, a classifier with 
reduced dimensionality can be constructed. From a 
geometric perspective, infestation can be character- 
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ized by a dark tunneling appearance in the X-ray 
image. The tunnel corresponds to the reduced den- 
sity of the natural content of the nut and to the re- 
placement of that content by a cocoon, insect debris, 
and air, which have lower X-ray absorption proper- 
ties. The conetruction of an invariant representation 
is complicated by the fact that the tunnel can oc- 
cur a t  any spatial location and direction. In case 
of pistachio nuts, some air gaps are due to  natural 
separations between the two halves (cotyledons) of 
the nut meat. And in the case of the wheat kernel, 
the density of the kernel is reduced near its medial 
axis. 
For fistachio nuts, these natural features may be 
visib e depending upon its resting position. How- 
ever, the natural separations are generally accentu- 
ated by higher contrast than those that  are caused 
by infestation. In this context, our invariant repre- 
sentation first encodes the tunnels and their mag- 
nitude, and then parametrizes this representation 
with respect to location and orientation. Tunnels 
can be represented in terms of local positive curva- 
ture maxima; these local maxima are then linked 
to form long curve segments. The invariant and 
compact representation of these curve se ments, 
with respect to  rotation and translation, is &en en- 
coded by constructing the distribution of local cur- 
vature maxima i a function of distance to the outer 
boundary of the nut. This distribution is a two di- 
mensional joint histogram with the necessary invari- 
ant properties. 
The second aspect of our work is in the design of 
the classifier, which is based on the backpropaga- 
tion network. In general, the corresponding repre- 
sentation for infested nuts is sparse; and our classi- 
fier utilizes this property to partition the histo ram 
into several regions, training a network for eact  re- 
gion independently, and combining these subnets in 
a hierarchical fashion. The main benefit is that  a 
classifier with reduced dimensionality (number of 
weights) than a standard backpropagation network 
can be obtained. 
In the next section, a brief summary of the image ac- 
quisition system is iven Then in sections 3 and 4, 
we outline the detaiys of the invariant representation 
and classification. In each section, we present the 
intermediate result of our system followed by exam- 
ples. Representation of pistachio nuts is a far more 
complex and interesting problem than the wheat 
kernels. The paper concludes in section 5 with a 
summary and a description of future efforts. 



2 Images 
In this section, the details of the imaging system for 
pistachio nuts are covered. The wheat kernels are 
imaged at  higher resolution and a description can 
be f&nd in [g]. 
The X-ray images of clean and infested pistachios 
are captured on photographic film. Nuts from each 
mocess stream (Table 2) are individually arrayed on 
clear adhesive Gontact paper in one of three-orien- 
tations (suture plane parallel, perpendicular or at 
an angle to the film plane) and X-rayed2. Films are 
handled in the dark and exposed without film hold- 
ers. Twelve bit digital images are obtained from the 
films at  a resolution3 of (0.125mm)2/pizel. The X- 
rayed nuts are then opened to determine the pres- 
ence of insect damage. An image of a clean nut 
will have the following characteristics: a bright area 
representing the nut meat, surrounded by a small 
dark gap between the nut meat and the shell, and 
a little brighter nut shell outside the kernel. Often 
there is a dark gap between the two halves of the 
kernel. The dark areas generally have sharp edges. 
An insect-infested nut has additional dark areas in 
the kernel which have been caused by insect bites 
or tunneling. Figures 1 and 2 show representative 
images of pistachio and wheat kernels respectively. 

low level features so that similar structures at  differ- 
ent spatial locations have the same representation. 
For example, a cocoon on the left or right side of 
the nut should be represented identically. In our 
system, the ideal properties of the low level features 
are captured by computing the surface curvature at 
each pixel position. Curvature measurements are 
invariant to translation and rotation, and their pos- 
itive local maxima identify the positions of troughs. 
However, other maxima may also be the results of 
natural surface properties of the pistachio nut such 
as the split cotyledon. Still, we assert that  curvature 
maxima on the natural surface have higher magni- 
tude, statistically, at a given distance from the nut 
boundary when these are compared to those cur- 
vature maxima, obtained at  the identical distance 
from the nut boundary, that  are due to the infes- 
tation. Compactness is achieved by parametrizing 
curvature features as a function of their distance 
from the boundary of the nut. This parametriza- 
tion is constructed as a. two dimensional histogram 
that encodes the curvature-distance joint distribu- 
tion. We suggest that  this histogram corresponds to  
the signature, or a finger print, that  can character- 
ize an infested or clean nut, and we present results 
to that effect. The system architecture is shown in 
figure 3, and the details of the above computational 
steps are outlined below. 

( a )  (b) (c) (4 
Figure 1: X-ray images of pistachios: (a) & (b) clean 
and (c) & (d) infested 

(a) (b) (c) (d) (e) (f) 
Figure 2: X-ray images of wheats: (a), (b) & (c) 
clean and (d), (e) & (f) infested 

3 Invariant Representation 
In this section, we present the details of the invari- 
ant representation for the pistachio nuts. The repre- 
sentation of wheat kernels is a slightly simpler prob- 
lem, and the result should be easily extendable. 
An ideal representation should capture meaningful 
features with maximum compactness for effective 
classification. In this context, the low level repre- 
sentations should be rich, stable, and invariant to 
the rotation and translation of the object in the im- 
age plane as well as in the 3-D space. Compactness 
in representation can be achieved by encoding the 

290 seconds a t  25 keV [0.25 mm Be window] with a Faxitron 
series X-ray system 4380N, Hewlett Packard, McMinnville, OR;  
Industrex B film, Eastman Kodak, Rochester, NY 

3using a Lumiscan 200 film scanner, Lumisys, Sunnyvale, CA 
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Figure 3: Processing steps 

The tunnels are localized by grouping local pos- 
itive curvature maxima, where curvature corre- 
sponds to the differential surface properties of the 
local intensity distribution for the projected image 
of the tunnel. Curvature is computed from the 
first and second fundamental forms. These forms 
uniquely determine certain local invariant quanti- 
ties of a 3-D surface, where invariance is expressed 
in terms of translation, rotation, and scaling for 
X-ray images. Faux and Pratt  [3] expressed the 
first and second fundamental forms in parametric 
space. However, from a computational perspective, 
it is desirable to express these forms in Cartesian 
space. Let a point on the surface be defined as 
P = x7+ yT+ 2;; then the first and the second 



fundamental forms are computed to be 

The normal curvature of a surface is the curvature 
of the intersecting curve between the surface and 
the plane containing the surface normal and tan- 
gent vector to the curve. The directions in which 
the normal curvature becomes maximum or mini- 
mum are called principal directions corresponding 
to the princi a1 curvatures. The normal curvature 
is defined as 731: 

where XT = [ $$ % ] (3) 
X T  ox I<, = ~ 

XTGX 

Through elimination and the solution of a pair of si- 
multaneous equations, the following quadratic equa- 
tion is obtained, where the roots of this equation 
correspond to maximum and minimum principal 
curvatures. 

(911922 - g12g21)ki 

-(glld22 + d11g22 - 2g12d12)kn 

+(dlld22 - dl2d21) = 0 (4) 
Figure 4 shows the curvature features corresponding 
to the images shown in figure 1, and figure 5 shows 
the curvature features corresponding to the images 
shown in figure 2.  On these images, white pixels 
correspond to troughs (positive curvature maxima) 
and black pixels to ridges (negative curvature max- 
ima) respectively. 

(a) (b) (c) (d) 
Figure 4: Maximum princi a1 curvatures of surface 
intensity for pistachios: (ay & (b) clean and (c) & 
(d) infested 

(a) (b) ( c )  (4 ( e )  ( f )  
Figure 5: Maximum principal curvatures of surface 
intensity for wheats: (a), (b) & (c) clean and (d), 
(e) & ( f )  infested 

Once local curvature maxima are determined, 
they are linked together and long segments are con- 
structed. The steps leading to the extraction of 
trough segments are enumerated below. 

1. 

2. 

3 .  

4. 

5. 

Smooth the original image with a Gaussian ker- 
nel, 

Compute the curvatures a t  each pixel on the 
smooth image, 

Threshold the curvature image for troughs, 

Thin the thresholded image using the non- 
maximal suppression 21 method. The idea is 

vature is the local maximum, and 

Link the thinned troughs using a hysteresis [a] 
method. The hysteresis linking method con- 
sists of a high and a low threshold. All points 
above the high threshold are marked as trou h 
points, and similarly, those points below t f e  
low threshold are marked as non-trou h points. 
The points between the low and high t%resholds 
can only be traversed from those troughs that 
are marked by the high threshold. 

to keep only the troug L s whose maximum cur- 

The result of linking troughs for pistachios and 
wheats are shown in figure 6 and figure 7. These 
images are computed with high threshold of 0.99, 
low threshold of 0.89, and the kernel size of 1.5 for 
Gaussian smoothing for pistachios, and for wheats, 
the kernel size of 1.0 is used. These parameters are 
found to be experimentally appropriate for the nut 
size, and the expected size of the cocoon that  is gen- 
erated through infestation. 

(a) (b) (c) (d) 
Figure 6: Result of linking for troughs: (a) & (b) 
clean and (c) & (d) infested pistachios 

(a) (b) (c) (4 ( e )  (f) 
Figure 7: Result of linking for troughs: (a), (b) & 
(cyclean and (d), (e) & (f) infested wheats 

In the next step of the computational process, 
we compute the distance from each trough point to  
the boundary of the nut. This is accomplished by 
first extracting the boundary of the nut with the 
zero-crossin s of the Difference of Gaussian (DOG) 
filter, and t i en  computing the chamfer image. The 
chamfer image generates a distance map from edges. 
The map has a zero value on the edge and increases 
monotonically from the edge. Figure 8 shows the 
chamfer images obtained from the boundaries of the 
pistachios nuts shown in figure 1. Once the prox- 
imity map is computed, the two dimensional joint 
distribution of the curvature-distance table is con- 
structed. Figure 9 shows the cumulative curvature- 
distance joint histogram for a clean and an in- 
fested pistachio, corresponding to the second and 
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(a) (b) (c) (4 
Figure 8: Chamfer images of boundaries of the pis- 
tachios: (a) & (b) clean and (c) & (d) infested 

the fourth images from example respectively. In 

(a) (b) 

Figure 9: Joint histograms of curvature and prox- 
imity values: (a) clean nut and (b) infested nut 

figure 9, the distribution indicates that  high cur- 
vature activities are more localized, a t  a iven dis- 
tance from the boundary, for clean pistackos than 
infested pistachios. 
In the next section, we show that the joint distribu- 
tion has the necessary information content t o  iden- 
tify the infested nuts in the population. 

4 Classification 
In the design of the classifier, we experimented with 
several indexing schemes, such as Bidirectional As- 
sociative Memory [9] and backpropagation neural 
network paradigms. The latter consistently pro- 
duced more favorable results. This is in part due 
to the large variation in pattern structure and the 
presence of similar patterns among clean and in- 
fested pistachios. The basis for classification is the 
joint distribution of the curvature-distance table. 
The curvature values range from 0 to 7.5, and are 
partitioned into 16 groups, with the distance val- 
ues ranging from 0 to 9, partitioned into 10 groups. 
The table is further quantized, as shown in table 
1, to reduce the size of the network used for clas- 
sifying based on the joint distribution and conse- 
quently, the size of the training set. The training is 
based on the backpropagation algorithm. We have 
experimented with two strategies for further refine- 
ment of the classifier design. The first one is the 
standard backpropagation technique for training a 
network from a population. In the second approach, 
we partition the joint distribution table into several 
regions, where each region is used independently to 
train a network. These subnets are then trained 
with another backpropa ation network. The back- 
propagation (BP) algoriarn is a supervised training 
technique. In the rest of this section, we first evalu- 
ate the performance of a standard BP network, then 
compare its results with the hierarchical one. 

Table 1: Quantization of joint histogram of the cur- 
vature and proximity values 

In the standard implementation of the backpropaga- 
tion algorithm, we use a three layer network and cre- 
ate a sequential array of the joint distribution table 
as the input to this network. The learning rate and 
the momentum factor are set a t  0.1 and 0.9 respec- 
tively. These parameters are selected to  maintain 
a balance between achieving fast convergence and 
arriving at the desirable local minima. ‘The sam- 
ples are arranged in different trays, and manually 
identified a s  clean or defective nuts. Table 2 tabu- 
lates the types of defective pistachio nuts in these 
trays. The training set consists of a sample of 80 
clean and infested pistachio nuts. The clean and 
infested pistachio nuts are randomly selected from 
trays M and Q respectively. We construct three sets 

Crop Toxin 100 nuts 

Table 2: Processing Stream Information 
of testing data for pistachios. The first and second 
set have 98 and 100 samples from trays M and Q, 
respectively. The third set has 452 samples from 
all the trays. For the classification for wheat ker- 
nels, 742 random samples are drawn for training, 
and another 744 random samples are selected for 
testing. All samples are selected randomly without 
replacement, and none of the testing samples are 
included in the training set. The classification re- 
sults for pistachios for the backpropagation network 
with various input size and nodes in the hidden layer 
are shown in table 3.  The poor performance of the 
third set is due to the presence of other categories 
of pistachio nuts, as listed in table 2,  that  in addi- 
tion of being infested or clean, they may have other 
defects as well. In a usual agricultural setting, the 
inspection of pistachio nuts is a multi-stage process, 
where at each stage, different types of defects or nut 
grades are inspected. For example, nuts with exter- 
nal defects such as stained shells, are removed by a 
different inspection system all together. The third 
set of data was constructed as an experiment to test 



if the multi-stage inspection and grading process can  
be reduced into one single stage. Our result indicate 
that a two class image-based recognition system is 
not capable of discriminating the nuts effectively. 
For wheats, the classification results with the stan- 
dard backpropagation network are shown in table 4. 
The table 4 also shows specific classification results 
for each infestation category. 
Other researchers have explored hierarchical net- 
works for machine vision applications [14] as well. 
However, our implementation does not use shared 
weights, nor use more than one hidden layer, and 
it t8reats the output of each subnet as a probability 
measure. Furthermore, the re resentation used by 
other researchers is at  the pixeylevel, and no invari- 
ant properties of image features are exploited. In 
our implementation, we divide the joint distribution 
of histogram into four or six regions (the number of 
regions is arbitrary). Each region is then used in- 
dependently to train a BP network. The results of 
these subnets are then used as input for the next 
BP network, as shown in figure 10. The classifica- 
tion results for pistachios with various network sizes 
are tabulated in table 5. Also, the classification 
results for wheats with the hierarchical backprop- 
agation network are shown in table 6, alon with 
the results for each infestation category. &e re- 
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Figure 10: Hierarchical Backpropagation Networks 

20x5~2 

16x4~2 

12x4~2 

6x3~2 

sult from our hierarchical network approach shows 
a similar performance to the standard backpropaga- 
tion network, while reducing the dimensionality. As 
an example, from the classification results for pis- 
tachios, the fourth row (20x5~2 ,  110 weights) from 
table 3 and the fifth row (L: 4 x 2 ~ 2 ,  H: 8 x 4 ~ 2 ,  88 
weights) from table 5 indicates that the hierarchical 
BP network with similar performance to the stan- 
dard BP network has the reduced dimensionality. 
The x2 test on this example confirms the result as 
the x 2  value 6.3185 with 6 degrees of freedom. The 
reduced dimensionality of the network has the ben- 
efit of improved convergence time and a reduction 

110 80 

98 0 .7755  I 0.3468 
72 80 
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98 0.63R U.3673 
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NODES: number of nodes in the networks 
WEIGHTS: number of computed weights 
NTRS: number of training s a m  les 
NTES: number of testing sampfk 

TPF: true 
nuts actudy detected 
FPF: false positive fraction as the percent of clean 
nuts mistakenly identified as infested 

ositive fraction as the percent of infested 

Table 3: Performance of standard backpropagation 
networks on pistachio nuts with varying number of 
nodes and hidden layers 

in the number of required training samples. 

5 Conclusion 
An inspection system for the classification of in- 
fested and clean pistachio nuts and wheat kernels 
is presented. The novelty of our approach lies in 
the compact and invariant representation of the im- 
age features for recognition. The invariance was ex- 
pressed in terms of curvature-proximity joint distri- 
bution function, Furthermore, we showed that by 
partitioning the sparse input array and hierarchical 
organization of the BP network, we could reduce the 
dimensionality in the network significantly, without 
the loss of accuracy. This result leads us to conclude 
that we need fewer of training samples, and that we 
can reduce the cost of the inspection of pistachios. 
We believe that this architecture can be used to in- 
spect other varieties of nuts as well, which is the 
focus of our current effort. 
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