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Abstract—Botnet detection is an active research topic as
botnets are a source of many malicious activities, including
distributed denial-of-service (DDoS), click-fraud, spamming, and
crypto-mining attacks. However, it is getting more complicated
to identify botnets due to the continuous evolution of botnet
software and families that harness new types of devices and attack
vectors. Recent studies employing machine learning (ML) showed
improved performance to detect botnets to some extent, but they
are still limited and ineffective with the lack of sequential pattern
analysis, which is a key to detect various classes of botnets.
In this paper, we propose a novel botnet detection method,
built upon Recurrent Variational Autoencoder (RVAE), that
effectively captures sequential characteristics of botnet anomalies.
We validate the feasibility of the proposed method with the CTU-
13 dataset that have been widely employed for botnet detection
studies, and show that our method is at least comparable to
existing techniques in terms of detection accuracy. In addition,
our experimental results show that the proposed method can
detect previously unseen botnets by utilizing sequential patterns
of network traffic. We will also show how our method can detect
botnets in the streaming mode, which is the essential requirement
to perform real-time, on-line detection.

Index Terms—botnet detection, anomaly scoring, Recurrent
Neural Network, Variational Autoencoder, network security

I. INTRODUCTION

Botnets are one of the critical threats to the cyber-security as

they are considered a source of many malicious activities [1].

The compromised machines (or “bots”) in the botnet are driven

by attackers to perform specific attacks, such as distributed

denial-of-service (DDoS), click-fraud, spamming, and crypto-

mining attacks, to list a few. Botnets could also harbor

malware and ransomware that may be delivered to victims

as a consequence of attacks. Given the increasing number of

botnet-based attacks and their fatal severity, it is essential to

detect botnets effectively to minimize financial and societal

losses caused by such attacks.

With the growing security concern raised by botnets, there

has been a significant body of studies for detecting botnets [2]–

[8]. However, it is getting more challenging to identify botnets

due to some reasons. First, the malicious software that infects

a victim host and that operates the botnet is evolving in a

way to evade existing detection tools. For example, botnets

may use a combination of protocols, such as Internet Relay

Chat (IRC), peer-to-peer (P2P), and HTTP, rather than relying

on a static protocol [6]. Second, newly introduced botnets

are more complicated utilizing diverse types of computing

devices and attack vectors. In 2016, the Mirai botnet started

controlling hundreds of thousands of Internet of Things (IoT)

devices that are exploited to conduct a high-profile DDoS at-

tack [9]. Another sophisticated botnet system called Smominru

is known as a crypto-mining and became a rampant threat

since 2018. These challenges render many of the traditional

detection techniques to be limited and ineffective to identify

emerging sophisticated botnets, as will be discussed next.

There exist two approaches to botnet detection: signature-

based detection and anomaly-based detection. The signature-

based method is configured with a set of rules that are used

to detect malicious network traffic based on pattern matching.

This approach requires a relatively light computational com-

plexity (e.g., based on optimized regular expression searches),

but it is only able to identify “known” botnet patterns, critically

limiting this approach without the functionality to identify

new types of botnets before the corresponding pattern is

published [10], [11]. On the other hand, the anomaly-based

technique detects botnets by focusing on discovering network

traffic anomalies (e.g., too high network latency, a spike of

traffic volume, or unusual system behaviors) [10]. Tradition-

ally, many studies relied on statistical features or heuristic

methods to detect botnet anomalies [7], [8]. Recently, there

has been a body of studies employing machine learning (ML)

to analyze botnet behaviors, with the motivation of making

more generalized botnet detectors. Several studies showed that

previously “unseen” types of botnet attacks can be detected

based on the characterized behaviors using ML [2]–[6].

One of the limitation of the past studies suggesting ML

methods for botnet detection is that they do not experiment

on the same datasets, which makes hard to compare methods

to each other [2]–[6]. Also critically, previous studies do not

much pay attention to sequential patterns within network data,

even though botnet traffic shows repeated patterns due to the

nature of the pre-programmed characteristics of bots [12].

Some studies limitedly considered sequential characteristics

within the same source IP addresses, which removes its

possibility to be used as an on-line detection system [13],

[14]. This is because if using sequential pattern of each source

IP address, we need to wait to collect every flow related

to the IP address to classify one connection as malicious

or non-malicious. In addition, existing studies narrow their

scope by evaluating their methods only for one of IRC, P2P,

and HTTP traffic, although botnets may utilize different (and



even a combination of) protocols. Since the detection method

showing effectiveness on various types of botnets can be

rendered reliable and practically useful, existing techniques are

limited, and thus, ineffective to detect diverse types of botnets

including previously uncovered botnet families [13]–[16].

In this paper, we propose a botnet detection method that is

capable to capture periodicity within network data, which is

a key to detect various classes of botnets showing sequential

patterns, by utilizing a recurrent neural network. The proposed

method also has a capability to detect botnets in an on-line

manner with a new anomaly scoring function that represents

the degree of maliciousness of network connections. The key

contributions of this paper are tri-fold:

• We present a new ML model for botnet detection, which

is built upon Recurrent Variational Autoencoder (RVAE)

to capture sequential patterns. The proposed model learns

from the normal data and detects potential anomalies that

can vary over time in the context of botnet detection.

• We devise a strategy of anomaly detection which can be

used in the streaming mode using the output from the

RVAE network by utilizing probability density function

of reconstruction errors.

• We verify that our approach could detect changing botnets

by splitting the popular test data set CTU-13 into training

and testing sets with different types of botnets. Tests

show that we are able to detect botnets effectively when

previously unseen types of botnets are used for testing

compared to the existing methods.

II. RELATED WORKS AND BACKGROUND

The various ML methods have been utilized in botnet

detection. We use a fundamental structure of Recurrent VAE

(RVAE) which contains both Variational Autoencoder (VAE)

and Recurrent Neural Network (RNN). In the next subsec-

tion II-A, we introduce previous works utilizing ML tech-

niques for botnet detection and discuss the limitation each

work has. Subsequently, in the subsection II-B, we describe

how each part of the proposed ML model works, and what

problems each method was created to deal with.

A. Related Work

Variational Autoencoder: In [15], Guoc et al. introduce

VAE which is an unsupervised method for detecting anomalies

and also focus on explaining anomalies with a gradient-based

fingerprinting technique, but it is limited it assumes that they

already know the ratio of anomaly and it does not consider

sequential pattern of data which can increase the performance

of detection. Van et al. propose the revised VAE structure,

called as Dirac Delta VAE, for achieving better anomaly detec-

tion performance in [16]. It narrows down the range of latent

space which makes classifiers detect anomaly easier. However,

the proposed method in the paper cannot be trained end-to-

end because it separately uses classifier in the latent space.

Furthermore, the authors conduct experiments using only one

type of botnets for training and testing. Furthermore, there

are various of studies utilizing VAE for anomaly detection

of network traffic, as you can see in [17] and [18]. While

many works have been done so far, most are limited in that

the methods overlook sequential characteristics within network

traffic.

Recurrent Neural Network: RNN has been in great use

in many studies for employing sequential characteristics of

network traffic data. Kapil et al. propose supervised approach

to detect botnet hosts by tracking a host’s network activity

over time using RNN architecture and extract graph-based

features of NetFlow data for botnet detection in [13]. However,

extracted features are obtained by each host IP address.

In addition, the method is restricted in terms of not being

generalized in that it is trained and tested on the restricted

botnet scenarios. Besides, Pablo et al. assign the symbol to

size and the port, and embed the symbol to get distributed rep-

resentation like word embedding [14]. It shows the potential to

use RNN for botnet detection, but it doesn’t show comparable

performance in imbalanced network traffic. In [19], Egon et

al. utilize text output from IDS as input of RNN. However,

the method requires the specific type of output, which is text.

While many works have been done so far, most are limited

now that the methods cannot be applied to the on-line anomaly

detection system. The methods require to collect every traffic

related to the host IP addresses in order to distinguish whether

they are malicious or not.

Other Machine Learning Approach: Besides VAE and

RNN, many recent studies have attempted to make use of

various ML approach to reduce the dependence for human

heuristics. In [20], the authors regard every feature as sentence

and embed it. With embedded features, classifier can be trained

to detect malicious botnets. Kamaldeep et al. introduce the

framework for P2P botnet detection using Random Forest (RF)

in [3]. Ongun et al. present how to extract features which

are good for ML model in [19]. The authors use a statistics

aggregated feature processing method and validate the method

with RF and Gradient Boosting.

B. Background of ML Structures

Variational Autoencoder (VAE) VAE is one of the gen-

erative models which utilizes deep neural network structure

to represent transformation. Encoder which consists of neural

network extracts latent variable z in accordance with input x.

Decoder which also consists of neural network reconstructs

x using z from the encoder. The more detailed discussion of

VAE can be referred in [21].

Gated Recurrent Unit (GRU) We use RNN structure

which is known as containing directed cycle beneficial to

represent data with sequential pattern. Especially, we utilize

GRU model which has capability to remember values with

long sequences comparing to vanilla RNN. The more detailed

discussion of GRU can be referred in [22].

Recurrent Variational Autoencoder (RVAE) RVAE is the

structure of combining seq2seq with VAE, whose encoder and

decoder consists of auto-regressive model. As it utilizes RNN

instead of MLP to generate sequential outputs, it not only takes

the current input into account while generating but also its



TABLE I
NOTATIONS USED

Notation Description

hE,T The last hidden state of the encoder
Wµ Linear transformation to get µ(x)
Wσ Linear transformation to get σ(x)
z The latent variable
hD,2 The second hidden state of the decoder
hD,t The hidden state of the decoder at timestep t

Whh Linear transformation from the previous hidden state

Whx Linear transformation from input
W s Linear transformation from hidden state to get output
θ The parameters of encoder
x1 The first input of the decoder
φ The parameters of decoder
ỹt Output, reconstruction at timestep t
˜ytn nth feature of reconstruction at timestep t

DKL Kullback-Leibler divergence

neighborhood. The more detailed discussion of Recurrent VAE

can be referred in [23] and [24]. Generally, seq2seq models are

actively being used in text and music field. The advantage to

the RVAE is that it utilizes sequential patterns to generate the

data. With this structure, we expect that the structure performs

ably in network traffic data to detect anomaly.

III. PROPOSED MODEL

In order to identify botnets, we propose a novel flow-based

botnet detection system coping with periodicity of traffic flow.

The overall procedure of our proposed system consists of three

steps as follows:

• Data pre-processing: The data instances are grouped

based on a predefined time interval(e.g., 60 sec for the

size of time window), and they are aggregated by host

IP addresses. This process also includes the process of

calculating statistical features and normalizing numerical

values.

• Anomaly scoring: At every time window, anomaly

scores of every flow are calculated, which provides the

degree of maliciousness of individual connections. For

scoring, we establish a function that consists of RVAE

and produces anomaly scores by comparing the input with

the output.

• Anomaly detection: Based on the calculated anomaly

scores, the anomaly detection function classifies individ-

ual connections into either Malicious or Non-malicious.

In particular, our method does not rely on threshold;

rather, it utilizes a couple of probability density func-

tion (PDF) which are estimated by normal and botnet

instances in training dataset, respectively.

A. Anomaly Scores from Recurrent Variational Autoencoder

Notations used in this paper are in Table I. We first input net-

work traffic data, which are pre-processed, to GRU structure.

hE,T is used as mean and variance of Gaussian distribution

which represents latent space. With the mean and the variance,

z can be obtained, and the z is used as initial hidden state for

the decoder.

µ(x) = WµhE,T

σ(x) = WσhE,T

z = µ(x) + σ(x) ∗ ǫ, ǫ ∼ N(0, 1)

(1)

The first input of the decoder(x1) is zero-padded. The

second hidden state of decoder follows as:

hD,2 = sigmoid(Whhz +Whxx1) (2)

Finally, the outputs we obtain from RVAE is formulated:

ỹt = sigmoid(W shD,t) (3)

The loss function that we want to minimize:

J(x) = −Eqφ(z|x)[logpθ(x|z)]+β ∗DKL[qφ(z|x)|pθ(z)] (4)

As we use binary cross entropy as error function, the anomaly

score is formulated:

L =
N∑

n=1

(1− ytn)log(1− ỹtn) + ytn logỹtn (5)

We train the model with only non-malicious instances, and

in evaluation phase, we calculate reconstruction errors using

both non-malicious and malicious instances. As we do not use

malicious instances during training, we can develop the model

detecting any unseen botnets. Each time window, we can

obtain the anomaly scores of every connection which belong to

the time window. In other words, the traffic connection can be

classified by the outputs(L) of the anomaly detection system.

In the following section, we present how to detect botnets with

anomaly scores.

B. Anomaly Detection

In many studies, threshold of anomaly scores is used to dis-

tinguish whether the source IP addresses in the time window is

malicious or not in anomaly detection methods [15], [17], [25].

The threshold can be set in many ways. It is one of the simple

and intuitive method; however, the information of the dataset

is required in most cases such as the ratio of botnets or at

least approximate values of anomaly scores of botnet samples.

Unfortunately, there are few cases that the information about

the traffic data is known in advance. Furthermore, detecting

attacks of botnet with threshold hampers the anomaly detection

framework performing in streaming mode. Let’s say that the

threshold is set to 10%, which means that samples higher than

top 10% of anomaly scores are classified as botnets. Then, we

have to wait until all samples in testing dataset complete to

get the anomaly scores because we must sort every anomaly

scores. Therefore, this method is limited to being used in

timely manner.

Instead, we suggest a more efficient method using the

estimated probability distribution of reconstruction errors,

which enables the method be applied in streaming mode. In

training phase, we collect reconstruction errors from normal

and abnormal instances. Then, we find the distribution and

its parameters to represent the distribution of reconstruction

errors of abnormal and normal, respectively, by exploring

various types of distributions and selecting the minimum sum

of squared estimate errors (SSE). We call the distribution with

the smallest SSE as the best-fit PDF. We search for the best-

fit PDF among many different candidates such as gamma



Fig. 1. The overall process of botnet detection system using RVAE with sequential dataset. In the phase of data processing, every flow sorted in chronological
order is aggregated to obtain statistic features within the windows. In the botnet detection system, the encoder distills the common properties within the
sequential data into latent variable z which the decoder reconstructs sequential inputs with. In the end, reconstruction loss is obtained as an output of RVAE.

distribution, fold cauchy distribution, Mielke distribution and

beta distribution, among others. In testing phase, the estimated

PDF can be utilized to obtain likelihood. Comparing the

likelihoods of the two different distributions, we assume that

each sample of the test data set belongs to the distribution with

greater likelihood. Utilizing best-fit PDFs at the training stage

does not require the information of network traffic dataset as

well as enables the botnet detection system be used in an on-

line manner.

IV. EXPERIMENTS

We show the two aspects from the experiments. First, the

proposed method has better performance than both RF and

the existing standard VAE, which we call as MLP-VAE in

this paper. Second, we explain how the reconstruction errors

are distributed.

A. Evaluation Datasets

We use CTU-13 dataset which is widely used in the latest

studies for botnet detection [14]–[17], [19], [20], [25], [26]. A

botnet scenario is a particular infection of the virtual machines

using a specific malware. Thirteen of these scenarios were

created, and each of them was designed to be representative of

some malware behavior [26]. To compare the results of MLP-

VAE and RF, we reproduced nearly the same experimental

settings with the settings in [15] and [19]. In [15] and [19],

they prove the robustness of their methods on scenario 1, 2

and 9 of CTU-13 dataset, which consists of only botnet called

Neris. The Neris is IRC based bot infecting other machines

by Spam and Click Fraud. In our reproduced experiments,

all methods show similar performance in every metrics, as

you see in Table II. Especially, RF performs very well on the

testing datasets because botnet families in the testing dataset

are already used for training. In other words, RF method is able

to capture dominant features to classify anomalies. However,

when considering the evolving botnets, the method cannot be

validated with being evaluated on dataset consisting of botnets

which are previously identified.

Thus, we determine to follow the dataset separation criteria,

as suggested in [26], in order to test the model in more general

cases. In [26], the authors made the dataset in a way that

none of the botnet families used in the training and cross-

validation datasets should be used in the testing dataset. The

authors state that this way ensures that the detection methods

can generalize and detect new behaviors. By splitting of CTU-

13 data in the suggested way, we can mimic the real situation

where the operations of botnet changes over time in terms of

protocols and attack types. Compared to the restricted dataset

(scenario 1, 2, 9), various types of botnets that have IRC-

based, P2P-based and HTTP-based communication methods

and conduct attacks such as Spam, Click Fraud, Port Scan,

DDos and FastFlux are included in the entire dataset.

B. Data Pre-processing

The CTU-13 dataset consists of NetFlow files which are

composed of source and destination IP addresses and ports,

time, protocol, duration, number of packets, number of bytes,

state, and service. We process the data to use the aggregated

flows statistic, which is the way many existing works adopt in

order to obtain flow-based features [14]–[17], [19], [25]. We

group NetFlow data at every time interval of T , and aggregate

features within every group based on the source IP addresses

to get flow-based features. With the processing method, we can

detect IP address showing malicious behavior in a particular

time window. Many existing works experimentally find the

most appropriate time window T , which is crucial in that while

too small time window might not capture traffic characteristics

over a longer period of time, too large time window cannot

provide timely detection in waiting the end of the window [6],

[14], [15], [17], [19], [25], [26]. We did experiment as chang-

ing the duration of windows to find the ideal value for the

statistical aggregation. We then sort the entire data within the

time window by the time of the source IP connection, because

the RNN model is sensitive to the order of the inputs. For

RVAE, we use the network traffic connections collected within

N windows as the sequential inputs to the model. In the case

of Fig. 1, 60-second duration of three windows are used.

In terms of source/destination ports and destination IP

addresses, we count the number of unique records with con-

nected source IP addresses in the time window. For service,

state, and protocol, we count the number of different values

in each category with the source IP addresses in the time



TABLE II
RESULTS COMPARISON : TRAINED AND TESTED ON SCENARIO 1,2 AND 9

Model Recall Precision F1 AUPRC AUROC

RVAE 0.978 0.957 0.967 0.960 0.966
MLP-VAE 0.974 0.959 0.966 0.959 0.966

Random Forest 1.000 0.998 0.999 1.000 1.000

TABLE III
RESULTS COMPARISON : TRAINED AND TESTED ON THE ENTIRE DATASETS

Model Recall Precision F1 AUPRC AUROC

RVAE 0.969 0.892 0.929 0.972 0.975
MLP-VAE 0.944 0.891 0.917 0.967 0.962

Random Forest 0.424 0.982 0.592 0.888 0.901

window. Finally, we normalize the numerical values to be

between 0 and 1. As a result, the number of features used in

this experiment is smaller compared to the number of features

used in [19] and [15].

C. Experimental Setting

For splitting datasets for training, validation and testing, we

followed the suggested separation criteria, as we mentioned

in the section IV-A. The architecture of MLP-VAE follows

what is used in [15], [# of features → 512 → 512 → 1024

→ 100]. For RNN architecture, we use 2-layer bidirectional

GRU. We use the 512 dimensions of hidden states, and 100

dimensions of latent variable as MLP-VAE. We also apply

ReLU activation to MLP-VAE as well as RVAE. We train for

500 epochs with Adam optimizer and 128 batch-size. Also,

learning rate is set as 0.01 for both VAE models. We use the 5

different evaluation metrics to validate our performance; Area

Under the Receiver Operating Characteristics (AUROC), Area

Under the Precision-Recall Curve (AUPRC), Precision, Recall

and F1 score. We save the model showing the best value of

AUPRC in 5-fold cross validation sets.

V. RESULTS AND DISCUSSION

We did experiments to validate the proposed method in

different aspects. For quantitative validation, we compare the

performance of our method with other methods on different

metrics. For qualitative validation, we plot the distribution

of the reconstruction errors of normal and botnets cases.

Moreover, we plot estimated the best-fit PDF. To compare

methods with the same processing and detection method, we

reproduce MLP-VAE and RF in [15] and [19], respectively.

Performance comparison among methods In Table II,

RFmethod shows the nearly perfect performance in every

metric, even though VAE models show the comparable per-

formance. It is because that the training/testing datasets which

are based on scenario 1, 2 and 9 share the same characteristics.

RF is effective in finding dominant features in these restricted

datasets. However, as we mention in the section IV-A, vali-

dating the models on the characterized datasets is not what

we focus on in this paper. In Table III, we show the results

from the training and testing on the generalized dataset that we

mentioned in the section IV-A. In this experiment, we pre-

processed our data by using 60-second duration of window

and using three windows. There is an overall performance

degrade with RF which is affected by the dominant features

TABLE IV
RESULTS COMPARISON : DIFFERENT WINDOW DURATION

Window
Recall Precision F1 AUPRC AUROC

duration(s)

5 1.000 0.865 0.928 0.791 0.881
60 0.969 0.892 0.929 0.972 0.975

300 0.998 0.537 0.699 0.905 0.972

of the training dataset. Nonetheless, VAE methods validate

its reliability by showing the robust performance with the

generalized dataset. In addition, we find that RVAE method

outperforms MLP-VAE method overall based on the same

features and the same size of latent variables on both datasets,

as you see in Table II and Table III. It can be concluded that

the botnets of network traffic flow data should be detected

utilizing sequential and periodic patterns.

Probability density function of reconstruction errors As

shown in Fig. 2, the distribution of the reconstruction errors

of botnet samples can be distinguished from the distribution

of the normal sample reconstruction errors. As we only

use non-malicious samples for training, we expect that the

reconstruction errors of malicious samples are larger than that

of the non-malicious samples. Comparing medians of those

two distributions, we can intuitively notice that the median of

the distribution of non-malicious reconstruction errors is larger

than the median of the distribution of botnet reconstruction

errors.

Especially, you can find a group of botnet samples which

have the smaller reconstruction errors compared to the other

botnet samples in Fig. 2b. We focus on the samples whose

reconstruction errors are smaller than 4. We find that 66%

of the samples of the scenario 6 labeled as botnet show

the reconstruction errors less than 4, while only 0%∼4% of

samples in the other scenario show reconstruction errors less

than 4. The scenario 6 utilizes proprietary command control

channels unlike other scenarios most of which use IRC, HTTP

and P2P communication methods [26]. The samples of the

group having small reconstruction errors show low values for

DNS, smtp, ssl, the number of IP addresses, the number of

ports, and the number of different IP addresses in window.

These characteristics mainly represent non-malicious other

than the botnet. We conclude that the general nature which can

be found in the scenario 6 makes dozens of samples belonging

to the scenario obtain the smaller reconstruction errors.

Duration of window In order to propose the right duration

of window, our experiments have been done with changing

the duration of window to 5 seconds, 60 seconds and 300

seconds in Table IV. In general, the performance of 60-second

duration of window are higher than those of other duration

lengths. We infer that as we use a long duration, the number

of source IP addresses which belongs to the same time window

increases, which aggravates the vanishing gradients problem

in a long-term sequence. On the other hand, too short duration

cannot provide efficient length to represent the patterns of the

time windows with statistically aggregated values. From our

experiments, 60-second duration is the most suitable, as you

can find in Table IV quantitatively and Fig. 2 qualitatively.



(a) duration of window : 5s (b) duration of window : 60s (c) duration of window : 300s

Fig. 2. Distribution of reconstruction errors of normal and botnet samples with different duration of window

VI. CONCLUSION

In this paper, we validate RVAE anomaly detection method

taking into account for the sequential and periodic nature for

the network traffic flow data. The study is of significance

to providing the applicable solution for the botnet detection

system, which is able to be used in an on-line manner.

Moreover, as the proposed method is validated on various

scenarios of botnet operation, including the botnets which are

not used for training, it can be concluded that the proposed

method is robust in detecting previously unseen botnets.

For future studies, fuzzy logic can be adapted to improve the

anomaly detector utilizing PDF. It can provide more logical

and systematic way of using PDFs for anomaly detection than

comparing likelihoods from two distributions. In addition, it

is potential to improve performance of the anomaly detector

if the method copes with some cases of botnets having small

reconstruction errors in the normal cases. Moreover, setting

online evaluation environment can help to prove its anomaly

detection performance in the streaming mode.
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