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Abstract—Pub/sub systems form the underlying framework
for many distributed applications. It consists of one or more
publishers that publish to a broker from which subscriber can
retrieve the published content. Many large and small distributed
applications including social networking applications use the
pub/sub model. In this paper we consider a pub/sub system
in which the publisher, the broker, and the subscriber are in
different administrative domains. While general pub/sub systems
provide reliability of message delivery, good end-to-end latency
performance in a multi-domain environment require that the
pub/sub system adapt to workload changes and bottlenecks
in the different sub-systems. This study is motivated by two
applications. First, a pub/sub based Simple Lookup Service
(sLS) that is used in perfSONAR to provide information about
network performance in R&E networks. Second, the pub/sub
system that is used to distribute alerts generated in the data
pipeline in the Zwicky Transient Factory (ZTF). We consider a
publisher with a multi-threaded architecture that uses batching
to coalesce messages over some variable polling period. We
propose a control algorithm that auto-tunes the batch-processing
parameters namely, the batch size and the polling interval,
to the input message load and to any upstream broker-side
congestion that minimizes end-to-end latency and maximizes
throughput. Using a detailed simulation model, we demonstrate
the performance of the control algorithm for different scenarios.
We then study the performance using a real-trace obtained from
the Simple Lookup Service (sLS). We show that the proposed
algorithm quickly adapts to rapid changes in the workload
and yields lower mean end-to-end delay performance when
compared with the delays in the current deployment.

Keywords: Pub/Sub System, Performance Auto-tunning, Sim-
ulation Analysis, perfSONAR, Lookup Service, Experimental
Evaluation

I. INTRODUCTION

Publish-subscribe system (also written as pub/sub or some-
times pub-sub system for short) is a distributing computing
communication paradigm that is widely used in many dis-
tributed applications [6]. It provides an asynchronous commu-
nication framework between producers of content (publishers)
and consumers of content (subscribers). Systems built on the
pub/sub model decouple the publishers and subscriber by
having intermediate broker (also referred to as the message
queue). Content generated by the publishers is sent to the
broker which stores them in different message queues based
on a priori defined channels. Subscribers register with the
broker for messages from a subset of the channels. When new

messages are available, the broker delivers messages to the
subscribers based on their subscription.

The pub/sub model is the underlying framework for many
distributed application. Broadly speaking, pub-sub systems
can be categorized as content-based or channel-based [13].
In content-based pub/sub systems, each message has a tag
which is a set of attribute/value pairs. Subscribers express their
interests in content as logical rules over the attributes. The
broker matches the subscriber interest to the message tags
and forwards the content to the appropriate subscribers [8],
[15]. On the other hand, in channel-based pub/sub systems,
subscribers specify their interest in content by submitting sub-
scriptions to the broker for specific topics which are referred
to as channels [8], [7]. The publisher tags the content with the
channel name and sends it to the broker. All subscribers who
have indicated interest in the channel receive the content using
a push or a pull model. Large social networking applications
such as Facebook [18], LinkedIn [12], as well as companies
like Google [1] rely on the channel-based pub/sub model.

With the growth of distributed applications that use the
pub/sub model, methods to provision resources in the pub/sub
system in a flexible manner has gained interest. This is
particularly the case when these systems are deployed as a
cloud service [9], [13], [8]. In [13] the problem of resource
allocation in a scalable pub/sub system is formulated as
an optimization problem with different objective functions.
The pub/sub system is modeled using a multi-class open
queuing network model which is solved to obtain the system
performance measures. The study proposes a greedy algorithm
to determine the resource allocation to the pub/sub system. An
evaluation based on simulation on a real system shows that
the proposed solution outperforms the baseline and is robust
in dealing with high-volume and fast-changing workload.

In this paper, we consider a pub/sub system that operates
in a multi-domain network. In particular, we consider the sce-
nario where the publishers, the broker, and the subscribers are
in different administrative domains and hence no guarantees
can be made regarding the compute, storage, and networking
resources that are allocated for these services. Consequently,
differences in resources allocated for these services and in
the inter-networking can lead to bottlenecks resulting in poor
throughout and latency performance. Within this broader con-
text, this work focuses on the publisher. We consider a multi-
threaded publisher that receives requests from external sources



that need to published to the broker. As the message arrival
rate can change and there can be broker-side congestion, the
publisher needs to dynamically adapt processing the incoming
requests and transferring them to the broker in such a way
that optimizes throughput and latency performance. In a multi-
threaded architecture this can be done by batching processing
requests. In this paper, we propose an auto-tuning algorithm
in the publisher that adapts the batch-processing parameters
both to the request load and upstream broker-side congestion.

The main contributions of this paper are the following:
1) We consider a multi-threaded publisher and propose an

auto-tuning algorithm that adapts the batching parame-
ters namely, the batch size and the polling interval, to
the input request load as well as to the broker-side bot-
tleneck. Specifically, the control algorithm employs an
additive-increase and multiplicative-decrease algorithm
to determine the batching parameters that minimizes the
latency.

2) We develop a detailed simulation model of the
multi-threaded publisher. Using simulation analysis we
demonstrate that for synthetic workloads following Pois-
son arrival process, the tuning algorithm adapts to fast
changing workload and has a significantly better latency
performance than the baseline case without auto-tuning.

3) We also study the performance of the algorithm using a
real traffic trace from the pub/sub based Simple Lookup
Service (sLS) that is used with perfSONAR [10]. We
show that our proposed algorithm significantly reduces
end-to-end delay compared to the delays experienced in
current deployed system.

The remainder of this paper is organized as follows. In
Section II, we present an overview of the pub/sub system and
outline the scope of this study. We then briefly describe the
two applications that motivated this study namely, the Simple
Lookup Service (sLS) used with perfSONAR and the alert
system used in ZTF. In Section III, we describe the system
model. In Section IV we present the auto-tuning algorithm. In
Section V we present the simulation results. In Section VI we
present the results based on a real trace. In Section VII we
present the related literature and finally, in Section VIII we
present the conclusions and future work.

II. PUB/SUB SYSTEM

Figure 1 shows the different components of a generic
pub/sub system. It consists of publishers (Ps) that generate
content that is consumed by subscribers (Ss). The publishers
provide the interface to sources that generate the content and
after some processing transfers the content to the Message
Queue which provide different queues for different content.
Subscribers register with the Broker for different subset of
the content. When appropriate content is available, they are
pushed to (or pulled by) the appropriate subscribers. In this
paper, we consider a pub/sub system that operates in a multi-
domain network. In particular, we consider the scenario where
the publishers, the broker, and the subscribers are in different
administrative domains. To set the context, below we briefly
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Fig. 1: The various components of a generic pub/sub system.

discuss two applications perfSONAR and Zwicky Transient
Facility (ZTF) that require the use of a pub/sub system.

A. sLS for perfSONAR

The global Research & Education (R&E) network is com-
prised of hundreds of international, national, regional and
local-scale networks. While these networks all interconnect,
each network is owned and operated by separate organizations
(called ”domain”) with different policies, customers, funding
models, hardware, bandwidth and configurations. This com-
plex, heterogeneous set of networks must operate seamlessly
from “end-to-end” to support science and research collabora-
tions that are distributed globally.

perfSONAR is an open source software project that enables
seamless deployment of a network monitoring infrastructure
across multiple administrative domains. perfSONAR serves
two primary roles. The first role is to help set expectations on
what the network is capable of providing. Often users blame
the network when performance is slow, while in fact the bot-
tleneck may be the disk, or a host tuning issue, or some other
problem besides the network. The second perfSONAR role is
to help identify “soft failures” in the network. A soft failure is
where packets still arrive at their destination, but much slower
than expected, based on available capacity. The perfSONAR
“Toolkit” is a set of tools that include Network Monitoring
Tools (iperf3, iperf, nuttcp, ping, traceroute, tracepath, and
others), Test Scheduler to schedule test, Archive Manager
to store test results, and Data Analysis Tools/Dashboard to
visualize test results. perfSONAR is used by several Network
Operations Centers worldwide to monitor for soft failures
between their sites and key remote sites.

The Simple Lookup Service(sLS) based on the pub/sub
model allows perfSONAR community to register all perf-
SONAR and some other non-perfSONAR services. The design
of the Simple Lookup Service(sLS) does not define any
particular architecture or deployment since it is intended to
support different communities. Instead, the sLS defines only a
single building block, the Simple Lookup Service(sLS) node.
The sLS node provides persistent storage for the information
and enables searching for information using a REST/JSON



API. An sLS node can be deployed as a centralized, single
instance service. However, a common architecture is one
that uses geographical localization and caching in order to
minimize network latency and/or the effect of lossy long
distance paths. Each region deploys an instance of the Simple
Lookup Service or a topology of instances. Services from
that region then register to it. The content of other regions
is duplicated by deploying additional Simple Lookup Service
using the pub/sub, streaming API. Those act as local cache
of the services registered in other regions and, themselves, are
registered as such, in the local Lookup Service or are published
in the region for the client’s consumption. Note that this model
can be generalized to support community based deployments
of the lookup service. In this architecture an sLS node may
act 1) as a Core node which is the source of truth or 2) as
a Cache node which is a read-only replicas that contain all
or subset of information. The architecture may have one or

Fig. 2: sLS deployment with caches.

more core nodes that accept registration, renewal and delete
requests (write requests). They contain only a portion of the
data and may or may not process query requests. On the
other hand, cache nodes are zero or more sLS nodes that
contain a read-only view of a subset or the entire data set.
They are exclusively for processing queries and do not accept
registration, renewal and deletion requests.

Figure 3 shows a trace of the registration, renewal and delete
requests (write requests) that are made to a core node in the
sLS system.

B. Zwicky Transient Factory (ZTF)

The Zwicky Transient Facility (ZTF) is a newly commis-
sioned optical synoptic survey that scans a large area of the
night sky to identify changes [4]. It is capable of finding
transients and variable stars an order of magnitude faster than
the previous generation of synoptic surveys. Since these rare
transients, such as exploding supernovae, are important for
understanding cosmology and fundamental physics, a large
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Fig. 3: Number of write requests that are made to a core node
in the sLS system. The rate shown is the average rate over
100 samples.

community of scientists around the world are interested in the
transients identified by ZTF. The ZTF project team is planning
to publish the transients they identified through a publisher-
subscriber model1.

The ZTF camera is designed to capture an image every 45
seconds. From one image, about 1000 changes are expected
to be identified, which leads to 1000 alerts. Each alert might
contain about 20KB of data. Given that about 1 million such
alerts are anticipated per night, about 20GB of alert data are
expected. To avoid loss of data, such alert events are to be
replicated among multiple alert databases and brokers.

The alerts are expected to be bursty as number of transients
are not uniformly distributed in the sky. One common outcome
of an alert is to trigger a large telescope to be used to perform
follow up observations. In many cases, these follow ups can
only be performed in the night, there is likely more pressure to
process the alerts produced early in the night so that a follow
up could be arranged within the same night. Such varying
urgency in response time could place interesting demands on
the alert distribution system.

III. SYSTEM MODEL

Figure 4 show the various processes in the publisher. The
main receive thread (MRT) receives requests from external
sources; each request carries a message that needs to be
published. The main publisher thread (MPT) coordinates pub-
lishing messages to the subscriber using the broker. MRT and
MPT share a common pool of worker threads (WTs) that
perform much of underlying functions on behalf of MPT and
MRT. They also share a data store which temporarily store
messages until they have been published and received by the
subscriber. In the following paragraphs we describe the key
functions of each component in detail.

1A mock stream system of alerts is available at https://github.com/lsst-dm/
alert stream.
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Fig. 4: The various components of the pub/sub system and the
main threads in the publisher.

a) Main Receive Thread (MRT):: The MRT thread is
the external interfacing thread. Messages to be published
generated from external sources are received by the MRT
which assigns a WT to each request. To handle cases when
requests arrive faster than what the MRT can process, the MRT
maintains a finite buffer to queue the requests. When the buffer
is full any incoming request is dropped.

b) Main Publisher Thread (MPT):: Functions of MPT
are a) to read a number of messages from the data store
and b) to assign these messages to WTs. The manner in
which MPT reads messages from the data store is governed by
three parameters N , Tpoll, and T . The parameter N denotes
the maximum number of requests that the MPT attempts to
retrieve at a time from the data store. Tpoll determines how
often MPT checks to see if N messages have accumulated.
Finally, T is the maximum time MPT waits for N messages
to accumulate and is set to be multiple of Tpoll. When T
expires, the MPT retrieves however many requests there are
in the data store and processes them. These three parameters
impact the end-to-end delay and throughput performance of
the pub/sub system. In this study we set T to a fixed value of
Tmax
poll and auto-tune the values of N and Tpoll. The flowchart

of MPT is shown in Figure 5.
c) Worker Thread (WT):: Worker Threads (WTs) per-

form tasks on behalf of MRT and MPT. When assigned on
behalf of the MRT, a WT processes the message and writes it
to the data store. When a WT is assigned a message by the
MPT, it processes the message and then transfers the message
to the broker. The WT returns back to the WT pool only once it
receives an ACK indicating that the message has been received
by the broker2. The communication between a publisher (WTs)
and the broker is performed over a single TCP connection.

d) The Data Store: The data store can be a regular
database or an in-memory database. When a WT is assigned

2The ACK does not imply that the request is received the subscriber
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Fig. 5: The flowchart of the Main Publisher Thread (MPT).

a request by the MRT, it writes the corresponding message
to the data store. MPT reads one or more messages from the
data store. We assume that writes have non-preemptive priority
over reads. Furthermore, the time to read messages comprises
of a fixed cost for accessing the data store and a time that is
proportional to the number of messages retrieved.

IV. AUTO-TUNING ALGORITHM

The goal of this study is to develop an auto-tuned publisher
that adapts to changing workload (message arrivals) and
broker-side congestion. The latter includes bottleneck in the
communication link between the publisher and the broker,
resource exhaustion within the broker, or a slow subscriber.
Congestion in the communication link would result in network
layer delay and/or packet drops which would lead to TCP
congestion control resulting in longer time for a WT to
complete its task. Resource exhaustion in the broker or a slow
subscriber, would result in queue build-up in the broker which
would eventually lead to TCP flow control. This would again
lead to the WTs taking longer time to service a request. In this
study, we do not distinguish between these different types of
broker-side bottlenecks. We will model the impact of these
in terms of a message-oriented flow control which results
in longer service time for the WT to transfer a message to
the broker. This is further explained in SectionV. With the
above context, we discuss the various parts of the auto-tuning
algorithm in the publisher

A. Priority Access to WT Pool

As mentioned before, MRT and MPT share a common WT
pool. Rather than statically partitioning the WT pool between
the MRT and the MPT, the entire WT pool is shared between
by MRT and MPT. However, the MRT has non-preemptive
priority over MPT in assigning tasks to WTs. The goal is
to ensure that if the workload changes and the message rate
increases, the MRT can use more and more of the WTs to
process incoming requests and write message to the data store.



This is achieved by ensuring that when a WT finishes its task
whether on behalf of MPT or MRT, it first checks to see if
there are any remaining requests in the MRT queue before
returning to WT pool. This priority scheme will minimize the
number of requests that are dropped at the finite input buffer
of the publisher.

B. Auto-tuning N and Tpoll
The values of N and Tpoll should adapt to the workload

and any broker-side bottleneck. When the incoming message
rate is low, both N and Tpoll should be set to small values
so that requests are handled almost as soon as they arrive.
When the incoming request rate is high, N and Tpoll can be
increased to achieve the benefit of batching. This is similar
to the interrupt coalescing that occurs in high-speed network
interfaces [17]. In this paper we adopt a control algorithm that
adapts the value of N and Tpoll depending on the request load
and the broker-side bottleneck. This is explained below.

TABLE I: A list of the parameters and their typical values
used in the simulation analysis.

Tpoll Current value of polling interval
Tmin
poll Minimum value of the polling interval. This is set to

50 ms.
Tmax
poll Maximum value of the polling interval. This is set to

200 ms.
T The maximum wait time for N messages to accumulate
N Current value of the number of requests that will be

batched
Nmax Maximum number of requests that will be batched
Nmin Minimum number of requests that will be batched. In

this study it is set to 1
Tmpt The time required by MPT to assign the requests to the

WTs
λs Recent sample of the load
λest Estimate of the load.
α, γ These are filter gain parameters for estimating the load

and broker side capacity. These are set to 0.5 and 0.75,
respectively.

β This parameters is used to set Tpoll. It is set to 1.2.
RTT The roundtrip time between the publisher and the bro-

ker. Set at average value of 140 ms.

The different variables for auto-tuning algorithm are shown
in Table I. The auto-tuning is based on the following heuristics:

1) If the load is very low, N should be set to Nmin and
Tpoll should be set to Tmin

poll . If Nmin = 1, setting Tmin
poll

small would amount to processing the message almost
as soon as it arrives. This will be similar to an interrupt
driven processing which would minimize the latency.

2) As the load increases both N and Tpoll should be
increased. Coalescing messages has multiple benefits. It
allows a number of requests to be read from the data
store in one read. This amortizes the fixed cost of a
data store read over a number of messages. Furthermore,
messages can be assigned to WTs which can process
them in parallel and transfer them to the broker.

3) However, coalescing too many messages by increasing
Tpoll has multiple disadvantages. First, it increases la-
tency. Second, if enough WTs are not available, then

MPT will get blocked which if it becomes long enough
may cause the MPT to miss the poll timer. Another,
important issue relates to communication between the
publisher and the broker. Typically, there is a single TCP
connection between the publisher and the broker. If a
large number of WT simultaneously push data through
the connection then the broker may become bottlenecked
and flow control the publisher. This will lead to WT
threads taking longer time to complete their transfers.

a) Estimating the Load:: At each Tpoll, we have a
sample of the load in the previous polling interval denoted
by λs. We apply an Exponential Weighted Moving Average
(EWMA) filter to estimate the load for next polling interval.
Specifically, for the nth polling period the estimated load λnest
is given by

λnest = αλn−1
est + (1− α)λs (1)

Note that the polling interval is not fixed since Tpoll changes
as explained below.

b) Setting Tpoll:: Each time MPT reads a batch of
messages from the data store, it assign them to WTs. The
MPT returns only when all the messages have been assigned.
The time from when the MPT read from the data store and
completes assigning messages to WTs is Tmpt. Ideally, Tpoll
should be set so that it closely tracks Tmpt. Specifically, we
set Tpoll = max(min(βTmpt, T

max
poll ), Tmin

poll ) where β is set
to a factor greater than 1 and the max and the min functions
bound the value of Tpoll within Tmax

poll and Tmin
poll .

Time for MPT to assign the 
records to WTs for small N 

Time for MPT to 
assign the records 
to WTs for large N 

Now Tpoll can be 
reduced  

Time

Time

Time

Time

Tpoll

Time
Time

Tpoll

The case when the time for MPT to allocate 
records to WT is greater than Tpoll  

The number of requests accumulated at the next poll trigger is 
the arrival rate times 2 Tpoll  

Tpoll

Fig. 6: Timing diagram illustrating the impact of setting Tpoll.

c) Setting N :: If the load is low then N should be set
to Nmin = 1. When the load increases, N should increase
upto a maximum of Nmax. The key design issues are 1) how
should N be increased (decreased) as the load changes and 2)
what is the maximum value of Nmax. The overall algorithm
is shown Figure 7. We use an algorithm that is similar to the
additive increase multiplicative decrease (AIMD) algorithm
used in TCP congestion control. It has been shown that these
type of distributed control algorithms have good stability and
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Fig. 7: The control algorithm for auto-tuning N and Tpoll.

fairness properties [11]. When Tpoll expires, we check if N
messages are pending to be published. If enough messages
have not accumulated we decrease N multiplicatively (by a
factor of 2) and restart the poll timer. This ensures that the
MPT quickly adapts with rapid changes in the workload (in
this case rapid decrease in the message arrival rate). If on
the other hand, enough messages do accumulate, then MPT
starts a publish event by reading the messages from the data
store and assigning them to WTs. If the time to perform this
publish event finishes before the next poll timer expires then
the value of N is increased by 1. This is to probe if there is
available broker-side capacity so that additional WTs can be
allocated to publish messages. If on the other hand, the time
required by MPT to assign the messages to WT takes longer
than the current poll timer, then N is decreased by 1. This
reflects that the aggregate capacity demand due to number of
assigned WTs is more than the broker-side capacity.

The value of Nmax will limit how much N can increase
and should depend on the broker-side capacity. We estimate
the broker-side capacity as follows. When a WT completes
transferring a message to the broker, we record the time it took.
We denote this by si. We also keep track of the number of WTs
that are currently transferring messages to the broker. This is
denoted by ni. Given these two values, we estimate the current
available message transferring capacity (in messages/sec) to
the broker by η(i) = ni/si. Using this as the current sample
of the capacity, we estimate the expected capacity by an
exponential weighted moving average filter. Specifically, the
estimated capacity ηest(i+ 1) is given by

ηest(i+ 1) = γηest(i) + (1− γ)η(i) (2)

where 0 < γ < 1. We set Nmax to ηest(i + 1). As the
service time si increases, the message throughput will decrease
which would decrease the estimated ηest which in turn would
decrease Nmax. Note that si will increase whenever there is
congestion in the link between the publisher and broker, or
congestion in the broker. Conversely, when the service time

si decreases it will result in a higher value of the sampled
capacity, which will result in a higher estimated capacity, and
hence higher value of Nmax.

V. SIMULATION ANALYSIS

The auto-tuning algorithm described in the previous section
was evaluated using simulation analysis. In this section we first
describe the simulation tool and then we present the results.

A. Simulation Tool

We implemented the system model described in Section V
using SimPy3. SimPy provides a simple and yet powerful
platform for discrete event simulation. The multi-threaded
architecture of the publisher was accurately implemented in
the simulator. The broker is implemented as a simple queue
with occupancy threshold that trigger flow control between the
broker and publisher. The subscriber operates in a pull mode
and is implemented as a gated vacationing server. Specifically,
it alternates between work mode and vacation mode and upon
returning from vacation reads all the messages that are at the
broker at that instant. Messages arriving during the work mode
are outside the gate and hences read in the next cycle. The
subscriber is characterized by two parameters - 1) time to read
a single message, and 2) vacation time and both of these are
drawn from a negative exponential distribution with different
rate parameters.

The main approximation in the simulation pertains to the
communication between the publisher and the broker. In the
real system, message transfers between the publisher and
the broker is performed using a single TCP connection that
is shared among the WTs. The flow control between the
broker and the publisher is implemented using the TCP flow
control which is a byte-level flow control. Specifically, the
TCP receiver sends the available buffer space (in bytes) with
the acknowledgements (ACKs) to the TCP transmitter. In
the simulator, however, the flow control is performed at the
message level. The broker is single server queue with a finite
buffer. When it receives a message from the publisher it sends
back an ACK in which it indicates the remaining number of
messages it can accept. Thus the flow control is implemented
at the granularity of a message rather than the byte-level flow
control implemented in TCP.

B. Results and Discussions

We consider three important scenarios for our simulation
study. We first consider different input request loads (re-
quests/sec) and compare the response times with auto-tuning
on and off. Second, we study how the publisher reacts to
rapid changes in the input workload. In both of the above
two cases, we set the parameters such that there is no broker-
side congestion. In the third scenario, we consider the case
when there is broker-side congestion due to a slow subscriber.
The request arrivals follow a Poisson process and the values
of the key parameters are shown in Table I.

3https://simpy.readthedocs.io/en/latest/



1) Adapting to Input Load: Figure 8 show the end-to-
end latency for the messages with auto-tunning off. Results
are shown for different values of N with Tpoll set to 50
ms. With auto-tuning on different N values correspond to
initial value. The four plots correspond to four different load
levels, namely (clockwise from top left) 1.75, 17.5, 35, and 55
requests/sec. With auto-tuning off, when the load is very low
(1.75 requests/sec) the minimum response time is achieved
when N is set to 1. As N is increased, the response time
increases as more and more time is spent to accumulate the
required number of requests. As the load is increased, small
values of N has high response times as there are not enough
WTs to serve the request load. As N is increased, the response
time decreases. However, beyond a certain value which is load
dependent (≈ 10 for the request load of 35 requests/sec) the
response time increases as more time is spent in accumulating
larger number of requests.

As shown in Figure 9 with auto-tuning on we see that
the response time is the same irrespective of what is the
initial value of N . As expected, there is a slight increase
in the average response time as the load is increased. The
additive increase and multiplicative decrease algorithms is able
to search appropriate value of N that optimizes the end-to-end
latency.

Figure 10 shows the changes in N for request load of 35
requests/sec. We observed that our proposed algorithm adapts
to the value of N with the input load and the average value
is close to the value that achieves the minimum response time
as shown in Figure 8 for the request load of 35 requests/sec.
While the average N shown by the dark line is the right
value, there is some amount of variability. This is due to the
fact that we have used a Poisson arrival process. The growth
and decay of N is guided by the estimated load which uses
exponentially weighted moving average to estimate the load.
Since the Poisson arrivals are independent and hence there are
no short- and long-term dependencies, estimated load can be
inaccurate resulting in inaccurate setting of the value of N .

2) Adapting to Load Changes: We also investigated the
impact of step change in the workload. Table II shows the input
workload profile considered for this experiment. Figure 11

Start Time End Time Rate (Req/s)
0 100000 1.75

100000 300000 55.0
300000 500000 17.5
500000 750000 35.0
750000 1000000 17.5

TABLE II: The load profile. The step changes in the rate at
times 100000, 500000, 7500000.

shows how N adapts as the load is changed in a stepwise
manner. The red lines correspond to the request loads over
the corresponding time intervals. From the figure we observe
that with auto-tuning, the value of N quickly adapts to the
changes in the request load and the average value correlates
well with the value that optimizes the latency (.

3) Adapting to Broker-side Congestion: We simulated
broker-side congestion by reducing the rate at which the sub-
scriber pulls messages from the broker. As mentioned before,
the subscriber is modeled by two parameters a) time between
message pulls and b) the time to pull a message. The time
to pull a message is drawn from an exponential distribution
with rate 25 messages/sec. The time between pulls is also
drawn from an exponential distribution with rate parameter
changed to model a slow subscriber. When the subscriber
takes longer time to pull the messages from the broker, its
queue grows which causes it to flow control the publisher.
The net effect is that it takes longer for a WT to complete
the transfer of a message from the publisher to the broker.
Without auto-tuning more and more of the WTs are busy
transferring messages until there are not enough WTs to handle
the incoming requests. This results in requests being dropped
at the input to the publisher. With auto-tuning, MRT has non-
preemptive priority in assigning WTs to incoming requests.
Furthermore, the allocation of WTs by MPT is reduced when
the publisher is flow controlled. This back-pressure in the
allocation of WTs ensures that there are WTs that can handle
the incoming requests and hence there are no losses. Figures
depicting these results are omitted due to space considerations.

VI. IMPLEMENTATION RESULTS

We next consider the impact of the auto-tuning algorithm on
a real trace obtained from sLS implemented for perfSONAR.
The request rate from the trace file is shown in Figure 3. While
in the real implementation, Tpoll is set at 1000 ms, in the
following simulation analysis, we set it to 50 ms. Figure 12
shows the response times with and without auto-tuning for
different configurations corresponding to different values of
N . Since the load is low, low values of N gives the minimum
response time without auto-tuning. As N is increased to 10
and 50, the response time increases as more time is required
to accumulate the larger number of requests. With auto-tuning
turned on we achieve the same performance irrespective of
what value is set for N .

As the original load was low, we created a higher load trace
by scaling down the packet inter-arrival times by an factor of
50. As result we created a workload that was 50 times the real
workload but with the same statistical feature as the original
trace. Figure 13 shows the response times of the messages
with and without auto-tuning for different values of N . Since
load is high, the response time is very high for N = 1 without
auto-tuning. With auto-tuning we achieve a good performance
irrespective of what initial value is set for N . Figure 14 shows
the adaptation of N which correlates well with the changes in
the load.

VII. RELATED WORK

There is a rich body of literature on pub/sub systems. The
overall design objectives of content based pub/sub system,
channel-based pub/sub systems, and event notification systems
both for general as well as P2P systems are similar in nature
[2], [3], [16], [20], [23]. These systems use intermediate
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Fig. 8: End-to-end latency without auto-tuning for different values of N and different request loads. Load values going clockwise
are 1.75, 17.5, 35, 55 requests/sec.
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Fig. 9: End-to-end latency with auto-tuning for different values of N and different request loads. Load values going clockwise
are 1.75, 17.5, 35, 55 requests/sec.

brokers that store and forward updates to subscribers. They can
provide reliability by buffering updates for slow subscribers,
while providing low latency to fast subscribers. While the basic
framework of pub/sub systems have been studied over past
couple of decades new interest in these systems have spurred
by their use in some of the most well-know social networking
applications.

Thialfi [1] is a notification service that Google uses to
ensure the freshness of client data for applications that rely

on cloud infrastructure to store and share data. SIENA [5]
is also a similar scalable event notification system that allow
distributed event based application to be deployed over the
Internet. Kafka [12] is LinkedIns topic-based pub-sub system
that is maintained by Apache. Finally, Wormhole [18] is
a pub/sub system that Facebook uses to reliably replicate
changes among several services that maintain data in geo-
graphically replicated datacenters. Host services for message
buses such as IronMQ [14] and Amazon SQS [22] are hosted
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Fig. 11: The auto-tuned adjustments to N with step changes
in the request load described in Table II. The red lines show
the load in requests/sec over the corresponding time interval.
The value of N is averaged over 5 samples.

and have scalability issues addressed in this paper. The most
popular open-source message queues include Beanstalkd [19]
and RabbitMQ [21].

Some recent studies have started to investigate the applica-
tion of pub/sub systems for distributed and latency constrained
application. Dynamoth [8], is a dynamic, scalable, channel-
based pub/sub that proposes a software layer to load balance
large number of publishers that publishes messages across
multiple brokers which can be deployed as a cloud service.
Multipub [9] is another study that attempts to scale dy-
namically depending on the current communication demands
with the multiple-brokers deployed in the cloud. MultiPub
proposes a flexible pub/sub system for latency-constrained,
globally distributed applications. It dynamically reconfigures
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Fig. 12: Boxplots of the response times (in ms) with different
configurations for the real traffic trace. The different config-
urations corresponding to Auto Tuning OFF and ON with
different values of N .
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Fig. 13: Boxplots of the response times (in ms) with different
configurations for the real traffic trace scaled by a factor of
50. The different configurations corresponding to Auto Tuning
OFF and ON with different values of N .

the communication layer to achieve latency guarantee for
the messages. The study presents experimental results that
demonstrate the achieved latency and cost savings compared
to traditional approaches.

The need for flexibly provisioning resources for pub/sub
systems deployed as cloud service has been addressed in
[13]. The problem of the resource management in a elastic
pub/sub system is formulated as an optimization problems us-
ing different objectives functions. It models the elastic pub/sub
system as a multiple-class open queuing network which is
solved to derive system performance measures. They then
propose greedy algorithms to efficiently solve the optimization
to determine the resource allocation. The evaluation based on
simulation of real system shows that the proposed solution
outperforms the baseline and is robust in dealing with high-
volume and fast-changing workload.
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The above work is closest to the study in this paper and
addresses the problem of fast-changing workload. Rather, than
developing queueing models to predict the performance mea-
sure, we develop control algorithm for resource management
based on system introspection. Specifically resource allocation
is based real-time introspection of load and the broker-side
bottleneck.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we studied a pub/sub system in which the
publisher, the broker, and the subscriber are in different
administrative domains. We considered a a multi-threaded
publisher which uses a control algorithm to auto-tune the
batching parameters to optimize the end-to-end latency. Using
a simulation model, we demonstrated the performance of the
control algorithm. We also studied the performance of the
algorithm using real trace from the Simple Lookup Service
(sLS) that is used with perfSONAR. The results show signif-
icant improvement in latency compared to latency in existing
deployment. In this study, we considered a single publisher.
In a multi-domain network with multiple publishers we expect
that our control algorithm will still be stable and fair. This is
based on the fact that the control algorithm is similar to an
additive-increase and multiplicative-decrease algorithm used in
TCP congestion control which has reasonable fairness charac-
teristics. As future work, we will implement our algorithm
with multiple publishers and evaluate its performance.
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