
Asynchronous I/O Strategy for Large-Scale Deep
Learning Applications

Sunwoo Lee∗, Qiao Kang∗, Kewei Wang∗, Jan Balewski‡, Alex Sim†,
Ankit Agrawal∗, Alok Choudhary∗, Peter Nugent†, Kesheng Wu†, and Wei-keng Liao∗

∗ECE Department, Northwestern University
{slz839, qkt561, kwf5687, ankitag, choudhar, wkliao}@ece.northwestern.edu

†Lawrence Berkeley National Laboratory
{asim, penugent, kwu}@lbl.gov

‡ National Energy Research Scientific Computing Center
balewski@lbl.gov

Abstract—Recently, many scientific applications adopt deep
learning methods to solve their classification or regression
problems. However, for data-intensive scientific applications,
I/O performance can be the major performance bottleneck. In
order to effectively solve important real-world problems using
deep learning methods on High-Performance Computing (HPC)
systems, it is essential to address the poor I/O performance issue
in parallel neural network training. In this paper, we propose an
asynchronous I/O strategy that can be generally applied to deep
learning applications. Our I/O strategy employs an I/O-dedicated
thread per process, that performs I/O operations independently
of the training progress. The I/O thread reads many training
samples at once to reduce the total number of I/O operations
per epoch. Given the fixed amount of training data, the fewer
the I/O operations per epoch, the shorter the overall I/O time. The
I/O operations are also overlapped with the computations using
the double-buffering method. We evaluate our I/O strategy using
two real-world scientific applications, CosmoFlow and Neuron-
Inverter. Our experimental results demonstrate that the proposed
I/O strategy significantly improves the scaling performance
without affecting the regression performance.

Index Terms—I/O, Deep Learning, Parallelization

I. INTRODUCTION

Recently, a variety of scientific applications adopt deep
learning methods to solve their classification/regression prob-
lems [1]–[4]. However, training deep and large networks is
an extremely time-consuming task that can take hours or
even days. Especially for the data-intensive scientific appli-
cations, efficient scaling of training is critical to fully utilize
High-Performance Computing (HPC) platforms and effectively
tackle large-scale problems.

In deep learning-based scientific applications, I/O time can
take up a large portion of training time. When collecting
experimental data, they are usually stored as a few large
files such that each file contains many data samples. Thus,
in data parallel training, many processes can access the same
file simultaneously causing I/O congestions. In addition, it is
a common practice that the training samples are randomly
shuffled during training, which results in having many small
random accesses. The expensive I/O cost implies that the
compute resources are waiting for the data to be ready staying

idle. Thus, in order to achieve a good scaling efficiency, it is
essential to minimize the I/O cost. However, while the statis-
tical efficiency of training algorithms and the communication
cost in parallel training have been widely studied, the I/O
performance is overlooked and has not been well studied.

Several deep learning applications have acknowledged that
the parallel training of their networks suffer from the expensive
I/O cost [3], [5]–[8]. The researchers have put much effort
into improving I/O performance as follows. Mathuriya et al.
prefetched the training dataset into Burst Buffer so that the
mini-batches are rapidly read from the SSD-based storage
servers [3]. Zhu et al. designed I/O pipelining for TensorFlow
[9], which takes advantage of Remote Direct Memory Access
(RDMA) for data shuffling [8]. Pumma et al. improved the
I/O performance of Caffe [10] by re-designing the LMDB
I/O library [6]. Although these works effectively improve the
I/O performance, they either rely on special hardware-assisted
features or tackles the performance issues existing in a specific
software library.

In this paper, we propose an asynchronous I/O strategy
that can be generally applied to data parallel neural network
training. Our study specifically focuses on the I/O performance
of loading data from disk space to CPU memory space.
First, to minimize the number of I/O operations, our strategy
allocates a large memory buffer and reads many training
samples at once. Given a fixed dataset size, the fewer the I/O
operations, the shorter the overall I/O time. In addition, we
adopt double buffering method to overlap the I/O time with
the training time. We implement the I/O overlap by employing
an I/O-dedicated thread per process, which fills in the two I/O
buffers one after another. By adjusting the I/O buffer size,
users can make a good trade-off between the I/O performance
and the memory footprint. Our I/O strategy also affects the
degree of randomness in data shuffling depending on the I/O
buffer size. We will discuss our empirical study of such an
impact on the regression performance.

We evaluate our proposed I/O strategy using two real-world
scientific applications, CosmoFlow and Neuron-Inverter. Both
applications solve domain-specific regression problems using



a large amount of experimental data that cause expensive
I/O cost during training. We report and analyze the scaling
performance using two different supercomputers, Summit at
Oak Ridge National Laboratory (ORNL) and Cori at National
Energy Research Scientific Computing (NERSC). Our experi-
mental results demonstrate that the I/O time can be effectively
reduced by applying our proposed I/O strategy to the large-
scale deep learning applications.

II. BACKGROUND

A. Convolutional Neural Networks

Convolutional Neural Network (CNN) is a type of artificial
neural network that contains convolution layers [11]. The
convolution layers have a special connection pattern such that
each neuron at one layer is connected to a subset of the
neurons at the previous layer. Such connection pattern enables
exploitation of spatially-local correlation in the input data.
Each convolution layer can be followed by a pooling layer.
Depending on the model architecture, the networks can have
a few fully-connected layers at the end of the model.

CNNs are popularly used to solve computer vision or natural
language processing problems. Many scientific applications
also employ CNNs when the input data is known to inherently
have spatially-local correlation. In this work, we study two
real-world scientific applications that solve the domain-specific
regression problems using deep CNNs.

B. Training Algorithms with Data Shuffling

The most popular training algorithm for neural networks
is mini-batch Stochastic Gradient Descent (SGD) and its
variants such as Adam [12], AdaGrad [13], and AdaDelta
[14]. We will call mini-batch version of SGD ‘SGD’ for short.
SGD iteratively updates the model parameters using gradients
approximated from a random subset of training samples (called
mini-batch). The algorithm stops the training when either the
gradients become sufficiently small or the achieved accuracy
becomes acceptable by users.

In deep learning applications, ‘epoch’ is usually defined as
iterations for traversing over all the given training samples
once. It is a common practice to shuffled the training samples
every epoch so that the mini-batches consist of differen train-
ing samples. Approximating gradients from different mini-
batches can be considered as inherently injecting noise to the
training, and it likely results in achieving better generalization
performance. However, such a random data access pattern
can cause an expensive I/O cost. Especially for scientific
applications with large-scale experimental data, the global data
shuffling can cause an extremely expensive I/O cost.

C. Synchronous SGD with Data Parallelism

Synchronous SGD with data parallelism is the most popular
parallelization strategy for deep learning applications. In data
parallel training, each mini-batch is evenly distributed to
all workers and they are independently processed. Once all
the workers locally compute the gradients from the given
training samples, the gradients are averaged across all the

workers using inter-process communications. Typically, the
gradients are averaged using allreduce communications. If
the gradients are averaged every iteration, all the workers
can update the model parameters always using the globally
synchronized gradients. This approach is called ‘synchronous’
SGD. Although there are many alternative parallel training
algorithms, such as asynchronous SGD or local SGD, we
focus on synchronous SGD with data parallelism considering
its popularity and effectiveness on achieving the high accuracy.

D. CosmoFlow

CosmoFlow is a deep learning tool for Cosmology data
analysis, developed by Lawrence Berkeley National Labora-
tory and Intel. Given a 3-dimensional distribution of masses
in the evolved Universe, CosmoFlow estimates the initial
condition of the Universe. Mathuriya et al. proposed a 3-
D CNN solution to this large-scale multi-value regression
problem and studied the scaling performance on Cori KNL
nodes [3]. CosmoFlow is incorporated in the MLPerf HPC
benchmark suite - an industry standard for measuring machine
learning performance on large-scale HPC systems [15]. The
most computationally challenging aspect of the CosmoFlow
is ingestion of the input 3D cubes of size from 1283 up to
10243, which can easily exceed the memory space available
on GPU.

E. Neuron-Inverter

Neurons are the fundamental units of computation in brain.
Their electrical properties arise from the spatial densities of the
diverse ion channels along the membrane. Neuron-Inverter is a
project to develop a deep learning tool for inferring such chan-
nel density values from empirical recordings of single neurons.
It will allow to construct realistic biophysical neuronal models
and give insights into the etiology of neurological diseases
such as Autism and Epilepsy [16], [17]. Ben-Shalom at al.
demonstrated use of 1-D CNN to regress the time series data
of neuron action potential to ion channels densities [16]. For
Neuron-Inverter, the data samples are relatively small, but the
dataset contains an enormous number of samples (O(108))
causing extremely I/O intensive neural network training.

III. ASYNCHRONOUS I/O STRATEGY FOR
DATA-PARALLEL TRAINING

In this section, we describe our I/O strategy for data-parallel
neural network training. We begin with a description of our I/O
strategy that enables large contiguous read operations. Then,
we explain how to overlap the I/O time with the computation
time by employing double-buffering method. We will use a
few notations as follows: N is the total number of training
samples, B is the I/O buffer size with respect to the number
of samples, M is the mini-batch size, and P is the number of
processes.

A. Asynchronous I/O Strategy

1) I/O pattern in training: Before we discuss our proposed
I/O strategy, we define the I/O pattern in neural network

2



dataset I/O buffer size

1. Shuffle the groups of samples

1, … , 𝐵 𝐵 + 1,… , 2𝐵 2𝐵 + 1,… , 3𝐵 𝑁 − 𝐵 + 1,… , 𝑁…

2. Each process reads one group 
of samples at a time whenever 
its I/O buffer is empty

I/O 
thread

I/O 
thread

I/O 
thread

I/O 
thread

Comp 
thread

Comp 
thread

Comp 
thread

Comp 
thread3. Each I/O thread shuffles 

the samples within the I/O 
buffer and provides mini-
batches to computation thread

Process 1 Process 2 … Process P

Fig. 1. An example illustration of the proposed I/O strategy for deep learning. Each process has an I/O dedicated thread. First, the dataset is partitioned to
N
B

groups and randomly shuffled, where N is the number of samples and B is the I/O buffer size per process. Second, each process is assigned with N
BP

groups, where P is the number of processes. Then, during the training, each process reads one group of samples at a time using an I/O-dedicated thread.

training. Given N training samples, M samples are extracted
as a mini-batch and processed one batch after another. Thus,
at each epoch, N

M mini-batches are read from the dataset in
total. The training is typically performed for multiple epochs
until the training loss converges. Therefore, the described I/O
operations are repeatedly perform until the end of the training.
In data parallel training, each mini-batch is evenly distributed
to all P processes. So, each process reads M

P samples per
iteration. As scaling up, the number of iterations per epoch is
fixed to N

M regardless of the number of processes.
In neural network training, the data samples are usually

shuffled every epoch. Each mini-batch most likely consists
of different samples every iteration. So, when a mini-batch is
extracted from the dataset, we assume random M samples are
read from the files. During the parallel training, each process
reads random M

P samples at each iteration and repeats this N
M

times per epoch.
2) Asynchronous I/O with I/O-dedicated thread: In many

scientific applications, the experimental data is usually stored
as a small number of large files. This data organization
allows researchers to better manage, transfer, and analyze the
data. However, considering the I/O pattern in neural network
training, this approach makes multiple processes access a
single file at the same time causing I/O congestion. In addition,
the data samples are assumed to be shuffled in neural network
training, and it makes the random data access pattern. Such
random small I/O accesses from multiple processes can cause
a significantly expensive I/O cost.

To efficiently perform I/O operations in parallel neural
network training, we propose to asynchronously read a large
number of samples at once. Figure 1 presents our I/O strategy.
Instead of globally shuffling all the individual data samples,
the dataset is partitioned to N

B groups and they are shuffled
every epoch. Then, each process is assigned with random N

BP
groups of samples and extract the local mini-batches from the
given groups. For each local mini-batch, the data samples are
shuffled again inside of the I/O buffer.

The described I/O strategy has two advantages as follows.

First, a large contiguous region of a file can be read at once. If
each file contains more than B samples, the entire group can be
read by a single read operation. Given the same amount of total
data, a cheaper I/O cost can be expected by having fewer I/O
operations. Second, the number of processes that access the
same file is dramatically reduced. Since our strategy enforces
each process to read the samples only from the assigned
groups, up to K

B processes may access the file, where K is
the number of samples in the file. If all the individual samples
are globally shuffled, up to max(K, P ) processes can access
the same file. By reducing the number of processes per file,
the read operations can more effectively take advantage of the
cache effect. In practice, most of the large-scale HPC systems
allow to have the I/O buffers that are large enough to read one
file at a time achieving the optimal I/O performance.

The proposed I/O strategy makes a trade-off between the
I/O cost and the memory footprint. By loading a large amount
of data at once, the dataset can be processed with fewer read
operations, and thus the overall I/O time is likely reduced.
However, each process should consume a large amount of
memory space for the I/O buffer. The larger the buffer size,
the fewer the I/O operations. The modern HPC platforms
usually have a large amount of memory space in each node.
For instance, each GPU node of Summit supercomputer at
Oak Ridge National Laboratory has 512 GB memory space.
Considering such a rich memory space, the extra memory
consumption of our I/O strategy can be justified in practice.

Note that the proposed I/O strategy affects the data shuffling.
Since the groups of samples are shuffled across the processes,
instead of the individual samples, the degree of randomness is
sacrificed compared to the global shuffling. At the worst case,
if the number of groups is the same as the number of processes,
the proposed strategy becomes the local shuffling. In this study,
we empirically found that the regression performance was not
degraded even at the worst case. The I/O buffer sizes decides
the number of groups N

B . In the evaluation section, we will
report and analyze the impact of the buffer size on the I/O
performance as well as the regression performance.

3



B. Double-Buffering for I/O Overlap

When training a neural network with SGD, batches of data
samples are processed one after another. Thus, while one mini-
batch is being processed, the next mini-batch can be pre-
loaded without having data dependency. In this way, the SGD
iteration time can be reduced by overlapping the I/O time with
the computation and communication time in parallel training.
TensorFlow, one of the most popular deep learning software
frameworks, also supports data prefetching feature that enables
I/O overlapping. However, if the data sample size is small,
reading one batch at a time may cause a large number of
random small read operations.

We propose to use double-buffering to effectively overlap
the I/O operations with the computations, based on the asyn-
chronous I/O strategy described in Section III-A2. First, each
process allocates two I/O buffers. Then, the I/O thread of
the process monitors the two buffers. If any of the them is
empty, the I/O thread reads one group of data samples to
fill in the buffer. During the whole training, the I/O thread
asynchronously monitors and fills in the empty buffers. The
computation thread consumes the data in one buffer after
another. For each mini-batch, each computation thread reads
random M

P samples from the current buffer. Once all the
samples are extracted from one buffer, the computation thread
switches to the other buffer. If both buffers are empty, the
computation thread waits until the I/O thread fills in one buffer
with new data.

Figure 2 presents the described asynchronous double-
buffering for I/O overlapping. Once the computation thread
starts to consume the data from one buffer, it takes BP

M
iterations to use all the data in the buffer. If the I/O buffer size
B is larger than the local batch size M

P , one read operation can
be overlapped with the computations for processing multiple
mini-batches. In the ideal case, if the read operation takes
a shorter amount of time than the computation time for
BP
M iterations, the entire I/O time can be hidden behind the

computation time.
The double buffering method increases the memory foot-

print. While the computation thread consumes the data from
one buffer, the I/O thread fills in the other buffer simulta-
neously. So, each process requires to allocate two memory
buffers each of which can hold B data samples. Typically,
it is a common practice for deep learning applications that
one process is assigned on one GPU so that the process fully
utilizes the given GPU resources including the GPU memory
space. In modern HPC systems, each compute node usually
contains 4 ∼ 8 GPUs. Thus, the proposed I/O strategy can
increase the memory footprint by 8B ∼ 16B. We suggest
maximizing the buffer size considering the available memory
space in the system to minimize the number of read operations.
In Section IV, we will analyze the impact of the I/O buffer
size on the overall performance.

C. Implementation Details

Most of the popular deep learning software frameworks such
as TensorFlow or PyTorch support Python programming envi-

I/O 
thread

Comp 
thread

Process

Buffer 0 Buffer 1

Read a group from disk

Memory copy from 
the I/O buffer to GPU 
memory space

Group k Group k+1

I/O 
thread

Comp 
thread

Process

Buffer 0 Buffer 1

Group k Group k+1

(a) Iteration k (b) Iteration k +
𝐵𝑃

𝑀

Fig. 2. Double-buffering for I/O overlapping. While the I/O thread fills in
one buffer, the computation thread consumes the data in the other buffer. The
producer (I/O thread) asynchronously fills in any buffer that is empty. The
consumer (Computation thread) extracts M

P
random samples from the buffer

as a local mini-batch, and switches the buffer once the current buffer is all
consumed.

ronment. In this work, we also implemented the deep learning
solutions for CosmoFlow and Neuron-Inverter using Tensor-
Flow using Python language. The proposed asynchronous I/O
strategy requires one I/O thread per process. However, Python
threading package does not actually support the instruction-
level parallelism due to the Global Interpreter Lock (GIL). In
order to avoid such a limitation, we used Python multiprocess-
ing package that implements the shared-memory programming
model using processes. At the initialization time, each MPI
process creates a ‘thread’ using multiprocessing package and
two memory buffers shared between them. The main thread
extracts mini-batches from the shared memory buffers while
the child thread asynchronously fills in the two buffers reading
new data samples. Note that our implementation is based
only on the off-the-shelf Python packages without using any
deep learning framework-dependent software features. Our
implementation also does not rely on any hardware-assisted
features.

IV. EVALUATION

In this section, we evaluate the proposed asynchronous I/O
strategy using two scientific applications, CosmoFlow and
Neuron-Inverter.

A. Experimental Settings

Systems – We use two different HPC platforms for the
experiments, Cori GPU machines and Summit. Cori is a Cray
XC40 supercomputer at National Energy Research Scientific
Computing Center (NERSC). We use Cori GPU machines [18]
that consists of 18 nodes. Each node has two sockets of Intel
Xeon Gold 6148 (Skylake) CPUs, 8 NVIDIA V100 GPUs and
384 GB memory space. Summit is an IBM AC922 system that
consists of 4,608 nodes [19]. Each node has two sockets of
IBM Power9 CPUs, 6 NVIDIA V100 GPUs, and 512 GB
memory space.

4



TABLE I
FOUR I/O STRATEGIES STUDIED IN THIS PAPER.

Prefetch I/O pattern I/O overlap
TF no one sample per read no

TF-Pre yes one sample per read TF thread pool
Async I/O no multiple samples per read I/O-dedicated thread

Async I/O (DB) yes multiple samples per read I/O-dedicated thread

Software – On Cori, we used TensorFlow 2.2.0 and
Horovod 0.19.0 for all the experiments. On Summit, we used
IBM Watson Machine Learning Community Edition 1.7.0-3
that supports TensorFlow 2.1.0 and Horovod 0.19.0. For the
I/O-dedicated thread, we used Python multiprocessing pack-
age. The source code of CosmoFlow1 and Neuron-Inverter2

will be released once this paper is accepted.
Datasets – CosmoFlow [3] is a large-scale Cosmology

parameters regression problem. The training data for the
CosmoFlow are simulated mass distributions of the Universe
for different initial conditions. The 4parE dataset was gener-
ated with four different initial condition parameters uniformly
varied by 10% around their nominal values. The range of
the 4 varied parameters was scaled to be within (-1,1). The
same initial condition Universe was evolved into 4 different
redshifts. The Universes were binned into cubes with 512 bins
in all 3 dimensions. Then, each Universe is reshaped into a
12-channel cube of size 128 × 128 × 128 by concatenating
subsets of the original cube on the channel dimension. So,
each sample size is 128× 128× 128× 12 and the label size
is 4. The data were packed as 5-dimensional Numpy arrays
of dtype unit16 and stored in HDF5 files. The dataset consists
of 64 HDF5 files in total and each file contains 128 samples.
The overall training data size is ∼ 384 GB.

Neuron-Inverter is another regression problem that estimates
the input-output neuronal mechanism [20]. The Ontra2 dataset
consists of 101 files each which contains ∼ 610K data sam-
ples. The input data is neuron spikes measured at 3 different
locations as 1-dimensional time series of size 1600. The output
data is 19 electrical properties (conductances) determined for
different compartments of neuron. So, each sample size is
1600×3 and the corresponding label size is 19. All the samples
from each cell is stored as a single HDF5 file. Given 101
files, we used 64 files for training. Each data point is a 4-byte
floating point numbers and the overall training data size is
∼ 680 GB.

Parallel File System Settings – On Cori, the input files are
stored on Lustre parallel file system. For each file, the stripe
size is set to 1 MB and the stripe count is set to 1. On Summit,
the input files are located on IBM Spectrum Scale parallel file
system called Alpine. Alpine does not enable users to adjust
the stripe settings.

Neural Networks – For CosmoFlow, we used a slightly
modified version of Livermore Big Artificial Neural Network
(LBANN) [21]. The network has 7 3-D convolution layers

1https://github.com/NU-CUCIS/tf2-cosmoflow
2https://github.com/NU-CUCIS/tf2-neuroninverter

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1

11 21 31 41 51 61 71 81 91

Tr
ai

n
in

g 
lo

ss
 (

M
SE

)

Epoch

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1

11 21 31 41 51 61 71 81 91

V
al

id
at

io
n

 lo
ss

 (
M

SE
)

Epoch

Fig. 3. The learning curves of CosmoFlow. The global batch size is 256
and the learning rate is 0.002. We used Adam optimizer and the training
is performed for 100 epochs. Using Mean Squared Error (MSE) metric, the
achieved validation loss is 0.002344.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1

11 21 31 41 51 61 71 81 91

Tr
ai

n
in

g 
lo

ss
 (

M
SE

)

Epoch

0.02

0.025

0.03

0.035

0.04

0.045

0.05

1

11 21 31 41 51 61 71 81 91

V
al

id
at

io
n

 lo
ss

 (
M

SE
)

Epoch

Fig. 4. The learning curves of Neuron-Inverter. The global batch size is 32,768
and the learning rate is 0.0005. We used Adam optimizer and the training
is performed for 100 epochs. Using Mean Squared Error (MSE) metric, the
achieved validation loss is 0.028126.

followed by 3 fully-connected layers. The overall number of
parameters is 9.4 millions. For Neuron-inverter, we designed
a 1-D CNN that consists of 4 1-D convolution layers followed
by 5 fully-connected layers. The network has 3.2 millions
parameters in total. Both networks are deep and large CNNs
designed to solve the application-specific regression problems.
The detailed model architecture can be found in the open-
source that will be opened once the paper is accepted.

I/O Strategies – We compare four different I/O strate-
gies that are summarized in Table I. TF is the baseline
that uses tf.data API. It reads one training sample at
a time without data prefetching. This setting exposes the
entire I/O time. TF-Pre uses tf.data API with prefetching
feature. The prefetching is adopted following the suggestions
in TensorFlow official guideline [22]. We used AUTOTUNE
option supported by TensorFlow. Async I/O is the proposed
asynchronous I/O strategy without double buffering. Similarly
to the baseline, all the I/O time is exposed. Async I/O (DB) is
the proposed asynchronous I/O strategy with double buffering.

B. Regression Performance

We first report the regression results achieved with the best-
tuned hyper-parameter settings. Although this paper focuses
on the I/O performance of parallel neural network training,

5



TABLE II
THE AVERAGE EPOCH TIMING BREAKDOWN FOR COSMOFLOW ON CORI

GPU MACHINES. THE TIMINGS ARE ALL IN SECOND.

Number of GPUs I/O strategy Exposed I/O Comp Comm

32

TF 46.03 38.33 0.10
TF-Pre 28.91 38.31 0.11

Async I/O 43.18 38.01 0.11
Async I/O (DB) 10.71 37.95 0.10

64

TF 27.65 19.30 0.11
TF-Pre 14.39 19.32 0.12

Async I/O 21.82 19.84 0.12
Async I/O (DB) 4.00 19.13 0.11

0
10
20
30
40
50
60
70
80
90

TF

TF
 (

P
re

)

A
sy

n
c 

I/
O

A
sy

n
c 

I/
O

 (
D

B
)

TF

TF
 (

P
re

)

A
sy

n
c 

I/
O

A
sy

n
c 

I/
O

 (
D

B
)

32 64

Ep
o

ch
 t

im
e 

(s
ec

)

Number of GPUs

exposed I/O
comp
comm

Fig. 5. Strong scaling performance of CosmoFlow on Cori GPU machines. We
measured the average epoch time. The timing breakdown shows the exposed
I/O time, computation time, and communication time, separately. The timings
are averaged across 3 epochs. The model does not fit to fewer than 32 GPUs.
We scale the training up to the case where each process works on one file.
We see that the Async I/O (DB) has significantly reduced the exposed I/O
time and outperforms the other settings.

we present these regression results to provide useful insights
to the deep learning users and the domain scientists.

1) CosmoFlow: We trained LBANN model on 4ParE
dataset for 100 epochs using Adam optimizer. The global batch
size is 256 and the initial learning rate is 0.002. The learning
rate is decayed by a factor of 10 twice, after 50 epochs and
75 epochs. The loss function is Mean Squared Error (MSE).
Figure 3 presents the training loss (left) and the validation
loss (right). With the best-tuned hyper-parameters, we could
achieve the validation loss of 0.002344.

2) Neuron-Inverter: We trained the 1-D CNN model we
designed on Ontra dataset for 100 epochs using Adam opti-
mizer. The global batch size is 32,768 and the initial learning
rate is 0.0005. The learning rate is decayed by a factor of 10
twice, after 60 epochs and 90 epochs. Figure 4 presents the
training loss (left) and the validation loss (right). We achieved
the validation loss of 0.028126. Note that, since each file has
different numbers of samples, some processes oversample the
data when they have smaller files than the other processes. So,
the number of processed samples can be slightly larger than
the number of the actual samples.

C. CosmoFlow Scaling Performance

We present the strong scaling performance of CosmoFlow
on Cori and Summit and then analyze the I/O performance.

TABLE III
THE AVERAGE EPOCH TIMING BREAKDOWN FOR COSMOFLOW ON

SUMMIT. THE TIMINGS ARE ALL IN SECOND.

Number of GPUs I/O strategy Exposed I/O Comp Comm

32

TF 4.12 17.23 0.11
TF-Pre 1.99 18.39 0.10

Async I/O 2.29 18.25 0.10
Async I/O (DB) 0.00 18.73 0.11

64

TF 3.46 9.10 0.14
TF-Pre 1.13 9.59 0.15

Async I/O 1.71 9.60 0.14
Async I/O (DB) 0.00 9.67 0.15

0
10
20
30
40
50
60
70
80
90

TF

TF
 (

P
re

)

A
sy

n
c 

I/
O

A
sy

n
c 

I/
O

 (
D

B
)

TF

TF
 (

P
re

)

A
sy

n
c 

I/
O

A
sy

n
c 

I/
O

 (
D

B
)

32 64

Ep
o

ch
 t

im
e 

(s
ec

)

Number of GPUs

exposed I/O
comp
comm

0

5

10

15

20

25

TF

TF
 (

P
re

)

A
sy

n
c 

I/
O

A
sy

n
c 

I/
O

 (
D

B
)

TF

TF
 (

P
re

)

A
sy

n
c 

I/
O

A
sy

n
c 

I/
O

 (
D

B
)

32 64

Ep
o

ch
 t

im
e 

(s
ec

)

Number of GPUs

exposed I/O

comp

comm

Fig. 6. Strong scaling performance of CosmoFlow on Summit. We measured
the average epoch time. The timing breakdown shows the exposed I/O
time, computation time, and communication time, separately. The timings
are averaged across 3 epochs. The model does not fit to fewer than 32 GPUs.
We scale the training up to the case where each process works on one file.
We see that the Async I/O (DB) has near-zero I/O time, which demonstrates
the effectiveness of the proposed I/O strategy.

In all the charts, we report ‘exposed I/O time’ rather than the
total I/O time. Since the I/O operations are asynchronously
performed by a separate thread, the directly measured I/O time
may contain unexpected overhead such as context switching
time. So, we measure the waiting time of the main thread
instead and consider it as the exposed I/O time.

1) Cori GPU Nodes: Table II and Figure 5 present the
strong scaling performance of LBANN training on Cori GPU
nodes. Note that the model does not fit to the memory space
when running on fewer than 32 GPUs. Given 64 HDF5
training files, we set the buffer size to 128 samples (a single
file size), and thus the training can scale up to 64 GPUs.
First, we see that TF’s I/O time takes up a larger portion
than the computation time within each epoch. TF-Pre reduces
the exposed I/O time by preloading the data in background,
however, most of the I/O time is still exposed. Async I/O’s I/O
time is slightly shorter than that of TF thanks to the reduced
number of I/O operations. With the doulbe buffering, Async
I/O (DB) effectively reduces the exposed I/O time and achieves
the shortest epoch time among all the I/O strategies. When
using 64 GPUs, Async I/O (DB) shows a significantly reduced
epoch time (23.25 sec) compared to that of TF-Pre (33.84
sec).

2) Summit GPU Nodes: We perform the same CosmoFlow
scaling experiments on Summit. Table III and Figure 6 present

6



TABLE IV
THE AVERAGE EPOCH TIMING BREAKDOWN FOR NEURON-INVERTER ON

CORI GPU MACHINES. THE TIMINGS ARE ALL IN SECOND.

Number of GPUs I/O strategy Exposed I/O Comp Comm

16

TF 53384.49 390.93 4.35
TF-Pre 53100.29 388.48 4.24

Async I/O 199.99 387.28 4.05
Async I/O (DB) 0.00 390.93 4.94

32

TF 25899.36 201.29 2.93
TF-Pre 25703.93 203.42 3.09

Async I/O 113.42 198.82 2.48
Async I/O (DB) 0.00 200.19 3.13

64

TF 13798.48 97.05 1.99
TF-Pre 13664.83 96.05 2.24

Async I/O 77.95 97.13 2.83
Async I/O (DB) 0.00 98.99 2.19

1

10

100

1000

10000

100000

TF
TF

 (
P

re
)

A
sy

n
c 

I/
O

A
sy

n
c 

I/
O

 (
D

B
)

TF
TF

 (
P

re
)

A
sy

n
c 

I/
O

A
sy

n
c 

I/
O

 (
D

B
)

TF
TF

 (
P

re
)

A
sy

n
c 

I/
O

A
sy

n
c 

I/
O

 (
D

B
)

16 32 64

Ep
o

ch
 t

im
e 

(s
e

c)

Number of GPUs

exposed I/O
comp
comm

1

10

100

1000

10000

100000

TF
TF

 (
P

re
)

A
sy

n
c 

I/
O

A
sy

n
c 

I/
O

 (
D

B
)

TF
TF

 (
P

re
)

A
sy

n
c 

I/
O

A
sy

n
c 

I/
O

 (
D

B
)

TF
TF

 (
P

re
)

A
sy

n
c 

I/
O

A
sy

n
c 

I/
O

 (
D

B
)

16 32 64

Ep
o

ch
 t

im
e 

(s
e

c)

Number of GPUs

exposed I/O
comp
comm

Fig. 7. Strong scaling performance of Neuron-Inverter on Cori GPU machines.
The y-axis is epoch time in log scale. The timing breakdown shows the
exposed I/O time, computation time, and communication time, separately.
The timings are averaged across 3 epochs. The model does not fit to fewer
than 16 GPUs. The proposed asynchronous I/O strategy dramatically reduces
the I/O time.

the scaling performance of CosmoFlow on Summit. Overall,
the timing breakdown shows the similar performance results
to that on Cori GPU nodes. Due to the different hardware
configurations and environmental settings, the baseline (TF)
I/O time is much shorter than that on Cori. While TF-Pre hides
only a part of the I/O time behind the computation time, our
proposed I/O strategy hides the entire I/O time and it results
in having near-zero I/O time.

D. Neuron-Inverter Scaling Performance

We also study the I/O performance of Neuron-Inverter
application. Compared to CosmoFlow, Neuron-Inverter dataset
has a significantly smaller sample size. Thus, we can expect
a different impact of I/O strategies on the performance.

1) Cori GPU Nodes: Table IV and Figure 7 present the
scaling performance of Neuron-Inverter on Cori GPU ma-
chines. The model does not fit to fewer than 16 GPUs. Thus,
we present the strong scaling performance from 16 processes
(GPUs). First of all, the baseline takes an enormous amount
of I/O time compared to the proposed I/O strategy. This
huge difference of I/O time comes from the small random

TABLE V
THE AVERAGE EPOCH TIMING BREAKDOWN FOR NEURON-INVERTER ON

SUMMIT. THE TIMINGS ARE ALL IN SECOND.

Number of GPUs I/O strategy Exposed I/O Comp Comm

16

TF 45677.48 765.38 2.03
TF-Pre 40259.47 777.39 2.00

Async I/O 54.96 764.44 2.13
Async I/O (DB) 0.00 775.94 2.39

32

TF 24499.22 400.33 2.39
TF-Pre 22095.84 403.94 3.39

Async I/O 26.23 399.93 2.16
Async I/O (DB) 0.00 405.01 2.19

64

TF 10820.49 215.59 4.20
TF-Pre 10660.43 217.02 4.03

Async I/O 14.52 215.32 3.95
Async I/O (DB) 0.00 215.30 4.23

1

10

100

1000

10000

100000

TF
TF

 (
P

re
)

A
sy

n
c 

I/
O

A
sy

n
c 

I/
O

 (
D

B
)

TF
TF

 (
P

re
)

A
sy

n
c 

I/
O

A
sy

n
c 

I/
O

 (
D

B
)

TF
TF

 (
P

re
)

A
sy

n
c 

I/
O

A
sy

n
c 

I/
O

 (
D

B
)

16 32 64

Ep
o

ch
 t

im
e 

(s
e

c)

Number of GPUs

exposed I/O
comp
comm

1

10

100

1000

10000

100000

TF
TF

 (
P

re
)

A
sy

n
c 

I/
O

A
sy

n
c 

I/
O

 (
D

B
)

TF
TF

 (
P

re
)

A
sy

n
c 

I/
O

A
sy

n
c 

I/
O

 (
D

B
)

TF
TF

 (
P

re
)

A
sy

n
c 

I/
O

A
sy

n
c 

I/
O

 (
D

B
)

16 32 64

Ep
o

ch
 t

im
e 

(s
e

c)

Number of GPUs

exposed I/O
comp
comm

Fig. 8. Strong scaling performance of Neuron-Inverter on Summit. The y-
axis is epoch time in log scale. The timing breakdown shows the exposed I/O
time, computation time, and communication time, separately. The timings are
averaged across 3 epochs. The model does not fit to fewer than 16 GPUs.
The proposed asynchronous I/O strategy dramatically reduces the I/O time.

access pattern. As described in Section III-A1, each mini-
batch consists of random M samples. The training sample
size in Neuron-Inverter dataset is ∼ 19 KB. Given the file
size of 10 GB ∼ 12 GB, reading such a small sample at a
time can cause a significantly expensive I/O cost. Although
TensorFlow’s prefetching feature hides a part of the I/O time
behind the computation time, the total I/O time is several
orders of magnitude larger than the computation time, and
thus the I/O overlap does not make a meaningful difference.
In contrast, our proposed I/O strategy reads a large number
of samples at once significantly reducing the number of I/O
operations. In this experiment, we used the buffer size as
the largest file size among all the given input files. So, each
read operation prefetches about 610K training samples into
the memory space at once. We see taht such a coarse-grained
I/O operations considerably reduce the total I/O time.

2) Summit GPU Nodes: Neuron-Inverter scaling perfor-
mance on Summit is similar to that on Cori. Table V and
Figure 8 present the performance results on Summit. The
timing breakdown shows that the I/O time takes up most of
the epoch time in baseine (TF). Since the I/O time is several
orders of magitude longer than the computation time, the

7



0

2

4

6

8

10

12

4 8 16 32 64 128

Ep
o

ch
 t

im
e 

(s
e

c)

Buffer size (w.r.t. number of samples)

exposed I/O comp + comm

0

5

10

15

20

25

30

35

40

4 8 16 32 64 128

Ep
o

ch
 t

im
e 

(s
e

c)

Buffer size (w.r.t. number of samples)

exposed I/O comp + comm

1

10

100

1000

10000

Ep
o

ch
 t

im
e 

(s
e

c)

Buffer size (w.r.t. number of samples)

exposed I/O comp + comm

1

10

100

1000

10000
Ep

o
ch

 t
im

e 
(s

e
c)

Buffer size (w.r.t. number of samples)

exposed I/O comp + comm
Fig. 9. CosmoFlow timing breakdown comparison with different I/O buffer
sizes. The buffer size shown in x-axis is with respect to the number of
samples. The left and right charts show the performance on Cori and Summit,
respectively. On Cori, the exposed I/O time is effectively reduced when the
buffer size is 128. On Summit, the exposed I/O time is already so small that
there is not much room for improvement. 0

2

4

6

8

10

12

4 8 16 32 64 128

Ep
o

ch
 t

im
e 

(s
e

c)

Buffer size (w.r.t. number of samples)

exposed I/O comp + comm

0

5

10

15

20

25

30

35

40

4 8 16 32 64 128

Ep
o

ch
 t

im
e 

(s
e

c)

Buffer size (w.r.t. number of samples)

exposed I/O comp + comm

1

10

100

1000

10000

Ep
o

ch
 t

im
e 

(s
e

c)

Buffer size (w.r.t. number of samples)

exposed I/O comp + comm

1

10

100

1000

10000

Ep
o

ch
 t

im
e 

(s
e

c)

Buffer size (w.r.t. number of samples)

exposed I/O comp + comm

Fig. 10. Neuron-inverter timing breakdown comparison with different I/O
buffer sizes. The maximum buffer size is decided by the number of samples
in an input file (∼ 610K). Then, we reduced it by a factor of 10. The left
and right charts show the performance on Cori and Summit, respectively. The
exposed I/O time is dramatically reduced as the buffer size increases. Cori
requires at least the buffer size of 609 to entirely overlap the I/O time while
Summit requires the buffer size of 61. Note that the y-axis is in log scale.

TensorFlow’s prefetching feature does not make a meaningful
difference. In contrast, our proposed asynchronous I/O strategy
dramatically reduces the I/O time and the double buffering
method hides it behind the computation time. So, Async I/O
(DB) shows near-zero exposed I/O time. One notable thing is
that the computation time is longer than that on Cori. Because
Summit and Cori have different hardware configurations as
well as software packages, the performance cannot directly
compared between them. Remember that the computation time
on Summit was much shorter than that on Cori for Cos-
moFlow, as shown in Table II and III. This result demonstrates
that Summit can provide a better computational power when
each sample size is sufficiently large.

E. Impact of Buffer Size

The proposed asynchronous I/O strategy allows to read more
samples at once as the buffer size increases, and thus the total
number of I/O operations is reduced. Given the same total data
size, a cheaper I/O cost can be expected by performing fewer
I/O operations. We analyze the impact of the I/O buffer size
on both the I/O performance and the regression performance.

1) Impact on I/O Performance: We first report the impact
of the I/O buffer size on the I/O performance for both
applications. Figure 9 presents the impact of the I/O buffer size
on the performance of CosmoFlow. The timing breakdowns are
measured from CosmoFlow running on 64 processes (GPUs)
with different buffer sizes. Since the global batch size is 256,
the minimum buffer size is the local batch size, 4 samples. We
set the buffer size up to 128 samples, which means a single file
is read at once. Figure 10 shows the performance of Neuron-
Inverter with different I/O buffer sizes. The y-axis of Figure 10
is in log scale. For Neuron-Inverter, the maximum buffer size
is 609486 which is the maximum number of samples in a file.
When reducing the buffer size, we scaled down it by a factor
of 10. In both figures, the left chart shows the performance
measured on Cori GPU nodes and right chart shows that on
Summit.

We can get two insights from Figure 9 and 10. First, the
buffer size should be large enough to minimize the latency
overhead. Especially when the sample size is small, the latency
overhead can cause an extremely expensive I/O cost. The
Neuron-Inverter I/O time is several orders of magnitude larger
than the computation time on both Cori and Summit. However,
such a long I/O time is effectively reduced when the buffer
size is larger than 609 samples (about 11 MiB). Second, if the
I/O buffer is large enough to minimize the latency overhead,
the overlapping plays a key role in improving the scalability.
For example, CosmoFlow shows a minor improvement by
increasing the buffer size on Cori because the sample size
is already so large that the latency overhead does not take
up a large portion of the epoch time. By applying the double
buffering, most of the I/O time could be hidden behind the
computation time and it resulted in achiving a considerably
reduced epoch time. These experimental results demonstrate
the effectiveness of the proposed asynchronous I/O strategy in
large-scale deep learning applications.

2) Impact on Regression Performance: Recently, Meng et
al. explained the impact of shuffling methods on the conver-
gence rate of SGD training [23]. For non-convex optimization
such as neural network training, the local shuffling does
not harm the convergence rate if the following condition is
satisfied.

S <
n

M
, (1)

where S is the number of epochs, n is the total number of
training samples, and M is the number of non-overlapped
subsets of the training dataset. The number of training epochs
for convergence is mostly affected by the training data, how-
ever, the condition shown above is most likely satisfied in
scientific applications. In our experiments, we found that the
above condition is most likely satisfied in both applications.
For example, when scaling up CosmoFlow using 64 processes,
the number of training samples n is 8192 and the minimum
number of data groups is 64. So, if the training converges
in fewer than n

M = 128 epochs, the local shuffling is not
expected to degrade the regression performance. We found
that the training loss converges in 80 ∼ 100 epochs with

8



the appropriate learning rate decay settings. For the Neuron-
Inverter, the above condition also easily holds because of
the large number of training samples. In practice, the above
condition is most likely true especially for the large-scale
scientific applications that have a large amount of experimental
data.

F. Comparison with Previous Works

1) TensorFlow Prefetching: We have compared out
proposed I/O strategy with TensorFlow’s prefetching
feature (TF-Pre) in all the experiments. TensorFlow’s
tf.data.Dataset module calls a user-defined callback
function to read each mini-batch. The callback function is
usually implemented such that it reads one training sample
at a time. Given a batch size of B, the callback function is
internally called B times to build up a single mini-batch.
The prefetching feature enables to pre-load multiple samples
or even mini-batches in advance. Although it allows the
I/O overlapping, due to the I/O callback that reads one
sample at a time, the underlying I/O operations become to
have the expensive small random access pattern. So, this
comparison demonstrates that the I/O granularity is important
in data-intensive deep learning applications.

2) DeepIO: Zhu et al. proposed to employ double buffering
method for overlapping the I/O time with the training time [8]
similarly to our proposed I/O strategy. There are two primary
differences between DeepIO and our I/O strategy.

Data Shuffling – First, the two I/O strategies shuffle the
data samples in a different way. DeepIO globally shuffles the
training samples only within the pre-loaded samples in the
memory buffer. When a remote sample is required, the worker
obtains it using an RDMA read operation. Our approach is
generally applicable to any deep learning applications without
using such a hardware-assisted feature. Our proposed I/O strat-
egy first globally shuffles the contiguous groups of samples,
and then the workers independently read the assigned groups.
Although it causes random access pattern, each group is most
likely large enough to avoid the small random access overhead.
Then, each worker locally shuffles the samples again within its
memory space. Our approach does not cause any extra inter-
process communications.

Data read strategy – Second, it is not clearly explained
in [8] that how the actual read operations are performed. The
principle of our I/O strategy is that we reduce the total I/O
time by merging many small random reads to a single large
contiguous read, and then overlap the large read operation with
multiple SGD iterations. Thus, the efficient read strategy is
critical in our I/O strategy. We discussed how to efficiently
perform I/O operations using a stand-alone I/O-dedicated
thread. Assuming G workers run on each node using G GPUs,
by having an I/O-dedicated thread per process, G CPU cores
within each node will be fully occupied by the I/O threads.
Considering the number of CPU cores in each modern HPC
compute node, e.g., Summit at ORNL supports up to 128
logical cores on one node, such an overhead is most likely
negligible. Our experimental results demonstrate that the I/O-

dedicated thread enables to explicitly overlap the I/O time with
the training time without a significant overhead.

V. CONCLUSION

In this paper, we proposed an asynchronous I/O strategy
for large-scale deep learning applications. We applied our I/O
strategy to the real-world scientific applications and validated
the effectiveness. Our experimental results demonstrate the
importance of careful adjustment of I/O granularity. In order
to minimize the overall I/O time, each I/O operation should
read a sufficiently large amount of data at once. In addi-
tion, we discussed how to effectively overlap the I/O time
with the training time by employing an I/O-dedicated thread
per process. Without using hardware-assisted features, our
implementation using off-the-shelf software features virtually
eliminated the I/O time. Considering the increasing available
memory space in modern HPC systems, communication-based
data shuffling and the corresponding I/O strategy can be an
important future work.

ACKNOWLEDGMENT

acknowledgment

REFERENCES

[1] T. Kurth, J. Zhang, N. Satish, E. Racah, I. Mitliagkas, M. M. A. Patwary,
T. Malas, N. Sundaram, W. Bhimji, M. Smorkalov et al., “Deep learning
at 15pf: supervised and semi-supervised classification for scientific data,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2017, pp. 1–11.

[2] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips,
A. Mahesh, M. Matheson, J. Deslippe, M. Fatica et al., “Exascale
deep learning for climate analytics,” in SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2018, pp. 649–660.

[3] A. Mathuriya, D. Bard, P. Mendygral, L. Meadows, J. Arnemann,
L. Shao, S. He, T. Kärnä, D. Moise, S. J. Pennycook et al., “Cos-
moflow: Using deep learning to learn the universe at scale,” in SC18:
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2018, pp. 819–829.

[4] W. Dong, M. Keceli, R. Vescovi, H. Li, C. Adams, E. Jennings,
S. Flender, T. Uram, V. Vishwanath, N. Ferrier et al., “Scaling dis-
tributed training of flood-filling networks on hpc infrastructure for brain
mapping,” in 2019 IEEE/ACM Third Workshop on Deep Learning on
Supercomputers (DLS). IEEE, 2019, pp. 52–61.

[5] S. Pumma, M. Si, W.-c. Feng, and P. Balaji, “Towards scalable deep
learning via i/o analysis and optimization,” in 2017 IEEE 19th In-
ternational Conference on High Performance Computing and Com-
munications; IEEE 15th International Conference on Smart City;
IEEE 3rd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS). IEEE, 2017, pp. 223–230.

[6] ——, “Parallel i/o optimizations for scalable deep learning,” in 2017
IEEE 23rd International Conference on Parallel and Distributed Systems
(ICPADS). IEEE, 2017, pp. 720–729.

[7] Z. Zhang, L. Huang, U. Manor, L. Fang, G. Merlo, C. Michoski,
J. Cazes, and N. Gaffney, “Fanstore: Enabling efficient and scalable i/o
for distributed deep learning,” arXiv preprint arXiv:1809.10799, 2018.

[8] Y. Zhu, F. Chowdhury, H. Fu, A. Moody, K. Mohror, K. Sato, and
W. Yu, “Entropy-aware i/o pipelining for large-scale deep learning on
hpc systems,” in 2018 IEEE 26th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). IEEE, 2018, pp. 145–156.

9



[9] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
http://tensorflow.org/

[10] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[12] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[13] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization.” Journal of machine
learning research, vol. 12, no. 7, 2011.

[14] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv
preprint arXiv:1212.5701, 2012.

[15] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J.
Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou et al., “Mlperf
inference benchmark,” in 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2020, pp. 446–
459.

[16] R. Ben-Shalom, C. M. Keeshen, K. N. Berrios, J. Y. An, S. J. Sanders,
and K. J. Bender, “Opposing effects on nav1. 2 function underlie
differences between scn2a variants observed in individuals with autism
spectrum disorder or infantile seizures,” Biological psychiatry, vol. 82,
no. 3, pp. 224–232, 2017.

[17] P. W. Spratt, R. Ben-Shalom, C. M. Keeshen, K. J. Burke Jr, R. L.
Clarkson, S. J. Sanders, and K. J. Bender, “The autism-associated gene
scn2a contributes to dendritic excitability and synaptic function in the
prefrontal cortex,” Neuron, vol. 103, no. 4, pp. 673–685, 2019.

[18] NERSC. Cori gpu nodes. [Online]. Available: https://docs-
dev.nersc.gov/cgpu/

[19] S. S. Vazhkudai, B. R. de Supinski, A. S. Bland, A. Geist, J. Sexton,
J. Kahle, C. J. Zimmer, S. Atchley, S. Oral, D. E. Maxwell et al., “The
design, deployment, and evaluation of the coral pre-exascale systems,”
in SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2018, pp. 661–672.

[20] R. Ben-Shalom, J. Balewski, A. Siththaranjan, V. Baratham, H. Kyoung,
K. G. Kim, K. J. Bender, and K. E. Bouchard, “Inferring neuronal
ionic conductances from membrane potentials using cnns,” bioRxiv, p.
727974, 2019.

[21] Y. Oyama, N. Maruyama, N. Dryden, P. Harrington, J. Balewski,
S. Matsuoka, M. Snir, P. Nugent, and B. Van Essen, “Toward training
a large 3d cosmological cnn with hybrid parallelization,” Lawrence
Livermore National Lab.(LLNL), Livermore, CA (United States), Tech.
Rep., 2019.

[22] Google. Better performance with the tf.data api. [Online]. Available:
https://www.tensorflow.org/guide/data performance/

[23] Q. Meng, W. Chen, Y. Wang, Z.-M. Ma, and T.-Y. Liu, “Convergence
analysis of distributed stochastic gradient descent with shuffling,” Neu-
rocomputing, vol. 337, pp. 46–57, 2019.

10


