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ABSTRACT

Handling imbalanced datasets remains a critical challenge in finan-
cial machine-learning applications such as loan approval, credit
scoring, and fraud detection. We present Imbalanced Financial Diffu-
sion (Imb-FinDiff ), a novel denoising diffusion framework designed
to address class imbalance in financial tabular data. Our frame-
work leverages embedding encodings for categorical and numerical
attributes, effectively managing the complexities of mixed-type
financial datasets. By incorporating a dual learning objective, (i) dif-
fusion timestep noise and (ii) class label prediction, we synthesize
minority class samples. Extensive experiments on diverse and real-
world financial datasets demonstrate that Imb-FinDiff maintains
the statistical properties of the original data while reducing bias
caused by class imbalance. The minority class samples generated by
Imb-FinDiff enhance the utility and fidelity of downstream machine
learning classifiers.

CCS CONCEPTS

« Computing methodologies — Supervised learning; Neural
networks; Learning latent representations.
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1 INTRODUCTION

Learning from imbalanced datasets is a critical challenge in many
domains of financial machine learning, such as loan approval, credit

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICAIF 24, November 14-17, 2024, Brooklyn, NY, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1081-0/24/11.

https://doi.org/10.1145/3677052.3698659

Timur Sattarov
Deutsche Bundesbank
Frankfurt am Main, Germany
timur.sattarov@bundesbank.de

Kesheng Wu

Lawrence Berkeley National Laboratory
Berkeley, USA

kwu@lbl.gov
FinDiff Reverse Tabular Diffusion Process pg(xi—1|z)
Model
. T o
f9 Forward Tabular Diffusion Process q(x¢|x¢—1)

Figure 1: Overview of the financial diffusion model (FinDiff)
approach for synthesizing mixed-type tabular data [46].

scoring, or fraud detection [1, 18]. Imbalance manifests in two com-
mon forms: minority interests and rare instances [5, 6, 17]. Minor-
ity interests arise in domains where rare but crucial events, such
as fraudulent transactions, must be identified accurately. Rare in-
stances concern situations where data representing a particular
event is limited compared to other distributions. In financial audit-
ing, detecting fraudulent activities in a vast pool of transactions
exemplifies the minority interest challenge [8, 47].

Tabular financial datasets are often imbalanced, with certain
classes significantly underrepresented compared to general records
[5, 6]. This imbalance can severely affect the true-positive perfor-
mance of the minority class in supervised machine learning set-
tings [17, 18]. Additionally, underrepresented or minority classes
can lead to biased models that fail to identify risk factors or misclas-
sify behaviors [41]. Ensuring a balanced representation of classes
can help create fairer financial models [1].

A promising solution lies in generating high-quality synthetic
data [1, 41]. Synthetic data mimics the statistical properties of real
data, mitigating complications arising from imbalanced classes [32,
63]. This approach offers to model rare but impactful events like
fraud and biased predictions in credit scoring [8, 41]. Generating
high-fidelity synthetic tabular data offers to improve the perfor-
mance of machine learning models on imbalanced datasets, fos-
tering collaboration among financial entities and modelling rare
but impactful events like fraud. However, real-world tabular data is
often characterized by inherent complexities [26, 45, 64]:

e Mixed Attribute Types: Tabular data comprises diverse at-
tribute types. Modelling these complexities requires synthesizing
different data types into a generative model.
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Figure 2: Overview of the Imb-FinDiff model architecture. The model extends denoising diffusion probabilistic models, as
introduced in [20, 51], to oversample minority classes through a structured diffusion process, thereby improving class balance
and enhancing machine learning model performance on imbalanced datasets.

o Implicit Relationships: Tabular data includes implicit relation-
ships between records and attributes, necessitating models that
can capture these (inter-) dependencies.

e Distribution Imbalance: Tabular data often has skewed distri-
butions and imbalances, demanding advanced modelling tech-
niques to represent the nuanced patterns accurately.

Recent advancements in deep generative models have demon-
strated impressive capabilities in creating diverse and realistic
content across various domains. Notably, denoising diffusion prob-
abilistic models [20, 43, 51] have shown the ability to generate
high-quality synthetic images, videos, and more. Such models have
recently been proposed in synthetic financial tabular data synthe-
sis [26, 45, 46]. Figure 1 illustrates the FinDiff [46] approach for
synthesizing mixed-type tabular data from financial datasets.

In this work, inspired by these advances, we explore the poten-
tial of diffusion models to mitigate class imbalance. We introduce
Imbalanced Financial Diffusion (Imb-FinDiff), a denoising diffusion
framework tailored to synthesize minority class samples in finan-
cial tabular data. Our evaluation assesses three research questions:
(RQ 1) Can Imb-FinDiff’s synthesized data improve the perfor-
mance of financial machine learning tasks? (RQ 2) Can Imb-FinDiff
maintain high fidelity in synthetic data, preserving the statistical
properties of real-world data? (RQ 3) How effectively does Imb-
FinDiff capture the diversity of minority class samples? Our study
makes the following contributions to address these questions:

(1) Learning: We propose a learning framework synthesizing
minority-class financial tabular data (RQs 1,2).

(2) Sampling: Our approach mitigates class imbalance in synthetic
datasets through effective oversampling (RQs 1,3).

(3) Evaluation: We demonstrate the framework’s utility and fi-
delity through evaluations on diverse datasets (RQs 2,3).

The remainder of this paper is structured as follows: section 2 pro-
vides an overview of related work. section 3 describes the basics of
diffusion models and outlines the proposed methodology. section 4
and section 5 detail the experimental setup and results, respectively.

We conclude with a summary and future research directions in
section 6.

2 RELATED WORK

In recent years, synthesizing financial data has gained significant
interest. This survey addresses (1) techniques for mitigating class
imbalance in machine learning, (2) models for financial data syn-
thesis, and (3) diffusion models for data synthesis.

2.1 Class Imbalance Learning Techniques

Sampling strategies involve oversampling or undersampling to bal-
ance data distributions. For instance, cost curves [11] study the
interaction of sampling with decision trees, while JOUS-Boost [49]
combines adaptive boosting with jittering sampling. Synthetic data
generation methods, like SMOTE [5], interpolate between exist-
ing minority classes to create synthetic minority class examples.
Extensions such as SMOTEBoost [6] and DataBoost-IM [16] com-
bine synthetic generation with boosting. Additionally, Adasyn [17]
generates synthetic examples based on feature space density dis-
tributions. Cost-sensitive learning uses cost matrices to address
imbalance without altering data distributions. Techniques include
cost-sensitive trees [33], Metacost [10], and threshold-moving for
neural networks [69]. Active learning selects informative instances
to reduce computational costs. Methods based on SVMs [13, 54]
and word sense disambiguation strategies [42] have shown effec-
tiveness in imbalanced scenarios. Kernel-based methods optimize
model generalization for imbalanced data. Techniques include the
ROWLS estimator [61] and kernel-boundary alignment [59], which
adjust the kernel matrix based on data distribution.

2.2 Data Synthesis Using Generative Models

Generative models [15] have improved the creation of realistic
content, including images [3, 43], videos [4, 50], audio [28, 60],
code (7, 31], and natural language [37, 56]. For financial data synthe-
sis, Wiese et al. [63] introduced Quant GANSs to capture long-range
dependencies. Ni et al. [34, 35] and Liao et al. [32] used signature
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Wasserstein GANSs for high-fidelity time-series generation. Using
generative models, Dogariu et al. [9] synthesized realistic finan-
cial time-series. For tabular financial data, variational autoencoder
(VAE) [25] and GAN-based models [12, 65] have been proposed. Xu
et al. [65] introduced CTGAN, a conditional generator that handles
mixed data types. Engelmann and Lessmann [12] addressed class
imbalances using conditional Wasserstein GANs. Jordon et al. [22]
developed PATE-GAN for enhanced data synthesis privacy with
differential privacy guarantees. Torfi et al. [55] presented a differ-
entially private framework for synthetic healthcare data. Zhao et
al. [68] developed CTAB-GAN to address data imbalance, while
Kim et al. [24] used neural ODEs to improve synthetic tabular data
utility. Wen et al. [62] introduced Causal-TGAN, leveraging causal
relationships to enhance data quality. Zhang et al. [67] proposed
GANBLR for understanding feature importance, and Nock and
Guillame-Bert [36] suggested a tree-based approach as an alterna-
tive.

2.3 Data Synthesis using Diffusion Models

Lately, diffusion models for data synthesis have gained momen-
tum [19, 51]. For image synthesis, Rombach et al. [44] demonstrated
that latent diffusion models can generate high-quality images with
reduced computation time. These advancements have expanded
the applicability of diffusion models beyond image synthesis, show-
casing their robustness and versatility [66]. For text generation,
Strudel et al. [52] introduced self-conditioned embedding diffusion
that rivals autoregressive models. Gao et al. [14] applied embed-
dings for discrete text data generation, addressing challenges like
the collapse of the denoising objective and imbalanced embedding
norms. Li et al. [30] introduced Diffusion-LM to control complex,
fine-grained text outputs. For tabular data synthesis, Kotelnikov et
al. [26], Ouyang et al. [38], and Sattarov et al. [46] proposed multi-
nomial and conditional diffusion models [21]. Recently, this was
extended by integrating federated learning, enhancing privacy [45].

To the best of our knowledge, this work is the first attempt to
develop a diffusion model for synthesizing financial tabular that
explicitly addresses the challenge of class imbalance mitigation.

3 METHODOLOGY

In this section, we introduce Imbalanced Financial Diffusion (Imb-
FinDiff), an extension of Financial Diffusion (FinDiff) by Sattarov et
al. [46], to synthesize imbalanced tabular data. We first introduce the
foundational concepts of diffusion models, followed by a detailed
description of the proposed Imb-FinDiff framework.

3.1 Gaussian Diffusion Models

Denoising diffusion probabilistic models [19, 51] are latent variable
models that gradually add Gaussian noise to data in a forward
process and learn to reverse this process to generate samples. The
forward process transforms data xo € R? into latent variables
X1, ..., XT via a Markov chain, ultimately reaching Gaussian noise
x7 ~ N(0,I). Each Markov transition has the form:

q(x¢|xe-1) = N(xe5 V1 = frxe-1, B 1) (1)
where f; is the noise level added at timestep ¢. The process allows
for direct sampling of x; given xo:
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q(xe[%0) = N (x¢3 /1 = frxo, fel) @)

where ﬁt =1- Hfzo(l — Bi). In the reverse process, the model
incrementally denoises the latent variables x; to recover the data
xo. To approximate this process, we train a neural network fy with
parameters 0, and each denoising step is parameterized as:

po(Xe—11%0) = N (xe-1; o (X1, 1), X9 (X1, 1)) ®)
where g and Xy are the mean and covariance of q(x;|x;—1). Since
3¢ is diagonal, following Ho et al. [19], ug can be parametrized as:

1 Bt

po(xe,t) = —(x¢ - -

vat V1 -—a;

where a; :==1— f;, d; == ]_[f:O ai, and €g(xy, t) predicts the noise
component. The mean-squared error between the ground truth e
and the estimated e(x;, t) has been empirically shown to produce
better results compared to the variational lower bound log pg (xo):

€g(xt, 1)) ©

L =Exper [|€ —eg(xt, t)|§] 6))
While this framework is effective for continuous data, particularly
images, and videos, it cannot be directly applied to discrete data,
such as categorical attributes in tabular datasets.

3.2 Financial Tabular Diffusion Framework

The Imb-FinDiff framework extends the foundational concepts of
FinDiff [46] by introducing a dual learning objective, integrating
both (i) a timestep noise loss and (ii) a novel class label loss. This learn-
ing objective improves the framework’s capability to accurately
generate data for a desired class. Formally, let X be a population of
i=1,2,...,K tabular records, where each record is defined as:

caty catn . Kum numpy yi) )
; ; ;

xi:(xi seees X 5 X

consisting of N categorical attributes x4

, M numerical attributes
x™Mand the class label y;. The proposed learning framework

comprises three modules, as illustrated in Fig. 2.

3.2.1 Embedding Module. The first module embeds the (i) tabular
record attributes and labels as well as the (ii) diffusion timestep in
continuous embedding spaces E € RP! respectively:

o Categorical Attribute Embedding: The individual categorical at-
tributes x°% are transformed into continuous embeddings, de-

noted as e°¥ € RP1, via designated embedding layers mg‘” .

e Numerical Attribute Embedding: The individual numerical at-
tributes x™™ are transformed into continuous embeddings, de-

noted as e € RP1, via a sequence of linear layers mpHm.

num

Next, Gaussian timestep noise is added to the categorical and nu-
merical embeddings. The timesteps ¢ are randomly sampled from a
uniform distribution. Following Eq. 1, this is achieved by:

o T e e NOD )
e;zum :m_enum_'_‘/ﬁ,e’ e~ N(0,I), 8)

where f; denotes the noise at timestep ¢, and € is Gaussian noise.
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o Diffusion Timestep Embedding: The diffusion noise timesteps t
are transformed into continuous embeddings, denoted as e!'™¢ €
RP1, using positional encodings, proposed by Vaswani et al. [58].

e Data Class Embedding: The categorical class labels y, are trans-
formed into continous embeddings, denoted as glabel ¢ RD 1, via

embedding layers mlg“bd, proposed by Kotelnikov et al. [26].

The derived embeddings e¢%, "4, etime and elabel e RP1 are then
processed by the denoising diffusion module.

3.2.2 Denoising Diffusion Module. The second module processes
the synthesized embeddings to remove noise and accurately predict
the class labels. It operates in three stages, as described below:

e Embedding Projection: Each embedding e* is projected into a
joint embedding space Z € RP2, where Dy > Dy, using a set of
embedding head functions é¢* = gj (e*) with parameters 6.

o Embedding Synthesis: Following, a combined embedding vector
zp =S4 @ eMm @ elime @ elabel s constructed, where z; € RP2
and © denotes the Hadamard product. Given the combined em-
beddings z;, a synthesizer network learns a joint representation
that enables accurate noise and class label prediction.

o Prediction De-Embedding: The synthesized embeddings are pro-
jected back into the original embedding space E € RP1, using
two projection head functions, as given by:

i label
€, = HIOSE(z)), gy, = Wbel(z)), ©)

where €g; € RPz2 denotes the predicted noise and Yo, € RPz2 the
predicted class label of the synthesized embedding.

The derived de-embedded predictions € ; and gy ; in RP are then
processed by the prediction module.

3.2.3 Prediction Module. The third module computes the frame-

work’s dual learning objective: accurate (i) timestep noise and (ii)

class label predictions. By incorporating the Class Label Loss, the

Imb-FinDiff model is guided towards robust class-specific learning,

enhancing generative capability for minority class synthesis.

e Timestep Noise Prediction: The timestep noise loss L¢, ensuring
accurate denoising, is defined as:

2
L5 =Ber |le -5, (10)
and computes the mean-squared-error loss between the true

noise € and the predicted noise € ,.

e Class Label Prediction: The class label loss £, ensuring class-
specific accuracy, is defined as:

£ =By [ly-vp, ], (1)
and measures the mean-squared-error loss between the true class
label y and the predicted class label y;‘) .

The combination of both losses £; = L§ + Lty constitutes a gener-
ative model learning framework, effectively addressing class imbal-
ance complexities in mixed-type tabular data.

Given an optimized Imb-FinDiff model, a reverse diffusion pro-
cess pg(z¢—1|z;) can be initiated, as defined in Eq. 4, to sample and
progressively reconstruct minority class tabular data records.
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4 EXPERIMENTAL SETUP

In this section, we describe the experiments conducted. We outline
the datasets, data preprocessing steps, diffusion model training
setup, baselines, and evaluation metrics.

4.1 Datasets and Data Preparation

We benchmarked the developed technique using four real-world
mixed-type tabular datasets selected to provide diversity in the
proportion of categorical and numeric attributes. The details of the
datasets are as follows:

o Adult Income (D;): This dataset,! extracted from the 1994 Cen-
sus database, contains records of individuals’ income along with
attributes such as age, education, and native country. It is com-
monly used as a benchmark for imbalanced learning tasks [5].

e Accounting Entries (D;): This dataset,? is an excerpt of the
synthetic dataset presented in [48]. It resembles accounting data
and comprises attributes such as posting date, account, posting
type, posting amount, and currency.

e City Payments (Ds): This dataset,? contains nearly a quarter-
million lines of payments data from city offices, departments,
boards, and commissions. It covers the City’s payments during
the 2017 fiscal year, totalling nearly $4.2 billion.

e Card Transactions (D,): This dataset,* includes an extensive
collection of credit card transactions. The transaction records
contain various features, including transaction details and device
information, recorded over two months in 2018.

Table 1 presents the descriptive statistics of the datasets. Notably,

dataset D; exhibits a more balanced class distribution compared to

datasets Dy, D3, and Dy, which exhibit fewer minority samples.

Table 1: Statistics of the mixed-type tabular datasets, includ-
ing the count and percentage of minority samples.

Attributes Records Minority
Data Name Cat. Num.  Abs. Abs.  Rel.
D1 Adult Income 8 6 48,842 11,687 23.93%
Py Accounting Entries 6 2 533,010 30 0.01%
D3 City Payments 15 1 238,895 200 0.08%

P4 Card Transactions 20 372 590,542 20,663 3.50%

4.2 Diffusion Model Training

The diffusion models are trained on samples from all classes within
each dataset, which is divided into 80% for training and 20% for
testing. During training, the models learn the attribute distributions
of each class, enabling the generative model to produce synthetic
instances that augment the minority class and address the class
imbalance.

4.2.1 Architecture Setup. The Imb-FinDiff model architecture
includes several key components optimized for mixed-type tabular
datasets as detailed in Tab. 2. The architecture encompasses three

Uhttps://archive.ics.uci.edu/ml/datasets/adult
https://www.kaggle.com/ntnu-testimon/paysim1
3https://opendataphilly.org/datasets/city-payments
*https://www.kaggle.com/c/ieee-fraud-detection/data
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networks: (i) the embedding net (gy), (ii) the backbone net (fp), and
(iii) the projection net (hy). The networks consist of fully connected
layers. In gy and hy, we apply SELU non-linear activations while
Leaky ReLU activations with & = 0.4 are used in f;.>

4.2.2 Hyperparameters. The following general hyperparameters
were chosen: 100 diffusion steps with a linear schedule and diffusion
betas ranging from 0.0001 to 0.1. During training, each model was
optimized for a maximum of 5,001 iterations with a mini-batch
size of 64, using the Adam optimizer with f; = 0.9, f2 = 0.999. A
learning rate of 0.0005 was used, coupled with a cosine learning
rate scheduler. The weights were initialized using Xavier uniform
distributions, and a weight decay of le-6 was applied.

Table 2: Architectural configurations of the Imb-FinDiff mod-
els optimized for mixed-type tabular datasets (D; to Dy).

Architectural Setup

Data Emb.-Net gy Backbone-Net fp Proj.-Net hg
D1 {4,256,512,1,024) {1,024, 1,024, 1,024, 1,024} {512, 256, 4}
Dy {4,256, 512, 1,024} {512, 512, 512, 512} {512, 256, 4}
Dy 4,256,512, 1,024} {1,024, 1,024, 1,024, 1,024} {512, 256, 4}

Dy {4,512,1,024, 2,048} {2,048, 2,048, 2,048, 2,048} {1,024, 512, 4}

4.2.3 Baselines. To evaluate the effectiveness of the proposed
Imb-FinDiff model, we compared it against three well-established
baseline methods for handling class imbalance:

e Oversampling [18]: An effective technique that increases the
number of instances in the minority class by randomly selecting
samples with replacements from the minority instances, poten-
tially leading to better model generalization.

SMOTE [5]: A widely used technique that generates synthetic
samples for the minority class by interpolating between existing
minority instances. This approach balances the class distribution
by creating new instances in the feature space.

ADASYN [17]: An adaptive synthetic sampling approach that
generates synthetic data based on the density distribution of
the minority class. By focusing on harder-to-learn examples,
ADASYN adaptively changes the decision boundary.

Additionally, we also compared against a setting in which no mi-
nority class sampling is applied (denoted as ‘none’).®

4.3 Diffusion Model Evaluation

The trained diffusion models are used to generate 100,000 minority
class samples, which are then merged with 100,000 random samples
of the original dataset. This results in a balanced training set that
effectively addresses class imbalance.

4.3.1 Machine Learning Classifiers. To evaluate the effective-
ness of the synthetic data generated by the Imb-FinDiff model, we
trained several machine learning classifiers on the balanced training
set.” The models’ hyperparameters are grid-searched:

SWe implemented the architecture using the PyTorch library [39].
SWe used the baselines as implemented in the Imbalanced-Learn library [29].
"We used the classifiers as implemented in the Scikit-Learn library [40].
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e Gaussian Naive Bayes (GNB): The grid search for GNB opti-
mized the var_smoothing parameter over the range [1e-9, le-8,
le-7, le-6, le-5, le-4, 1e-3, 1le-2, le-1, 1].

e Logistic Regression (LogReg): The grid search for logistic re-
gression included the parameters C [0.001, 0.01, 0.1, 1, 10, 100,
1000], penalty [11’,’12’], and solver ['Ibfgs’].

e XGBoost (XGB): The grid search for XGBoost included the pa-
rameters n_estimators [100, 200, 500], learning_rate [0.01,
0.05, 0.1], and gamma [0.1, 0.5].

e Decision Tree (DTree): The grid search for decision trees in-
cluded the parameters criterion [gini’, ’entropy’], max_depth
[3, 5.7, 9], and max_features [’sqrt’, "log2’].

o k-Nearest Neighbors (kNN): The grid search for kNN included
the parameters n_neighbors [3, 5, 7, 9, 11], weights ["uniform’,
‘distance’], and metric ['minkowski’].

Each hyperparameter combination was evaluated using five random

seeds to ensure result robustness.

4.3.2 Evaluation Measures. To assess the quality of the synthe-
sized data, we evaluate the trained models on (i) performance in
downstream machine learning tasks and (ii) synthetic data fidelity.

Utility. Utility measures the functional equivalence of synthetic
data to real-world data. We assessed utility by training classifiers on
the generated synthetic data (Strqin) and evaluating them against
the actual test set (Xzest). The overall utility of Sygip, is represented
by the average Fi-Score across all classifiers, formalized as:

N
Fik = % ; F{ (Strain, Xtest), (12)
where F] represents the utility score of the synthetic data, and
F{ denotes the Fi-Score of the i-th classifier. The Fi-Score deter-
mines the harmonic mean of classifier model precision and recall.
The evaluation determines whether the synthetic data effectively
enables effective classification model learning.

Fidelity. Fidelity measures how closely synthetic data emulates
real-world data at column and row levels.® Numeric attributes are
evaluated using the Wasserstein Similarity (WS) [23], and categori-
cal attributes using the Jensen-Shannon Divergence (JS) [27]. The

column fidelity score ¢cdol is defined as:
d 1-wsS(x%,89) ifd is numeric
¢col = d od (13)

1-JS(X%, 8%

where X denotes the original data, S the synthetic data, and d de-
notes the column index. The synthetic dataset’s column fidelity is
the mean of ¢¢ | across all attributes. Row fidelity evaluates correla-
tions between column pairs. For numeric attributes, it uses Pearson
Correlation (PC) [2], and for categorical attributes, it uses the Theil U
(TU) coefficient [53]. The row fidelity score ¢%5, is defined as:

if d is categorical

ab _

row —

(14)

1- PC(X“’I’, S“’b) if a,b are numeric
1-— TU(X“’b, S“’b) if a,b are categorical

where X denotes the original data, S the synthetic data, and a, b
denote the column indices. The synthetic dataset’s row fidelity

8We used the measures as implemented in the Dython library [70].
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(c) Utility Scores: City Payments Dataset (Ds).
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(b) Utility Scores: Accounting Entries Dataset (D).
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Figure 3: Utility scores (Fy) for five classifiers (GNB, Logistic Regression, Decision Tree, XGB, and kNN) under different minority
sampling techniques (None, Random, SMOTE, ADASYN, and Diffusion). Each visualization (a)-(d) highlights the classifier
performance across the sampling techniques for the evaluated mixed-type tabular datasets (D; to Dy).

score is the mean of ¢%%, across all attribute pairs. A dataset’s
aggregate fidelity score, denoted as ¢*, is the mean of column and
row fidelities. The evaluation determines whether the synthetic
data replicates the statistical properties of the original data.

5 EXPERIMENTAL RESULTS

In this section, we present and assess the results of three research
questions (RQs) when evaluating the Imb-FinDiff framework for
generating financial tabular data to address class imbalance.

RQ 1: How does the utility of Imb-FinDiff compare to other sampling
techniques in handling class imbalance?

We compare Imb-FinDiff to the baselines. The average utility per-

formance (Fy) across classifiers per method and dataset is presented

in Tab. 3, while detailed results are illustrated in Fig. 3.

Table 3: Utility metric comparison of imbalance sampling
methods on mixed-type tabular datasets (D to D). The most
effective technique for each dataset is highlighted in bold.

Imbalance Sampling Technique

Data None T Random T SMOTET ADASYNT Diffusion T
Dy 049+028 0.61+009 0.60=+009 0.59+009 0.61+0.08
Dy 051+033 053+038 0.52+036 0.52+036 0.72+0.41
D3  0.45+046 0.47 043 0.46+043 0.46+042 0.64 +0.48
Dy 018 +015 0.23+015 0.28+021 0.27+019 0.33 +0.22

Avg. 0.41+030 0.46+026 0.47+027 0.46+027 0.57£0.30

*Variances originate from evaluating using five classifiers and seeds.

Results. The results indicate distinct performance differences among

the three groups of sampling techniques.

e None and Random Sampling: Both methods show similar
utility scores. None sampling has an average utility score of 0.41,
while Random sampling improves to 0.46.

e SMOTE and ADASYN: Both methods only slightly outperform
Random sampling, with SMOTE achieving an average utility
score of 0.47 and ADASYN at 0.46.

o Diffusion: Diffusion consistently outperforms other methods,
achieving the highest utility score of 0.57.

The obtained results suggest that the proposed diffusion models

effectively handle class imbalance in mixed-type tabular data. More-

over, the stability across different datasets highlights robustness
and generalizability.

Table 4: Fidelity metric comparison of imbalance sampling
methods on mixed-type tabular datasets (D; to D). The most
effective technique for each dataset is highlighted in bold.

Imbalance Sampling Technique

Data None T Random T SMOTET ADASYNT Diffusion T
Dy 0.26+024 0.26+024 0.27+024 0.28+023 0.34+0.18
Dy 035+011 0.34+011 0.34+013 0.34+013 0.42+0.11
D3 036+019 038+023 047=+017 047=+017 0.51+0.13
Dy 0.26+023 0.26+024 0.29+022 0.31+021 0.42=+0.56

Avg. 031+019 0.31%021 034+019 0.35%+019 0.42+0.25

*Variances originate from evaluating using five classifiers and seeds.

RQ 2: How well does the Imb-FinDiff model maintain fidelity in
synthetic data compared to real-world data?

We compare Imb-FinDiff to the baselines. The fidelity performance

for each method and dataset, represented as the aggregated fidelity

score (¢*), is presented in Tab. 4.

Results. The results indicate distinct performance differences among

the three groups of sampling techniques.

e None and Random Sampling: Both methods show similar
fidelity scores. None sampling has an average fidelity score of
0.31, while Random sampling scores 0.31.
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Figure 4: Example t-SNE [57] visualizations of majority class samples (blue), minority class samples (orange), and oversampled
minority class samples (red) using different sampling techniques. The top-row results correspond to the (more balanced) Adult
Income dataset (D), and the bottom-row results to the (less balanced) City Payments dataset (Ds). From left to right: (a) original
data, (b) random sampling, (c) SMOTE, (d) ADASYN, and (e) Imb-FinDiff diffusion sampling.

o SMOTE and ADASYN: These methods slightly outperform Ran-
dom sampling, with SMOTE achieving an average fidelity score
of 0.34 and ADASYN at 0.35.

o Diffusion: Diffusion achieves the highest fidelity score of 0.42,
consistently outperforming other methods.

The results suggest that the proposed diffusion models effectively
replicate the real-world data’s statistical properties. Additionally,
the fidelity scores highlight the potential for accurate data synthesis
in different financial datasets.

RQ 3: Does Imb-FinDiff effectively capture the diversity of minority
class samples compared to other sampling techniques?

To evaluate the efficacy of oversampling techniques, we examine
t-SNE[57] visualizations of the majority, minority, and oversampled
minority class of the datasets Dy to D3 as shown in Fig. 4.

Results. The result indicates that the diffusion model samples more
effectively augment the datasets’ local structures.

e Random Sampling: Introduces new samples that mitigate global
imbalance but do not improve local structures, showing some
overlap and scattered minority points.

o SMOTE and ADASYN: Generate synthetic samples by interpo-
lating between existing minority points, enhancing local density
for minority points but maintaining distinct clusters.

e Diffusion Sampling: Introduces synthetic samples in a diffused
manner, providing improved local and resulting in a balanced
spread of minority samples across local structures.

The results suggest that diffusion sampling provides a more bal-
anced and denser representation in the dataset’s local structure
regions. In these regions, classifiers often fail to discriminate be-
tween majority and minority class samples. Consequently, diffusion
sampling enhances downstream model performance and general-
ization.

6 CONCLUSION AND FUTURE WORK

In this study, we introduced Imb-FinDiff, a diffusion-based genera-
tive technique for synthesizing high-fidelity financial tabular data.
The Imb-FinDiff architecture effectively handles mixed-type data
by embedding categorical and numerical attributes, addressing the
complexities of financial datasets. Our evaluation showed that the
learned model replicates feature distributions and maintains feature
correlations, supporting the utility of the synthetic data for down-
stream tasks. Additionally, the model mitigates class imbalance,
enhancing the performance of machine learning models trained on
the synthesized data. In future work, we envision advanced condi-
tioning mechanisms to (i) improve the granularity of minority class
sample generation and (ii) extend the technique to handle temporal
dependencies observable in financial datasets.
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