
Co-optimizing Latency and Energy for IoT services
using HMP servers in Fog Clusters

Sambit Shukla
sshukla@ucdavis.edu

Dipak Ghosal
dghosal@ucdavis.edu

Kesheng Wu
kwu@lbl.gov

Alex Sim
asim@lbl.gov

Matthew Farrens
mkfarrens@ucdavis.edu

Abstract—Fog Computing has proved to be a relatively energy-
efficient alternative to cloud computing for guaranteeing latency
requirements of Latency-critical (LC) IoT services. However, low
energy-efficiency of homogeneous multi-core server processors is
a major contributor to this energy wastage. Recent studies have
shown that Heterogeneous Multi-core Processors (HMPs) can
improve energy efficiency of fog servers by adapting to dynamic
load changes of LC-services. However, proposed approaches
optimize energy only at a single server level. In our work, we
demonstrate that optimization at the cluster-level across many
HMP-servers can offer much greater energy savings through
optimal work distribution across the HMP-servers while still
guaranteeing the Service Level Objectives (SLO) of latency-
critical services. In this paper, we present Greeniac, a cluster-level
task manager employing machine learning techniques to identify
the optimal configurations at the server- and cluster-level for
different workloads. We develop a server-level service scheduler
and a cluster-level load balancing module to assign services and
distribute tasks across HMP servers based on configurations
determined using Reinforcement Learning. While meeting the
same SLO targets, Greeniac achieves up to 28% energy saving
compared to best-case cluster scheduling techniques with local
HMP-aware scheduling on a 4-server fog cluster, with potentially
larger savings in a larger cluster.

I. INTRODUCTION

Onset of the IoT-era has triggered the deployment of sensors
and usage of interactive devices in numerous domains such as
vehicular networks, enterprise networks, home entertainment,
and health care facilities. These domains are increasingly
employing latency-critical (LC) applications such as sensor-
based actuation, augmented/virtual reality, image recognition,
online translation etc. from which end-users expect and re-
quire low (sub-second) and predictable response time. Due to
their growing resource-demands, LC-applications have been
recently migrated from resource-constrained end-devices to
remote cloud platforms [1]. But unpredictable and long net-
work delays pose significant challenge for cloud services. The
cloud providers have to guarantee the servicing of LC-requests
within a much smaller latency headroom. This mandates over-
provisioning of server resources, thereby sacrificing server
energy efficiency [2]. Recent studies [3], [4] show that Fog
Computing paradigm can quell these LC-service woes by
leveraging fog’s network vicinity to end-devices. Low propa-
gation delays leave larger headroom for servicing requests.

But unlike the cloud domain, pricing models for fog
computing services are not well-defined. In fact, end-users
themselves might be burdened with the entire Operational cost
(OpEx) for many fog-deployment use cases. Recent studies

have revealed that energy usage by server CPUs is the most
significant contributor [5] to the large OpEx costs in clouds.
Thus several studies on cloud LC-services have proposed vari-
ous CPU resource management and scheduling strategies [6]–
[8] to minimize CPU energy usage while still satisfying ser-
vice time objectives. Similar Latency-Energy co-optimization
strategies can also be applied to improve efficiency of fog
computing and reduce OpEx costs. However, unlike clouds,
which mostly employ powerful homogeneous multicore-based
servers, fog computing platforms enjoy the additional flexibil-
ity of using relatively energy-efficient, cheaper, but less pow-
erful Heterogeneous multi-core processor (HMP) platforms.
However, HMPs introduce additional opportunities as well as
challenges for the co-optimization problem.

Recent studies [9]–[11] have found HMPs to be especially
suitable for efficient execution of LC-Services. HMPs can
process tasks during heavy loads with the fast but power-
hungry big cores, and switch these big cores to low-power
sleep states whenever slower but energy-efficient small cores
can meet latency objectives for the request load. Prior works
have translated the co-optimization problem into the following
scheduling problem: For a given request load at a single HMP-
server,

1) How many LC-Service instances need to be run?
2) On which cores (big and/or small) they need to be run?

However, these proposed approaches only perform task
scheduling on a small set of big and small cores within a single
server. The server-level local optimization is a simple but sub-
optimal approach compared to a global cluster-level approach.
The energy saving could be greatly improved by viewing the
entire cluster as a single server and scheduling over a large set
of heterogeneous cores spread across multiple HMP servers.
Our study show that using a cluster-level scheduling strategy
coupled with an HMP-aware load balancing across servers
saves significantly more energy while meeting the LC-request
latency targets.

In this work, we present Greeniac, a task manager for LC-
Services on HMP-based fog servers. Greeniac is a service-
agnostic task scheduler that automatically learns the best run-
time distribution of incoming LC-Service requests among
HMP servers and individual cores to maximize energy savings
while meeting response time objectives. The specific contri-
butions of our work are as follows:

1) We propose a two-level Reinforcement Learning (RL)



agent to learn the optimal set of cores (from set of
all cores available in the cluster) on which LC-Service
instances must be hosted, at any given request load.

2) At each HMP server, we implement a Service Scheduler
that employs frequency scaling, service instance scal-
ing, and instance-to-core mapping suggested by the RL
agent.

3) We design an HMP-aware Load Balancer, that exploits
feedback from RL agents to perform an HMP-aware
run-time request distribution across HMP servers hosting
active LC-Service instances.

4) We study the impact of various system and input pa-
rameters such as cluster size, HMP configuration, LC-
workload characteristic to demonstrate the advantages of
Greeniac over prior works.

Our experiments show that Greeniac saves up to 28% of core
energy over traditional server-level scheduling approaches on
a 4-server cluster with potentially higher saving for larger
clusters. To the best of our knowledge no such solution has
been proposed before.

II. LC SERVICES ON FOG CLUSTERS

Fog computing paradigm offers several advantages over
cloud computing paradigm for LC-Services. Unlike few data-
intensive services, such as online-search, most of the newer
and popular LC-Services are primarily compute-intensive and
can be aptly serviced by a single server in small fog clusters.
However, it also introduces new challenges for fog providers.

Firstly, the vicinity of the fog clusters to the IoT-devices
significantly reduces unpredictable and long network delays.
This leaves larger response time headroom and offers op-
portunity for more energy-efficient task scheduling at fog
servers. This also widens the spectrum of LC-applications to
those requiring shorter response latency or higher computation
overhead. Hence latency objectives for services need to re-
calibrated. Secondly, fog clusters typically service IoT clients
in a specific domain. This reduces resource interference effects
observed in cloud [6] both at the network and the server
levels. However, instead of co-execution strategies [6] used
to improve cloud energy-efficiency, solo-execution strategies
have to be relied upon for fog servers. Thirdly, since fog
deployments are on smaller scale, they can be domain-specific
and use efficient, application-specific compute platforms. But
the small scale and fewer number of aggregate requests hamper
the adoption of auto-scaling [12] techniques used for large
clouds. This also limits the scope for any service-specific
customization [13]. Hence novel application-agnostic resource
management techniques are desired for efficient service exe-
cution on fog clusters. Finally, due to the small client base
serviced by fogs, request traffic has relatively higher variability
compared to cloud. Hence request scheduling approach must
dynamically adapt to meet the resource requirements of the
varying request load.

Apart from the above-mentioned fog-specific challenges,
LC-Service hosts face the following generic challenges.

A. Latency requirements

Service providers are required to guarantee certain Service
Level Objective (SLO) to prevent deterioration of Quality
of Experience (QoE) for the end-users. For instance, a SLO
requiring 95th percentile tail latency (or P95) target of 1 sec
means service provider must ensure at least 95% of client
requests are serviced within 1 sec of request arrival.

B. Latency-energy co-optimization

To meet SLO for unpredictable request loads, service
providers over-provision cluster resources resulting in high
energy usage. But low energy-proportionality in server proces-
sors result in significant energy wastage by underutilized active
servers [2] during non-peak traffic periods. Thus minimizing
cluster energy usage under latency constraints is a challenging
problem. Higher energy efficiency (requests processed per unit
energy) of cluster translates to a desirable lower operational
expense for service providers.

III. THE CASE FOR HMPS

HMP SoCs (e.g., Snapdragon, Exynos) have been pop-
ular with mobile devices for energy-efficient processing.
Some HMP-based servers (e.g. Intel QuickIA [14], Odroid-
MC1 [15]) are also gaining popularity in clusters. Unlike
power-hungry homogeneous multi-cores, HMPs can offer im-
proved energy efficiency by adapting to load changes. Big-
cores, with large sophisticated pipelines running at higher fre-
quency, consume significantly higher energy compared to the
smaller cores with slower in-order processing clocked at lower
frequency. This architectural heterogeneity can be exploited to
dynamically adapt to the varying resource requirements of LC-
services.

A. Using HMPs for Fog Computing

Wide use of HMPs in mobile computing encourages its
adoption in non-edge fog domain too. For fog deployments
to be economically sustainable, clusters must have low infras-
tructural, capital and operational costs. Hence the small form
factor, affordable equipment cost and low energy footprint
of the modern HMP-based compute platforms are motivating
factors for employing HMPs, both on mobile and fixed server
platforms. Our work further demonstrates the energy-saving
opportunity with HMP-cores on fog servers.

B. Using HMPs for LC-Services

Recently, use of single-ISA HMPs [14], [16] have been
shown to achieve significant energy savings by employing
powerful big cores during high load and low-power small
cores during low loads [9]–[11]. Figure 1 depicts different
scenario for load-dependent scheduling on big and small cores.
A resource manager can employ a mix of two techniques to
maximize energy saving: core scaling and frequency scaling.

Core scaling involves scaling the number of service in-
stances based on request load. When load increases threatening
SLO target violation, additional instance may be scheduled
on an idle small or big core. When the load decreases, some



Fig. 1. Different Service Configurations (SCs) optimal for different loads.
Big core enter sleep mode at low load. Core scaling with preference for small
cores helps to meet SLO target optimally.

instances may be released and cores switched to low-power
sleep modes. The option that maximizes energy saving while
still meeting the SLO target for loads would be the optimal
choice for a good resource manager. However identifying the
optimal choice requires exploration since it would be both
workload type and HMP architecture dependent.

When executing an LC-Service instance, dynamically scal-
ing core frequency to match the request load has been shown to
achieve energy savings [17], [18]. Since frequency scaling only
affects dynamic power consumption of cores, savings are rela-
tively lower compared to core scaling techniques, especially on
big cores that consume high static power. Since the frequency
switching time is of the order of sub-microsecond [19], this
technique can be employed for LC-Services (as in Rubik [17]).

C. Cluster-level energy saving opportunity

While server-level resource management can achieve energy
saving on a HMP server, in a cluster with multiple servers, a
server-local task/resource manager can only achieve a local
energy optimum. We believe, energy savings could be signif-
icantly increased with a cluster-level resource manager that is
aware of all the compute-resources available in the cluster. To
maximize energy savings, two techniques must be tuned in
tandem: service scheduling and load balancing.

Fig. 2. Energy saving opportunity on a 2B-2S HMP-server cluster @50rps.
Server-level optimization (left) with 12.5rps per server requires 4B and 4S
cores per cluster with low core utilization. Cluster-level optimization (right)
uses fewer big cores (1B and 6S cores) with high core utilization and lower
aggregate energy.

1) Service scheduling: At the cluster-level, number of pos-
sible combinations big and small cores are large. A cluster
task scheduler that could identify the most efficient core
combination for the current cluster load and elastically initiates

or terminates the services on those cores/servers can maximize
energy efficiency of the cluster. To verify, we subjected a load
of 50 requests per second (rps) for Apache Lucene [20] to
a 4-server cluster with 2B-2S HMP configurations. Assuming
a HMP-aware local task-scheduling (as in [9]), requests were
equally distributed as per least-loaded strategy [21]. Fig 2(A)
shows 2 service instances (1 big and 1 small core) required
to meet SLO at each server. Additionally core utilization is
low and there is significant energy wastage (Fig 2(B)). With
cluster-level HMP-awareness, as implemented in Greeniac, a
cluster-level efficient configuration consisting of more small
cores and fewer big cores (Fig. 2(C)) can be used to host
services, meet SLO and lower aggregate cluster energy usage
(as shown in Fig. 2(D)).

2) Load balancing: Once efficient core combination is
determined, it is important to optimally divide the aggregate
cluster load across the instances to guarantee the latency
requirements. Load balancing of requests across HMP servers
ought to be proportional to each servers aggregate service
capacity. Additionally, if each server meets the tail latency
SLO for its hosted service instances, aggregate latency ob-
jective for the entire cluster is implicitly met. In our work,
we dynamically identify the optimal tuning options for both
techniques within a cluster-wide scheduler to maximize cluster
energy savings.

IV. GREENIAC: A SMART TASK MANAGER

Greeniac consists of three primary components: a learning
agent, a service scheduler, and a load balancer. The learn-
ing agent employs a two-level Reinforcement Learning (RL)
approach and comprises of a Server-level Learning Agent
(SL-Agent) that runs on the individual HMP-servers and
a Cluster-level Learning Agent (CL-Agent) which runs on
the Orchestrator Node. The overall architecture is shown in
Figure 3. For different request loads, the SL-Agent learns the
service configuration (SC) that minimizes the energy usage
while meeting tail latency requirement for LC-Services. A SC
is a list of active cores in the server and their corresponding
frequencies. This information is then used by the CL-Agent
to learn the best cluster-wide service configuration (CSC) for
different aggregate request loads observed by the cluster. CSC
is the collection of optimal SCs for all servers in the cluster.
The Service scheduler dynamically employs service manage-
ment at server-level to implement configuration determined
by the learning agent. The load balancer is responsible for
distributing the requests among the active servers. The three
components execute in a coordinated fashion to maximize
energy savings of cluster under a given SLO target. We
describe some details of the above three components in the
following subsections.

A. Learning Agent

In reinforcement learning, the system is modeled as a
Markov Decision Process (MDP) consisting of a set of states
(s ∈ S) and actions (a ∈ A). A state is a snapshot of all char-
acteristic variables that define the system. An action enables



Fig. 3. Greeniac task management on a HMP-cluster. Server-level SL-Agents
learn optimal local SC and update to CL-Agent, which then learns optimal
CSC. CL-Agent drives local Service Schedulers and central Load Balancer to
activate the optimal CSC and distributes load proportionally every epoch.

transition between system states and there is a reward for each
action. We formulate our energy optimization problem as a
Multi-Armed Bandit (MAB) problem [22]. A MAB consists of
a single state (bandit) and multiple actions (arms) wherein an
agent learns for each state which action returns the maximum
average reward.

The Learning Agent employs a 2-level learning strategy.
In first stage, it employs SL-Agent at each server to learn the
optimal SCs. For this stage, a state is defined to be the average
arrival rate of LC-Service requests at a server. The action is the
choice of a SC in the server. Note that in our work, we assume
that each active core hosts a single LC-Service instance. After
taking an action, the agent waits for a pre-defined time-period
to measure the achieved tail latency and energy usage based
on which it calculates the reward. The SL-agent learns the
best action (SC) for the current state (load) from exploration
of various action choices in run-time. Optimal SCs learned by
SL-Agents are reported to the CL-Agent. The CL-Agent learns
the optimal CSC for each load by employing similar learning
strategy. For this stage, state is defined by average arrival rate
at the cluster and action is a choice of CSC. The CSC with
highest calculated reward, is identified as the optimal CSC for
a given cluster load. Post learning completion, optimal CSCs
denote the cluster-wide list of cores (and their corresponding
frequencies) that need to host LC-Service instances in order
minimize energy usage of entire cluster while still meeting the
SLO target for current request load at the cluster.

The Learning Agent uses several heuristics (e.g. for, action-
space pruning, identifying initial action for learning, choosing
next action for learning based on current reward, etc.) to
speed up the learning process, both in SL-Agent and CL-
Agent. The state space is discretized into fine-grained bin
sizes to avoid burden of continuous space learning. Reward
functions in both stages take the measured P95 and energy
usage into account to calculate the reward for each state-action
pair. Details regarding the learning algorithm, the optimization

techniques used and their implementation can be found in
[23]. Though numerous other learning-based approaches exist,
comparing them with our proposed learning strategy is beyond
the scope of this paper.

B. Service Scheduler

The SC update received by SL-Agents at each epoch con-
sists information about the number of big and small cores
within a HMP to be activated and their corresponding core
frequencies. SL-Agent relays this information to the Service
Scheduler module. The scheduler is responsible for service
instance creation/deletion on specified and core frequency
scaling. When an updated SC requires an additional core, a
new LC-Service instance is created and affinitized to the new
core by SS. This closely resembles a light-weight container
instantiation in cloud/fog domain. Subsequently any new or
waiting request is scheduled on the new service instance in
a FCFS fashion i.e. the service instance with longest idle
period receives next request. For removing an existing core
from prior SC, no additional requests are scheduled to the
corresponding service instance and any executing request
is allowed to be serviced till completion. Subsequently the
instance is deleted by Scheduler when the instance becomes
inactive. The Scheduler also performs frequency scaling on the
active cores based on updated SC. Since frequency scaling
using Linux governor takes only microseconds to activate,
the update and the corresponding scaling effect is almost
instantaneous.

C. Load Balancer

A Load Balancer (LB) routine is responsible for distributing
requests arriving at the gateway server across the HMP servers.
The CL-Agent maintains the average throughput information
of each explored service configuration during the learning
phase. Upon identifying the optimal next epoch CSC based on
last epoch load, it shares the throughput information for each
HMP-server’s SC with the LB. LB infers the load fraction of
each server based on the throughput ratios between them. It
then fits the ratios in to normalized scale window of 0 to 1.
For every request, LB generates a random number between
0 and 1, identifies which server it corresponds to from the
load fraction window and forwards the request to the identified
server.

This throughput-proportional load balancing is crucial for
energy-optimal load processing at individual HMP-servers.
Since each server is configured for load-specific optimal SCs
for the next epoch, an improper balancing can cause tail
violations in some servers and lower efficiency in others.
However as shown in our studies later (Fig.5), the random
number generation approach balances the load across all HMP-
servers optimally and meets the latency requirements at all
serviceable load ranges for the cluster.

V. EXPERIMENTAL APPROACH

Since public cloud currently offer only homogeneous pro-
cessor based server instances, we had to rely on simulations



to study the effectiveness of Greeniac. Furthermore, none
of the available cloudlet simulators (e.g., CloudSim [24] or
its extensions) support HMP servers. To support HMP-aware
execution and dynamic energy usage estimation for the cluster,
we developed a custom in-house simulator, HMP-ClusterSim
(described below), based on SimPy [25] and instrumented it
with our real system measurements.

For our experiments, we also addressed the fog-specific
challenges discussed in Section II. We performed our ex-
periment on small clusters representative of fog clusters. We
avoided co-execution scenarios by dedicating a single core
for each LC-Service instance. Latency objectives were also
adjusted to a longer SLO of 1 sec (instead of sub-second) for
our studies.

A. HMP-ClusterSim Simulator

Our simulator mimics a typical high-bandwidth cluster with
negligible network delay. Like CloudSim, our simulator is
event-driven. A single server instance acts as a gateway (or
broker [24]) and remaining servers as single-HMP nodes
hosting a LC-Service instance (or Task cloudlets [24]) at each
core (1 core per VM/container). We assume sufficient memory
and network bandwidth at each server and neglect intra-
and inter-instance interference. The gateway server generates
requests following a Poisson process at specified mean rate;
requests are distributed across the nodes following our load
balancing logic (Section IV-C). Within each server, a service
scheduler distributes requests from a centralized queue using
FIFO among the scheduler-activated cores (Section IV-B). To
model service time variations, task length follows a log-normal
distribution (µ=0, σ=0.25) scaled by the average service time.
The number of big and small cores within a HMP-server and
their individual throughput are assumed to scale linearly with
frequency scaling ignoring memory hierarchy bottlenecks and
interference. Responses are sent back to gateway server to
record the response latency. P95 for all requests received per
sampling epoch (set at 100s) is calculated at the end of every
epoch. P95 of 1 sec is set as the default SLO. For RL, each
state represents a bin of 10 requests per second (rps). The
results discussed below are based on a 4-server cluster with
each server containing a single HMP with 2 big (2B) and 2
small (2S) cores.

B. Incorporating real system measurements

We performed our initial study on a high-end Xeon E5-
2637 (big-core) powered Dell Power-Edge Server and an Atom
C3558 (small-core) powered Super-micro Server. From both
platforms, we collected the averaged service time, through-
put, idle power and dynamic power values at various core
frequency levels for a single service instance of Apache
Lucene [20]. These data were used in the model of the big and
small core in HMP-ClusterSim. These statistics will vary with
the type of processors, server configuration and application.
Though, we use the representative values for a single setup to
demonstrate the effectiveness of our proposed approach, scal-
ing and sensitivity studies performed for variations in server

configuration and application characteristics are presented in
the following section.

.

VI. RESULTS AND OBSERVATIONS

In this section we first demonstrate the higher energy saving
achieved by Greeniac compared to popular cluster scheduling
approaches. Then we study the impact of scaling and LC-
Service application characteristics on energy saving.

A. Cluster-level saving

To demonstrate the gains from cluster scheduling we com-
pared Greeniac against two popular cluster scheduling ap-
proaches: bin-packing and least-loaded. Bin-packing attempts
to maximize utilization of each active server before scheduling
services on an inactive server. On the contrary least-loaded
dispatches a request to the least-loaded server thereby trying to
distribute services and request equally across all servers. For
a fair comparison, we implemented the Hipster learning [9]
at the individual server level for both scheduling approaches
to ensure scheduling at each server to be HMP-aware, SLO
guaranteed and energy-optimal for the observed server load.

Fig. 4. Normalized energy usage for various HMP-aware scheduling ap-
proaches. Greeniac has higher energy saving (up to 28%) over locally HMP-
aware approaches for all load ranges

Figure 4 shows the energy usage for the 3 approaches
normalized by the maximum cluster energy usage for HMPs.
The line shows the percentage energy saving of Greeniac with
respect to the most efficient locally HMP-aware scheduling
strategy at the corresponding load. Greeniac achieved a higher
energy saving for a large range of load values. Greeniac gained
high HMP energy saving for the low and mid range load
values that typically represent the majority of load traffic
periods. At very high loads, most HMP cores in all servers
execute LC-Service instances with high utilization and all
cluster scheduling techniques perform almost identically. At
low loads, least-loaded distributes tasks equally across all 4
servers each receiving 1/4th of cluster load, which can be
serviced by small cores within tail latency (TL) constraints.
As load is increased, at a certain threshold cluster load level,
every server requires to schedule service on big cores to
meet its tail target, resulting in poor power savings due to
a large number of under-utilized big cores being active across
the cluster. On the contrary, bin-packing tries to maximize




