Co-optimizing Latency and Energy for IoT services
using HMP servers in Fog Clusters

Sambit Shukla

sshukla@ucdavis.edu

Dipak Ghosal
dghosal@ucdavis.edu

Abstract—Fog Computing has proved to be a relatively energy-
efficient alternative to cloud computing for guaranteeing latency
requirements of Latency-critical (LC) IoT services. However, low
energy-efficiency of homogeneous multi-core server processors is
a major contributor to this energy wastage. Recent studies have
shown that Heterogeneous Multi-core Processors (HMPs) can
improve energy efficiency of fog servers by adapting to dynamic
load changes of LC-services. However, proposed approaches
optimize energy only at a single server level. In our work, we
demonstrate that optimization at the cluster-level across many
HMP-servers can offer much greater energy savings through
optimal work distribution across the HMP-servers while still
guaranteeing the Service Level Objectives (SLO) of latency-
critical services. In this paper, we present Greeniac, a cluster-level
task manager employing machine learning techniques to identify
the optimal configurations at the server- and cluster-level for
different workloads. We develop a server-level service scheduler
and a cluster-level load balancing module to assign services and
distribute tasks across HMP servers based on configurations
determined using Reinforcement Learning. While meeting the
same SLO targets, Greeniac achieves up to 28% energy saving
compared to best-case cluster scheduling techniques with local
HMP-aware scheduling on a 4-server fog cluster, with potentially
larger savings in a larger cluster.

I. INTRODUCTION

Onset of the IoT-era has triggered the deployment of sensors
and usage of interactive devices in numerous domains such as
vehicular networks, enterprise networks, home entertainment,
and health care facilities. These domains are increasingly
employing latency-critical (LC) applications such as sensor-
based actuation, augmented/virtual reality, image recognition,
online translation etc. from which end-users expect and re-
quire low (sub-second) and predictable response time. Due to
their growing resource-demands, LC-applications have been
recently migrated from resource-constrained end-devices to
remote cloud platforms [1]. But unpredictable and long net-
work delays pose significant challenge for cloud services. The
cloud providers have to guarantee the servicing of LC-requests
within a much smaller latency headroom. This mandates over-
provisioning of server resources, thereby sacrificing server
energy efficiency [2]. Recent studies [3], [4] show that Fog
Computing paradigm can quell these LC-service woes by
leveraging fog’s network vicinity to end-devices. Low propa-
gation delays leave larger headroom for servicing requests.

But unlike the cloud domain, pricing models for fog
computing services are not well-defined. In fact, end-users
themselves might be burdened with the entire Operational cost
(OpEx) for many fog-deployment use cases. Recent studies

Kesheng Wu
kwu@1bl.gov

Alex Sim
asim@Ibl.gov

Matthew Farrens
mkfarrens @ucdavis.edu

have revealed that energy usage by server CPUs is the most
significant contributor [5] to the large OpEx costs in clouds.
Thus several studies on cloud LC-services have proposed vari-
ous CPU resource management and scheduling strategies [6]—
[8] to minimize CPU energy usage while still satisfying ser-
vice time objectives. Similar Latency-Energy co-optimization
strategies can also be applied to improve efficiency of fog
computing and reduce OpEx costs. However, unlike clouds,
which mostly employ powerful homogeneous multicore-based
servers, fog computing platforms enjoy the additional flexibil-
ity of using relatively energy-efficient, cheaper, but less pow-
erful Heterogeneous multi-core processor (HMP) platforms.
However, HMPs introduce additional opportunities as well as
challenges for the co-optimization problem.

Recent studies [9]-[11] have found HMPs to be especially
suitable for efficient execution of LC-Services. HMPs can
process tasks during heavy loads with the fast but power-
hungry big cores, and switch these big cores to low-power
sleep states whenever slower but energy-efficient small cores
can meet latency objectives for the request load. Prior works
have translated the co-optimization problem into the following
scheduling problem: For a given request load at a single HMP-
server,

1) How many LC-Service instances need to be run?
2) On which cores (big and/or small) they need to be run?

However, these proposed approaches only perform task
scheduling on a small set of big and small cores within a single
server. The server-level local optimization is a simple but sub-
optimal approach compared to a global cluster-level approach.
The energy saving could be greatly improved by viewing the
entire cluster as a single server and scheduling over a large set
of heterogeneous cores spread across multiple HMP servers.
Our study show that using a cluster-level scheduling strategy
coupled with an HMP-aware load balancing across servers
saves significantly more energy while meeting the LC-request
latency targets.

In this work, we present Greeniac, a task manager for LC-
Services on HMP-based fog servers. Greeniac is a service-
agnostic task scheduler that automatically learns the best run-
time distribution of incoming LC-Service requests among
HMP servers and individual cores to maximize energy savings
while meeting response time objectives. The specific contri-
butions of our work are as follows:

1) We propose a two-level Reinforcement Learning (RL)

agent to learn the optimal set of cores (from set of
all cores available in the cluster) on which LC-Service
instances must be hosted, at any given request load.

2) At each HMP server, we implement a Service Scheduler
that employs frequency scaling, service instance scal-
ing, and instance-to-core mapping suggested by the RL
agent.

3) We design an HMP-aware Load Balancer, that exploits
feedback from RL agents to perform an HMP-aware
run-time request distribution across HMP servers hosting
active LC-Service instances.

4) We study the impact of various system and input pa-
rameters such as cluster size, HMP configuration, LC-
workload characteristic to demonstrate the advantages of
Greeniac over prior works.

Our experiments show that Greeniac saves up to 28% of core
energy over traditional server-level scheduling approaches on
a 4-server cluster with potentially higher saving for larger
clusters. To the best of our knowledge no such solution has
been proposed before.

II. LC SERVICES ON FOG CLUSTERS

Fog computing paradigm offers several advantages over
cloud computing paradigm for LC-Services. Unlike few data-
intensive services, such as online-search, most of the newer
and popular LC-Services are primarily compute-intensive and
can be aptly serviced by a single server in small fog clusters.
However, it also introduces new challenges for fog providers.

Firstly, the vicinity of the fog clusters to the IoT-devices
significantly reduces unpredictable and long network delays.
This leaves larger response time headroom and offers op-
portunity for more energy-efficient task scheduling at fog
servers. This also widens the spectrum of LC-applications to
those requiring shorter response latency or higher computation
overhead. Hence latency objectives for services need to re-
calibrated. Secondly, fog clusters typically service IoT clients
in a specific domain. This reduces resource interference effects
observed in cloud [6] both at the network and the server
levels. However, instead of co-execution strategies [6] used
to improve cloud energy-efficiency, solo-execution strategies
have to be relied upon for fog servers. Thirdly, since fog
deployments are on smaller scale, they can be domain-specific
and use efficient, application-specific compute platforms. But
the small scale and fewer number of aggregate requests hamper
the adoption of auto-scaling [12] techniques used for large
clouds. This also limits the scope for any service-specific
customization [13]. Hence novel application-agnostic resource
management techniques are desired for efficient service exe-
cution on fog clusters. Finally, due to the small client base
serviced by fogs, request traffic has relatively higher variability
compared to cloud. Hence request scheduling approach must
dynamically adapt to meet the resource requirements of the
varying request load.

Apart from the above-mentioned fog-specific challenges,
LC-Service hosts face the following generic challenges.

A. Latency requirements

Service providers are required to guarantee certain Service
Level Objective (SLO) to prevent deterioration of Quality
of Experience (QoE) for the end-users. For instance, a SLO
requiring 95" percentile tail latency (or P95) target of 1 sec
means service provider must ensure at least 95% of client
requests are serviced within 1 sec of request arrival.

B. Latency-energy co-optimization

To meet SLO for unpredictable request loads, service
providers over-provision cluster resources resulting in high
energy usage. But low energy-proportionality in server proces-
sors result in significant energy wastage by underutilized active
servers [2] during non-peak traffic periods. Thus minimizing
cluster energy usage under latency constraints is a challenging
problem. Higher energy efficiency (requests processed per unit
energy) of cluster translates to a desirable lower operational
expense for service providers.

III. THE CASE FOR HMPs

HMP SoCs (e.g., Snapdragon, Exynos) have been pop-
ular with mobile devices for energy-efficient processing.
Some HMP-based servers (e.g. Intel QuickIA [14], Odroid-
MCI1 [15]) are also gaining popularity in clusters. Unlike
power-hungry homogeneous multi-cores, HMPs can offer im-
proved energy efficiency by adapting to load changes. Big-
cores, with large sophisticated pipelines running at higher fre-
quency, consume significantly higher energy compared to the
smaller cores with slower in-order processing clocked at lower
frequency. This architectural heterogeneity can be exploited to
dynamically adapt to the varying resource requirements of LC-
services.

A. Using HMPs for Fog Computing

Wide use of HMPs in mobile computing encourages its
adoption in non-edge fog domain too. For fog deployments
to be economically sustainable, clusters must have low infras-
tructural, capital and operational costs. Hence the small form
factor, affordable equipment cost and low energy footprint
of the modern HMP-based compute platforms are motivating
factors for employing HMPs, both on mobile and fixed server
platforms. Our work further demonstrates the energy-saving
opportunity with HMP-cores on fog servers.

B. Using HMPs for LC-Services

Recently, use of single-ISA HMPs [14], [16] have been
shown to achieve significant energy savings by employing
powerful big cores during high load and low-power small
cores during low loads [9]-[11]. Figure 1 depicts different
scenario for load-dependent scheduling on big and small cores.
A resource manager can employ a mix of two techniques to
maximize energy saving: core scaling and frequency scaling.

Core scaling involves scaling the number of service in-
stances based on request load. When load increases threatening
SLO target violation, additional instance may be scheduled
on an idle small or big core. When the load decreases, some

Low Medium
Load Load
Scheduler Scheduler
o
>
8
o
s =
|z
Fig. 1. Different Service Configurations (SCs) optimal for different loads.

Big core enter sleep mode at low load. Core scaling with preference for small
cores helps to meet SLO target optimally.

instances may be released and cores switched to low-power
sleep modes. The option that maximizes energy saving while
still meeting the SLO target for loads would be the optimal
choice for a good resource manager. However identifying the
optimal choice requires exploration since it would be both
workload type and HMP architecture dependent.

When executing an LC-Service instance, dynamically scal-
ing core frequency to match the request load has been shown to
achieve energy savings [17], [18]. Since frequency scaling only
affects dynamic power consumption of cores, savings are rela-
tively lower compared to core scaling techniques, especially on
big cores that consume high static power. Since the frequency
switching time is of the order of sub-microsecond [19], this
technique can be employed for LC-Services (as in Rubik [17]).

C. Cluster-level energy saving opportunity

While server-level resource management can achieve energy
saving on a HMP server, in a cluster with multiple servers, a
server-local task/resource manager can only achieve a local
energy optimum. We believe, energy savings could be signif-
icantly increased with a cluster-level resource manager that is
aware of all the compute-resources available in the cluster. To
maximize energy savings, two techniques must be tuned in
tandem: service scheduling and load balancing.

=
© 9

g 8

=

2 o ® ©
8 &8 & 8

Core Utilization (%)

Core Utilization (%)
N
5

°
o

PO
“e23

sl
52

I Dyn Pwr

N
58
u
@
@
g
2
'v
H

Power Draw (in W)
Power Draw (in W)
BB

b1

b2

o & ®

BY

Fig. 2. Energy saving opportunity on a 2B-2S HMP-server cluster @50rps.
Server-level optimization (left) with 12.5rps per server requires 4B and 4S
cores per cluster with low core utilization. Cluster-level optimization (right)
uses fewer big cores (1B and 6S cores) with high core utilization and lower
aggregate energy.

1) Service scheduling: At the cluster-level, number of pos-
sible combinations big and small cores are large. A cluster
task scheduler that could identify the most efficient core
combination for the current cluster load and elastically initiates

or terminates the services on those cores/servers can maximize
energy efficiency of the cluster. To verify, we subjected a load
of 50 requests per second (rps) for Apache Lucene [20] to
a 4-server cluster with 2B-2S HMP configurations. Assuming
a HMP-aware local task-scheduling (as in [9]), requests were
equally distributed as per least-loaded strategy [21]. Fig 2(A)
shows 2 service instances (1 big and 1 small core) required
to meet SLO at each server. Additionally core utilization is
low and there is significant energy wastage (Fig 2(B)). With
cluster-level HMP-awareness, as implemented in Greeniac, a
cluster-level efficient configuration consisting of more small
cores and fewer big cores (Fig. 2(C)) can be used to host
services, meet SLO and lower aggregate cluster energy usage
(as shown in Fig. 2(D)).

2) Load balancing: Once efficient core combination is
determined, it is important to optimally divide the aggregate
cluster load across the instances to guarantee the latency
requirements. Load balancing of requests across HMP servers
ought to be proportional to each servers aggregate service
capacity. Additionally, if each server meets the tail latency
SLO for its hosted service instances, aggregate latency ob-
jective for the entire cluster is implicitly met. In our work,
we dynamically identify the optimal tuning options for both
techniques within a cluster-wide scheduler to maximize cluster
energy savings.

IV. GREENIAC: A SMART TASK MANAGER

Greeniac consists of three primary components: a learning
agent, a service scheduler, and a load balancer. The learn-
ing agent employs a two-level Reinforcement Learning (RL)
approach and comprises of a Server-level Learning Agent
(SL-Agent) that runs on the individual HMP-servers and
a Cluster-level Learning Agent (CL-Agent) which runs on
the Orchestrator Node. The overall architecture is shown in
Figure 3. For different request loads, the SL-Agent learns the
service configuration (SC) that minimizes the energy usage
while meeting tail latency requirement for LC-Services. A SC
is a list of active cores in the server and their corresponding
frequencies. This information is then used by the CL-Agent
to learn the best cluster-wide service configuration (CSC) for
different aggregate request loads observed by the cluster. CSC
is the collection of optimal SCs for all servers in the cluster.
The Service scheduler dynamically employs service manage-
ment at server-level to implement configuration determined
by the learning agent. The load balancer is responsible for
distributing the requests among the active servers. The three
components execute in a coordinated fashion to maximize
energy savings of cluster under a given SLO target. We
describe some details of the above three components in the
following subsections.

A. Learning Agent

In reinforcement learning, the system is modeled as a
Markov Decision Process (MDP) consisting of a set of states
(s € S) and actions (a € A). A state is a snapshot of all char-
acteristic variables that define the system. An action enables

HMP Cluster

>

r

WW
Scheduler
WW

Schedule

) scheduler

\ HMP Server

Q\J

(\ SL-Agent
WWW/

() SL-Agent

0)0)
\ Sl
) C)

7

Fig. 3. Greeniac task management on a HMP-cluster. Server-level SL-Agents
learn optimal local SC and update to CL-Agent, which then learns optimal
CSC. CL-Agent drives local Service Schedulers and central Load Balancer to
activate the optimal CSC and distributes load proportionally every epoch.

transition between system states and there is a reward for each
action. We formulate our energy optimization problem as a
Multi-Armed Bandit (MAB) problem [22]. A MAB consists of
a single state (bandit) and multiple actions (arms) wherein an
agent learns for each state which action returns the maximum
average reward.

The Learning Agent employs a 2-level learning strategy.
In first stage, it employs SL-Agent at each server to learn the
optimal SCs. For this stage, a state is defined to be the average
arrival rate of LC-Service requests at a server. The action is the
choice of a SC in the server. Note that in our work, we assume
that each active core hosts a single LC-Service instance. After
taking an action, the agent waits for a pre-defined time-period
to measure the achieved tail latency and energy usage based
on which it calculates the reward. The SL-agent learns the
best action (SC) for the current state (load) from exploration
of various action choices in run-time. Optimal SCs learned by
SL-Agents are reported to the CL-Agent. The CL-Agent learns
the optimal CSC for each load by employing similar learning
strategy. For this stage, state is defined by average arrival rate
at the cluster and action is a choice of CSC. The CSC with
highest calculated reward, is identified as the optimal CSC for
a given cluster load. Post learning completion, optimal CSCs
denote the cluster-wide list of cores (and their corresponding
frequencies) that need to host LC-Service instances in order
minimize energy usage of entire cluster while still meeting the
SLO target for current request load at the cluster.

The Learning Agent uses several heuristics (e.g. for, action-
space pruning, identifying initial action for learning, choosing
next action for learning based on current reward, etc.) to
speed up the learning process, both in SL-Agent and CL-
Agent. The state space is discretized into fine-grained bin
sizes to avoid burden of continuous space learning. Reward
functions in both stages take the measured P95 and energy
usage into account to calculate the reward for each state-action
pair. Details regarding the learning algorithm, the optimization

techniques used and their implementation can be found in
[23]. Though numerous other learning-based approaches exist,
comparing them with our proposed learning strategy is beyond
the scope of this paper.

B. Service Scheduler

The SC update received by SL-Agents at each epoch con-
sists information about the number of big and small cores
within a HMP to be activated and their corresponding core
frequencies. SL-Agent relays this information to the Service
Scheduler module. The scheduler is responsible for service
instance creation/deletion on specified and core frequency
scaling. When an updated SC requires an additional core, a
new LC-Service instance is created and affinitized to the new
core by SS. This closely resembles a light-weight container
instantiation in cloud/fog domain. Subsequently any new or
waiting request is scheduled on the new service instance in
a FCFS fashion i.e. the service instance with longest idle
period receives next request. For removing an existing core
from prior SC, no additional requests are scheduled to the
corresponding service instance and any executing request
is allowed to be serviced till completion. Subsequently the
instance is deleted by Scheduler when the instance becomes
inactive. The Scheduler also performs frequency scaling on the
active cores based on updated SC. Since frequency scaling
using Linux governor takes only microseconds to activate,
the update and the corresponding scaling effect is almost
instantaneous.

C. Load Balancer

A Load Balancer (LB) routine is responsible for distributing
requests arriving at the gateway server across the HMP servers.
The CL-Agent maintains the average throughput information
of each explored service configuration during the learning
phase. Upon identifying the optimal next epoch CSC based on
last epoch load, it shares the throughput information for each
HMP-server’s SC with the LB. LB infers the load fraction of
each server based on the throughput ratios between them. It
then fits the ratios in to normalized scale window of O to 1.
For every request, LB generates a random number between
0 and 1, identifies which server it corresponds to from the
load fraction window and forwards the request to the identified
server.

This throughput-proportional load balancing is crucial for
energy-optimal load processing at individual HMP-servers.
Since each server is configured for load-specific optimal SCs
for the next epoch, an improper balancing can cause tail
violations in some servers and lower efficiency in others.
However as shown in our studies later (Fig.5), the random
number generation approach balances the load across all HMP-
servers optimally and meets the latency requirements at all
serviceable load ranges for the cluster.

V. EXPERIMENTAL APPROACH

Since public cloud currently offer only homogeneous pro-
cessor based server instances, we had to rely on simulations

to study the effectiveness of Greeniac. Furthermore, none
of the available cloudlet simulators (e.g., CloudSim [24] or
its extensions) support HMP servers. To support HMP-aware
execution and dynamic energy usage estimation for the cluster,
we developed a custom in-house simulator, HMP-ClusterSim
(described below), based on SimPy [25] and instrumented it
with our real system measurements.

For our experiments, we also addressed the fog-specific
challenges discussed in Section II. We performed our ex-
periment on small clusters representative of fog clusters. We
avoided co-execution scenarios by dedicating a single core
for each LC-Service instance. Latency objectives were also
adjusted to a longer SLO of 1 sec (instead of sub-second) for
our studies.

A. HMP-ClusterSim Simulator

Our simulator mimics a typical high-bandwidth cluster with
negligible network delay. Like CloudSim, our simulator is
event-driven. A single server instance acts as a gateway (or
broker [24]) and remaining servers as single-HMP nodes
hosting a LC-Service instance (or Task cloudlets [24]) at each
core (1 core per VM/container). We assume sufficient memory
and network bandwidth at each server and neglect intra-
and inter-instance interference. The gateway server generates
requests following a Poisson process at specified mean rate;
requests are distributed across the nodes following our load
balancing logic (Section IV-C). Within each server, a service
scheduler distributes requests from a centralized queue using
FIFO among the scheduler-activated cores (Section IV-B). To
model service time variations, task length follows a log-normal
distribution (u=0, 6=0.25) scaled by the average service time.
The number of big and small cores within a HMP-server and
their individual throughput are assumed to scale linearly with
frequency scaling ignoring memory hierarchy bottlenecks and
interference. Responses are sent back to gateway server to
record the response latency. P95 for all requests received per
sampling epoch (set at 100s) is calculated at the end of every
epoch. P95 of 1 sec is set as the default SLO. For RL, each
state represents a bin of 10 requests per second (rps). The
results discussed below are based on a 4-server cluster with
each server containing a single HMP with 2 big (2B) and 2
small (2S) cores.

B. Incorporating real system measurements

We performed our initial study on a high-end Xeon ES5-
2637 (big-core) powered Dell Power-Edge Server and an Atom
C3558 (small-core) powered Super-micro Server. From both
platforms, we collected the averaged service time, through-
put, idle power and dynamic power values at various core
frequency levels for a single service instance of Apache
Lucene [20]. These data were used in the model of the big and
small core in HMP-ClusterSim. These statistics will vary with
the type of processors, server configuration and application.
Though, we use the representative values for a single setup to
demonstrate the effectiveness of our proposed approach, scal-
ing and sensitivity studies performed for variations in server

configuration and application characteristics are presented in
the following section.

VI. RESULTS AND OBSERVATIONS

In this section we first demonstrate the higher energy saving
achieved by Greeniac compared to popular cluster scheduling
approaches. Then we study the impact of scaling and LC-
Service application characteristics on energy saving.

A. Cluster-level saving

To demonstrate the gains from cluster scheduling we com-
pared Greeniac against two popular cluster scheduling ap-
proaches: bin-packing and least-loaded. Bin-packing attempts
to maximize utilization of each active server before scheduling
services on an inactive server. On the contrary least-loaded
dispatches a request to the least-loaded server thereby trying to
distribute services and request equally across all servers. For
a fair comparison, we implemented the Hipster learning [9]
at the individual server level for both scheduling approaches
to ensure scheduling at each server to be HMP-aware, SLO
guaranteed and energy-optimal for the observed server load.

HMP-aware Bin-Pack
--Min energy saving over HMP-aware
r 30

Greeniac

HMP-aware Least-Loaded

[y
y

=
$.
[
2 0.8 - 3%
g I L0 w2
206 1 [\ | s ¥
= [\ | / \ o 2
o [\ / \ w3
204 |\ \/ 5T
S [L 105w
T [%] g o
024/ \ g 2
£ / \ I o
5 / \ X
[BB
e ————— e e b

10 50 90 130 170 210 250
Load (requests per second)

Fig. 4. Normalized energy usage for various HMP-aware scheduling ap-
proaches. Greeniac has higher energy saving (up to 28%) over locally HMP-
aware approaches for all load ranges

Figure 4 shows the energy usage for the 3 approaches
normalized by the maximum cluster energy usage for HMPs.
The line shows the percentage energy saving of Greeniac with
respect to the most efficient locally HMP-aware scheduling
strategy at the corresponding load. Greeniac achieved a higher
energy saving for a large range of load values. Greeniac gained
high HMP energy saving for the low and mid range load
values that typically represent the majority of load traffic
periods. At very high loads, most HMP cores in all servers
execute LC-Service instances with high utilization and all
cluster scheduling techniques perform almost identically. At
low loads, least-loaded distributes tasks equally across all 4
servers each receiving 1/4th of cluster load, which can be
serviced by small cores within tail latency (TL) constraints.
As load is increased, at a certain threshold cluster load level,
every server requires to schedule service on big cores to
meet its tail target, resulting in poor power savings due to
a large number of under-utilized big cores being active across
the cluster. On the contrary, bin-packing tries to maximize

core utilization for active cores resulting in fewer big cores
being active across the cluster. However, since bin-packing
tries to maximize utilization of all cores within a HMP before
scheduling tasks on an inactive HMP, it schedules services on
big cores of active HMPs while ignoring availability of low
power cores on inactive servers.

B Num Small Cores ™ Num Big Cores ® Small Core Freq Level 4 Big Core Freq Level

prbbhRRERRRERERRRERRERRERY

LERERRREREE
HELERLERERY

HMP-1
©

%

Frequency Level of HMP cores

H"l

HMP-2

w e

phbebbEEEEREL

p rbbERELEEE

HMP-3
©

2
1
0
2
1
0
2
1
0
r
1
0

HMP-4
©

Number of active cores (LC-Service instances)

1 WHMP-1 mHMP-2 HMP-3 HMP-4 —Cluster Power Usage 1
0.8 0.8
0.6 0.6

o
»

Load Fraction
°
IS
Normalized Cluster Power

P
N
e
N

o
o

130 170 210 250

10 50 920
Cluster Load (requests per second)

Fig. 5. Cluster dynamics corresponding to Fig 4. (a) Number of active cores
and their frequency levels for CSCs learned by Greeniac (above). Each active
core hosts a single LC-Service instance. (b) Load distribution proportional to
the service capacity of each server SC (below).

We observed that Greeniac achieves up to 28% higher
energy saving over the best case server-level HMP-aware
scheduling. Figure 5 (above) shows the active cores across
all 4 servers for all tested loads. Each line pair represents the
number of big and small cores activated at a given load on each
of the 4 servers. We observe that Greeniac employs fewer big
cores across the entire cluster and tries to maximize utilization
of all active cores. Figure 5 shows the request distribution
across the 4 servers with a proportionally distributed across
the servers based on the service capacity. For instance at
100rps, HMP1 has 2 big (2B) and 2 small (2S) cores active
and processes around 70% of cluster load, whereas rest of the
HMPs have only 2 small (2S) active and each process only
10% of the load.

B. Scalability Analysis

1) Processor heterogeneity: Greeniac achieve higher en-
ergy savings for HMPs with more small cores hence in Fig.
6 1B-4S maximizes saving. Since Greeniac selects optimal
cluster configuration from a global pool of HMP cores, HMPs
with same number of small cores (e.g. 1B-2S and 2B-2S)
achieve similar cluster energy savings. However, larger number
of big cores with greater service capacity (as in 2B-2S HMPs)
can meet tail latency requirement for high cluster loads.

2) Cluster size: We observed that larger clusters that can
service higher loads also offer opportunity for more energy

g m1B-1S m1B-25 2B-25 1B-45

S o8

-

]

2 06

s

g o4

g 02

s ph il

2 o -fouerune Ju 0 I SOV HOL MO0 MOV MOVRODIN IO O W 0 W WDV T L
10 50 20 130 170 210 250

Cluster Load (requests per second)

Fig. 6. Greeniac-enabled power usage for various HMP-configurations in a
4-server cluster. HMPs with more small cores enable greater cluster power
saving

—Pwr(2) —Pwr(4) —Pwr(8) —Pwr(16) » P95(2) < P95(4) - P95(8) =P95(16)
10 r 1.2
SLO Latency

Normalized Cluster Power
P95 Latency (in secs)

0 100 200 300 400 500
Cluster Load (requests per second)

Fig. 7. Normalized Power usage and Tail latency for various cluster sizes in
a 2B-2S HMP cluster. Greeniac can achieve greater energy saving with larger
cluster sizes by exploiting a larger set of small cores.

saving with Greeniac. In Fig. 7 at 100 rps, a 16-server cluster
consumes least energy compared to a smaller sized cluster. At
higher load, Greeniac learns to utilize a larger set of small
cores available in larger clusters to meet the SLO targets, if
possible. At low loads, different sized clusters consume similar
energy since Greeniac learns to activate small cores on fewer
servers. For e.g. Greeniac learns that, at 20rps, 2 small cores
each on 2 servers can meet the SLO targets irrespective of
cluster size, thereby resulting in same aggregate energy usage.
As load increases, Greeniac schedules service on big cores of
one or more active servers on smaller clusters. Thus at any
given load, smaller clusters have higher number of big cores
hosting LC-Services.

With increase in heterogeneity, HMP size and cluster size,
the state space for the learning agent expands exponentially.
However, our optimizations [23] enable fast learning on
a typical fog cluster with several LC-service instance (as
shown above). Once learnt, an optimal-CSC can be applied
to the cluster by Greeniac almost instantly (order of sub-
microsecond).

C. Impact of LC-Service Characteristics

1) Service time distribution: LC-Services may vary in
service time distribution. Our default test service had a low
standard deviation (= 0.25). In Fig 8 we compared against a
service with identical mean service time but higher deviation
(= 0.8). We observed that Greeniac consumes more energy
for LC-Services with larger standard deviation. Larger service
time variations implies a wider service time range on a small

Log-normal distribution with low standard deviation Log-normal distribution with high standard deviation

Service time
on big core

Service time
on big core

Service time
on small core

Service time
on small core

0.05 010 ofs 01 02 03 o4 05 0fo 0.05 010 01500 01

—Power (Low StdDev) —Power {High StdDev)

5 1 * P95 (Low StdDev) * P95 (High StdDev) 1.5

?308 F
[&
P -1 o=
206 . . =
3 et o8 tee E‘
g% 7. - 0s &
S =
© 0.2 n
£ g
S ol e+ 0

10 60 110 160 210 260

Cluster Load (requests per second)

Fig. 8. Effect of service time distribution on aggregate HMP power. Greeniac
learns to prefer big cores to meet target SLO for services with higher standard
deviation, thus consuming higher cluster power.

core. Therefore a request scheduled to be serviced on a small
core is more likely to violate SLO target. Greeniac learns this
service property and finds service configurations with big cores
more suitable for higher service time deviation. This results in
higher cluster energy usage compared to services with lower
service time deviation. Increased variability of service latency
is also the reason behind the variation in tail latency and
violation of SLO at a relatively lower load as shown in Fig 8.

2) Application Characteristics: Compute and memory
characteristics of services can lead to different power char-
acteristics and average service time ratios between big and
small cores (B:S). Compared to other applications, compute-
bound applications are known to compute relatively much
faster on big cores [26]. Whereas service time for memory
bound applications are relatively less slower on small cores
since applications spend a large number of CPU-independent
idle cycles on memory waits. Service time ratio between
big and small cores and the power characteristics can be
affected by other factors such as cache characteristics, memory
access pattern, compute units used, etc. However, assuming
applications have identical power characteristics i.e., energy
consumed for a given load, average service time ratio (B:S)
is the only application-specific factor that affects the optimal
configuration choice.

We consider 3 applications with different B:S ratios at
1200MHz core frequency: our default application (Lucene)
with B:S as 0.66, a relatively more compute intensive service
(B) with lower B:S ratio of 0.5 and a relatively more memory
intensive service (C) with B:S of 0.8. Assuming identical
service characteristics for the big core, B has a wider and C has
a narrower service time range on small core. Owing to lower
service rate for B, slow cores violate the SLO targets for a
lower load compared to A and thus aggregate load serviceable
by cluster is lower. On the contrary, slow cores can service
higher loads for C, leading to a higher cluster load support as
shown in Fig. 9. Greeniac implicitly learns these application
characteristics and identifies the optimal configuration for each
application service at various loads. It consumes lower cluster
energy for C by exploiting small cores, and consumes higher

Service time distribution on small cores for different applications
(assuming identical throughput on big cores)

App A (B:S=0.66) AppB(B:S=0.8)

(Memory-Intensive)

AppC(B:S=0.5)
(CPU-Intensive)

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
—Power (A) —Power (B) Power (C) e P95(A) e P95 (B) P95 (C)
1 r 1.4
g - of 12 —
R TN - S— . gual g O
2 N £
G 056 1 cesl Wfo08s
N 2
o4, roe s
= F 04—
£0.2 He Q
E L 02&
z
0 ——T—T—T 0
10 50 90 130 170 210 250

Cluster Load (requests per second)

Fig. 9. Effect of application characteristics on Cluster HMP power and Tail
Latency. CPU-intensive services run relatively slower while memory-intensive
services run relatively faster on small cores w.r.t big cores (above). Greeniac
learns to prefer big cores for CPU-intensive and small cores for memory-
intensive (below).

cluster energy for B due to relatively greater use of big cores
for the same load.

Pwr (0.5s) —Pwr (1s) —Pwr (10s) P95 (0.5s) e P95 (1s) e P95 (10s)

14 .
B e e s s e s e s e ._._._.._._.c..‘_ d :‘..”_.._'._.__ 10
g 0.8 1 Osec SLO Target ,5
e 3
% 06 £
= >
© e
T 04 lg
20 5
s n
E 02 8
(=}
4

0 T T T e I B e e e e e M B 0.1

10 50 90 130 170 210 250
Cluster Load (requests per second)

Fig. 10. Effect of SLO target on average cluster power and tail latency.
Greeniac learns to use big cores at stricter tail latency targets, thus consuming
higher energy and supporting lower load. Very high latency margins does not
gain proportional energy saving, rather makes system unstable and thus hard
to learn for optimality.

3) SLO latency: We made Greeniac learn optimal config-
urations for our test service with different SLOs. For a SLO
of 500ms, the 4-server cluster could only service loads up
to 100rps before violating SLO targets. Greeniac had to rely
on big cores and consumed much higher energy compared
to the default 1s SLO, to meet the stricter latency target.
Since CPU energy usage is proportional to utilization, we
observe that, for 0.5s SLO, cluster utilization could barely
reach 60% before violating SLO margin. Thus stricter SLOs
cause Greeniac to use big cores with low utilization and leads
to higher energy usage and lower cluster efficiency. We also
observed that an extremely lenient SLO of 10s does not gain
any significant energy saving for the cluster. Rather that makes
it harder for Greeniac to learn the optimal configuration that
can meet latency targets. As shown in Fig 10, the tail latency
for the optimal configuration inferred by Greeniac for the 10s

SLO case is irregular for various loads. This is because a long
latency target allows for a long request wait queue and can
render the system unstable if service rate drops below arrival
rate. Besides, for large SLOs, a slight variations in request
load can greatly affect the tail latency and hence the reward.

VII. RELATED WORKS

Resource scaling [7], [17] and resource sharing [6], [8],
[17], [27] techniques proposed in recent years for improving
energy efficiency of LC-Services have limited effectiveness
due to lack of energy-proportionality in server processors.
More recent works such as Hipster [9], Octopus-Man [10] and
Haque et.al. [11] propose use of HMPs, which have proven to
be energy-efficient and widely deployed on mobile platforms.
Octopus-Man [10] uses a PID controller to estimate the HMP
service configurations based on recently observed tail latency.
Hipster [9] models the server system as a MDP to learn opti-
mal HMP configurations that meet the tail target for a single
server. Haque et.al. [11] employ PID controller to estimate
the threshold latency for switching requests from smaller to
bigger cores. However these works try to perform energy-
aware scheduling only at a server-level, thereby leaving scope
for significant saving at cluster-level achieved by Greeniac.

Energy-aware task scheduling has been widely studied [28]
for homogeneous clusters. Auto-scaling [12] techniques with
bin-packing scheduling has been popularly used in commer-
cial cloud platforms to reduce aggregate server level energy.
Such scaling has shown to gain significant energy saving
for low energy-proportional (EP) servers by powering off
idle servers. However with servers becoming more energy-
proportional [29], energy saving from such scaling techniques
are significantly lower with non-EP CPUs becoming the dom-
inant power consumer for rack machines. HMPs can further
improve the EP for such future servers. But due to lack of
HMP usage in clusters, such studies have not been performed
for HMP-servers. Energy efficient scheduling on HMPs have
been studied in [30] but do not consider tail latency targets.

Heterogeneous architectures such as GPUs [31] and FPGAs
have been employed to host LC-Services. Such accelerators
gain order of magnitude improvement in latency and energy
saving for applications. But they are only suitable for specific
applications and require enormous porting effort making them
unsuitable for generic online services.

VIII. CONCLUSIONS AND FUTURE WORK

We developed a cluster level task manager, Greeniac, for
fog-hosted LC-Services that uses reinforcement learning to
learn to achieve a minimal energy utilization while guarantee-
ing tail latency constraints. We exploit the processor hetero-
geneity in a HMP to save energy using small cores instead of
big cores at a cluster level. Our work saves significant energy
over previous works performing HMP-aware local scheduling
with traditional cluster schedulers. We performed several tests
to demonstrate the advantages of Greeniac.

Due to the generic nature of Greeniac, it can be extended
to HMP-based heterogeneous clusters and non-HMP clusters.

Our scaling studies demonstrate increased energy saving for
larger clusters. On larger clusters hosting even more LC-
Service instances, a hierarchical load balancing approach may
be employed to overcome practical scaling issues. We leave
these incremental studies for our future work.

REFERENCES

[1] F. Li, M. Vogler, M. ClaeBens, and S. Dustdar, “Efficient and scalable iot
service delivery on cloud,” in 2013 IEEE sixth international conference
on cloud computing. 1EEE, 2013, pp. 740-747.

[2] L. A. Barroso and U. Holzle, “The case for energy-proportional com-
puting,” 2007.

[3] J. Dolezal, Z. Becvar, and T. Zeman, “Performance evaluation of
computation offloading from mobile device to the edge of mobile
network,” in 2016 IEEE Conference on Standards for Communications
and Networking (CSCN). 1EEE, 2016, pp. 1-7.

[4] V. Valancius, N. Laoutaris, L. Massoulié, C. Diot, and P. Rodriguez,
“Greening the internet with nano data centers,” in Proceedings of the
Sth international conference on Emerging networking experiments and
technologies. ACM, 2009, pp. 37-48.

[5] A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey,
E. Masanet, N. Horner, 1. Azevedo, and W. Lintner, “United states data
center energy usage report,” 2016.

[6] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: Improving resource efficiency at scale,” in ACM SIGARCH
Computer Architecture News, vol. 43, no. 3. ACM, 2015, pp. 450-462.

[71 D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis,
“Towards energy proportionality for large-scale latency-critical work-
loads,” in 2014 ACM/IEEE 41st International Symposium on Computer
Architecture (ISCA). 1EEE, 2014, pp. 301-312.

[8] C. Delimitrou and C. Kozyrakis, “Hcloud: Resource-efficient provision-
ing in shared cloud systems,” Acm Sigplan Notices, vol. 51, no. 4, pp.
473-488, 2016.

[91 R. Nishtala, P. Carpenter, V. Petrucci, and X. Martorell, “Hipster:

Hybrid task manager for latency-critical cloud workloads,” in 2017 I[EEE

International Symposium on High Performance Computer Architecture

(HPCA). 1IEEE, 2017, pp. 409—420.

V. Petrucci, M. A. Laurenzano, J. Doherty, Y. Zhang, D. Mosse,

J. Mars, and L. Tang, “Octopus-man: Qos-driven task management

for heterogeneous multicores in warehouse-scale computers,” in 2015

IEEE 21st International Symposium on High Performance Computer

Architecture (HPCA). 1EEE, 2015, pp. 246-258.

M. E. Haque, Y. He, S. Elnikety, T. D. Nguyen, R. Bianchini, and

K. S. McKinley, “Exploiting heterogeneity for tail latency and energy

efficiency,” in Proceedings of the 50th Annual IEEE/ACM International

Symposium on Microarchitecture. ACM, 2017, pp. 625-638.

A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch,

“Autoscale: Dynamic, robust capacity management for multi-tier data

centers,” ACM Transactions on Computer Systems (TOCS), vol. 30,

no. 4, p. 14, 2012.

C.-H. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner, T. Wenisch,

J. Mars, L. Tang, and R. G. Dreslinski, “Adrenaline: Pinpointing and

reining in tail queries with quick voltage boosting,” in 2015 IEEE 21st

International Symposium on High Performance Computer Architecture

(HPCA). 1IEEE, 2015, pp. 271-282.

N. Chitlur, G. Srinivasa, S. Hahn, P. K. Gupta, D. Reddy, D. Koufaty,

P. Brett, A. Prabhakaran, L. Zhao, N. Ijih et al., “Quickia: Exploring

heterogeneous architectures on real prototypes,” in IEEE International

Symposium on High-Performance Comp Architecture. 1EEE, 2012, pp.

1-8.

“Odroid heterogeneous multi-core cluster and home

https://magazine.odroid.com/article/odroid-hc1-and-odroid-mc1/.

B. Jeff, “Big. little system architecture from arm: saving power through

heterogeneous multiprocessing and task context migration,” in Proceed-

ings of the 49th Annual Design Automation Conference. ACM, 2012,

pp. 1143-1146.

H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez, “Rubik:

Fast analytical power management for latency-critical systems,” in 2015

48th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO). IEEE, 2015, pp. 598-610.

[10]

(1]

[12]

[13]

[14]

[15] cloud,”

[16]

(17]

(18]

[19]

[20]
[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

G. Prekas, M. Primorac, A. Belay, C. Kozyrakis, and E. Bugnion,
“Energy proportionality and workload consolidation for latency-critical
applications,” in Proceedings of the Sixth ACM Symposium on Cloud
Computing. ACM, 2015, pp. 342-355.

A. Mazouz, A. Laurent, B. Pradelle, and W. Jalby, “Evaluation of cpu
frequency transition latency,” Computer Science-Research and Develop-
ment, vol. 29, no. 3-4, pp. 187-195, 2014.

“Apache lucene,” http://lucene.apache.org/.

M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: flexible, scalable schedulers for large compute clusters,” in
ACM European Conference on Computer Systems, 2013.

R. S. Sutton, A. G. Barto, F. Bach et al., Reinforcement learning: An
introduction. MIT press, 1998.

S. Shukla, https://github.com/sambitshukla/Greeniac.

R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and experience, vol. 41, no. 1, pp. 23-50, 2011.
“Simpy event driven python-based simulation,”
https://pypi.org/project/simpy/.

M. A. Suleman, M. Hashemi, C. Wilkerson, Y. N. Patt et al., “Mor-
phcore: An energy-efficient microarchitecture for high performance ilp
and high throughput tlp,” in Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE
Computer Society, 2012, pp. 305-316.

C. Delimitrou and C. Kozyrakis, “Quasar: resource-efficient and qos-
aware cluster management,” in ACM SIGARCH Computer Architecture
News, vol. 42, no. 1. ACM, 2014, pp. 127-144.

S. Singh and I. Chana, “A survey on resource scheduling in cloud
computing: Issues and challenges,” Journal of grid computing, vol. 14,
no. 2, pp. 217-264, 2016.

D. Wong, “Peak efficiency aware scheduling for highly energy propor-
tional servers,” in 2016 ACM/IEEE 43rd Annual International Sympo-
sium on Computer Architecture (ISCA). 1EEE, 2016, pp. 481-492.

E. D. Sozzo, G. C. Durelli, E. Trainiti, A. Miele, M. D. Santambrogio,
and C. Bolchini, “Workload-aware power optimization strategy for
asymmetric multiprocessors,” in Proceedings of the 2016 Conference
on Design, Automation & Test in Europe. EDA Consortium, 2016, pp.
531-534.

H. Yang, Q. Chen, M. Riaz, Z. Luan, L. Tang, and J. Mars, “Powerchief:
Intelligent power allocation for multi-stage applications to improve re-
sponsiveness on power constrained cmp,” in ACM SIGARCH Computer
Architecture News, vol. 45, no. 2. ACM, 2017, pp. 133-146.

