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ABSTRACT
To ensure reliability, power transformers are monitored for
partial discharge (PD) events, which are symptoms of trans-
former failure. Since failures can have catastrophic cascading
consequences, it is critical to preempt them as early as possi-
ble. Our goal is to classify PDs as corona, floating, particle, or
void, to gain an understanding of the failure location.

Using phase resolved PD signal data, we create a small set
of features, which can be used to classify PDs with high accu-
racy. This set of features consists of the total magnitude, the
maximum magnitude, and the length of the longest empty
band. These features represent the entire signal and not just
a single phase, so the feature set has a fixed size and is easily
comprehensible. With both Random Forest and SVM clas-
sification methods, we attain a 99% classification accuracy,
which is significantly higher than classification using phase
based feature sets such as phase magnitude. Furthermore, we
develop a stacking ensemble to combine several classifica-
tion models, resulting in a superior model that outperforms
existing methods in both accuracy and variance.
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1 INTRODUCTION
Power transformers are a key element of electric power in-
frastructures. While they have become more reliable, trans-
formers are still susceptible to failure, which has severe
consequences for both operators and users. To detect and
prevent such failures within the large and complex power
transformers, extensive online diagnostic systems have been
developed [2]. This work focuses on analyzing data produced
from one such systems to gain information about the failure.

Insulation failure is themost frequent cause of transformer
failure [12]. Weakness in the insulation system makes trans-
formers susceptible to external events such as lightning
strikes, switching transients, and short-circuits. If the trans-
former insulation degrades to the point that it cannot with-
stand system events such as short-circuit faults or transient
over-voltages [11], an internal arcing event known as partial
discharge (PD) can occur. As such, detecting PD events would
alert transformer operators of imminent transformer failure.
Suchmeasures could also protect other equipment connected
to the transformers, such as Gas Insulation Switchgear (GIS)
and switchboards in the substation, which are also expensive
components of the electric power grid.

Certain types of PD are correlated with different parts of
the transformer. For example, in some transformers, corona
PDs are located in the transformer bushing or insulation
material. Therefore, determining the type of PD provides
a rough location for the PD source. Machine classification
is a very useful way to resolve transformer problems early
on, and can be used by transformer operators to determine
whether to halt transformer operation, all without the need
for careful examination by engineers. By classifying the PD,
we narrow down the location of the PD. We can then install
UHF sensors around the rough position to collect PD signals
to identify the precise position of the PD for repair.

In this paper, we consider four types of PDs - corona, float-
ing, particle, and void, with the goal of analyzing PD signal
data to identify what type of PD is present. The data we
examine is phase resolved, meaning it is divided into cy-
cles of a number of phases. Our data samples consist of 3840
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points divided into 60 cycles of 64 phases. We examine actual
transformer data and test several feature sets and classifica-
tion methods to classify PD events with high accuracy. The
contributions of our work are as follows:

• Develop a set of meta-features (total magnitude, max-
imum magnitude, and the length of the longest empty
band) which are more comprehensible than standard
features.

• Test models such as Logistic Regression and Random
Forest for PD classification, and combine them to pro-
duce an ensemble model that performs better than
any single classification method.

2 RELATEDWORKS
This work focuses on classifying PDs based on voltage data.
These four PD types occur in power equipment such as trans-
formers and GIS (Gas Insulation Switchgear). In order to clas-
sify and analyze the characteristics of the PD types, many
experiments have been done with GIS, which has a simpler
structure than transformers.

In [9], acoustic methods are proposed to detect corona PDs
in live parts of GIS. By analyzing the effect on the particle
motion and discharge characteristics in the GIS, the discharge
characteristic spectrum of linear particles with tip coronawas
obtained, and used widely for particle pattern recognition
[6]. In [13], five different types of defects were implemented
artificially in transformer models to investigate the resulting
PD signal characteristics. However, there was a limitation as
different transformers can have different failures depending
on the transformer structure.
Unlike the above experiments, which involve manually

examining signal characteristics, machine learning based PD
classification methods consist of extracting features from
the data and training models on those features. There are
several existing feature sets such as statistical parameters or
fractal features [7] or partial power [14]. Some of the more
common feature sets are phase magnitude, which consists of
information regarding the magnitude of each phase of the
data [3, 10] and discrete wavelet transform [3, 4, 10].
Since we are working with actual transformer data as

opposed to simulated data as in the above works, we im-
plement methods to reduce data noise. We also present a
smaller feature set of fixed size to represent the PD signal
data, significantly simplifying the model and making the
model more comprehensible.
For the classification model, the primary methods that

have been tested are SVM [3, 4, 14] and Neural Networks
[4, 7, 10]. A variation of SVM, Fuzzy SVM (FSVM), was
also explored in [10]. FSVM allows for fuzzy membership in
classes to resolve unclassifiable regions [1, 5, 8] by weighting
the samples based on distance from the class center [10]. In
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Figure 1: Heatmaps of Sample PDs

addition to these methods, we also experiment with Random
Forest, Logistic Regression, and Gradient Boosting. In addi-
tion, we combine these methods using stacking [15] to create
an ensemble that utilizes the strengths of each model.

3 METHODS
The goal of our work is to classify four types of PD - corona,
floating, particle, and void. We accomplish this in two steps:

• Extract features to represent signal data
• Train machine learning model on features

Our data is 328 PD signals gathered by the transformer
sensors labelled as 85 corona, 99 floating, 80 particle, and
64 void. Each data sample contains 3840 magnitude points
over one second. These points are broken up into 60 cycles
of 64 phases. Figure 1 shows heatmaps of each type of PD.
The x and y axes indicate the cycle and phase and the color
indicates the magnitude at that time.

Feature Engineering
Phase Magnitude. We notice that there are clear patterns

along the phases of each data sample. For instance the corona
PD has a single thick band while the particle PD is scattered
lightly across most of the phases. Thus, we compute the total
phase magnitude for each type of PD. The phase magnitude
is the sum of the magnitudes of each phase, given by

mi =

60∑
j=1

Mi j

m̄p = {m1, ...,m64}
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Figure 2: Phase Magnitudes of Different PD Types
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Figure 3: Phase Magnitude Alignment

whereM ∈ R64∗60 is the raw magnitude data,mi is the phase
magnitude for phase i , and m̄p ∈ R64 is the phase magnitude
feature set, resulting in 64 magnitudes. Based on the distinct
phase magnitude patterns as shown in Figure 2, we can
classify the PD data.

There is significant misalignment in many of the samples,
where the signal does not start in the same phase as other
samples. This causes phase offsets, introducing noise to the
model training. Figure 3a illustrates the phase offset in the
floating PD data. The outlier data samples lie outside of the
regular phase magnitude peaks, resulting in many single
sample peaks across multiple phases. To address these de-
viations, we implement phase alignment preprocessing by
identifying the maximum phase magnitude and rotating that
point to the start of the cycle. While there are still a few
outliers, most have been removed and the remaining effect
is significantly diminished as shown in Figure 3b.

Meta-Features. Another set of features we examine are:
• the maximum magnitude out of all 3840 points
• the total magnitude of all 3840 points
• the length of the largest empty phase band
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Figure 4: PD Samples Plotted along Features

Rather than modeling the magnitude at each point or each
phase, we focus on three features that describe the overall
data. This feature set does not scale with the number of
phases in the data, and it is more comprehensible.
The maximum magnitude and total magnitude features

are similar to features in [10]. However, rather than calculat-
ing the values for each phase, we consider the entire data. We
also average over the three largest magnitudes to diminish
the effect of single high magnitude outliers. Based on just
these two features, we were able to classify the PDs fairly
accurately, except for the particle PD, which had some over-
lap with the corona PDs. This observation is illustrated in
Figure 4a, where the particle and corona clusters are very
close and have some overlap. To address this, we added a new
feature, the length of the longest empty phase band, which
isolates the particle PDs much better, as shown in Figure 4b.
With this feature, the particle cluster is completely separated.
In addition to these three features, we also tested several
other features including total density, although without im-
provement.
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Figure 5: Band of Empty Phases

The length of the longest empty band quantifies the
distribution of the signal. We define an empty band as con-
secutive phases without significant magnitude as shown in
Figure 5. Significant magnitude is defined as greater than
40% of the maximum magnitude. This value was selected
since it eliminated some outliers, which occurred at the orig-
inal significance threshold of 50%. This parameter can be
adjusted based on the data.
The value of this feature is the length of the longest run

of empty phases, which can be computed by

empty = np.sum(np.where(align_phase(data) > 0.4 * np.
max(data), 1, 0), axis=1)

return max(sum(1 for _ in l) for n, l in itertools.
groupby(empty))

This feature isolates particle PDs, which are scattered across
many phases, resulting in very short empty phase bands.

The meta-features are plotted with the PD type in Figure 4,
which shows that the data points are almost separable based
on these three features. Based on these plots, we also observe
that several PD types can be sub-classified. For example,
there are three types of corona PDs, as shown in Figure 6,
based on the phase at which the signal occurs. However, since
we are only looking at the four primary PD classifications,
we do not address the subclassifications in this project.

Prediction Models
We test several classification methods, including Gradient
Boosting, Random Forest, Logistic Regression, Neural Net-
works, SVM and FSVM. The Fuzzy SVM is a sample-weighted
SVM with the weights as an additional feature. The method
we used for sample weighting is based on the distance be-
tween the point and the cluster center similar to [10].
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Figure 6: Corona PD Subtypes

For each of our experiments, we split our dataset into
training and validation sets (60:40). We train the models on
the training set and score prediction accuracy based on the
validation set. For the model score, we calculate the total
accuracy and the recall by PD type. The total accuracy is the
percentage of samples that have the right label. The recall
is a measure of the number of a certain PD type that are
classified correctly. This process is repeated 100 times for
each model and the results are averaged to achieve more
consistent results. We also consider the standard deviation
of the prediction accuracies in the 100 trials.

Stacking
Certain models predict certain PD types better. To take ad-
vantage of the strengths of each model, we implement a
stacking ensemble classifier based on the meta-features. A
stacking model is comprised of two levels of classification.
We train a set of level one classifiers as in our previous ex-
periments. The outputs of these classifiers are then used
as features for the level two classifier. The structure of our
stacking model is discussed further in Section 4.

Stacking ensembles allow for the combination of different
classifiers. While other simpler ensembles, such as averag-
ing or majority voting can do this as well, these ensembles
weigh each classifier equally. In our case, Logistic Regression
classifies corona PDs very well, so we want to value the clas-
sification of Logistic Regression more than other models for
corona classification, but value other models more for other
PD types. Stacking handles this by training a second level
classifier to weigh the importance of each level one classifier.
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Several parameters are involved in designing the stack-
ing classifier such as what classification methods to use in
each level and what features to extract from the level one
classifiers. We consider Gradient Boosting, Random Forest,
Logistic Regression, and SVM for the classifiers, since they
demonstrate reasonable classification accuracy. While Fuzzy
SVM also performed well, it requires an additional feature
(sample weights), which makes it difficult to fit into our
stacking framework. It also does not offer any advantages in
classification accuracy over SVM. Another model to consider
is the classifier used to combine the results of the level one
classifiers. For this, we consider Logistic Regression, which
is a standard choice, and Random Forest.
The feature parameters that we consider are 1) whether

to use the probabilities or prediction from the level one clas-
sifiers and 2) whether to include the original features in the
stacking model. The prediction is the PD type that each level
one classifier determines a sample to be. This option would
result in one additional feature from each level one classifier.
The probabilities are the probabilities for a sample to be each
of the four PDs determined by the classifier. For example, a
sample could have a 70% probability of being a corona PD,
a 5% probability of being a floating PD, a 5% probability of
being a void, and a 20% probability of being a particle PD.
While using the prediction as a feature would result in corona
being selected, using the four probabilities as features pro-
vides more specific information, allowing for more precise
weighting. This option requires that the level one classifiers
be probabilistic classifiers, which is true of all of the methods
we are testing. Including the original features in the stacking
model adds additional information for the stacking classifier
at the cost of diluting the results of the level one classifiers.
Using the original features also provides more information
to help the second level classifier weight the outputs of the
first level classifiers. The second level classifier can weight
classifier outputs based on the values of the original features.

4 EXPERIMENTAL RESULTS
Phase Magnitude
We trained various classification models on the 328 PD sam-
ples using several feature sets as shown in Table 1. Using
unaligned phase magnitude, we attain a fairly high classifica-
tion accuracy of about 94%. Random Forest performs slightly
better than the next best methods - Gradient Boosting, SVM,
and FSVM.With phase alignment, the classification accuracy
improves by about 3% to 97%. SVM and FSVM achieve similar
classification accuracies to Random Forest with this feature
set. On the other hand, Gradient Boosting performs worse
with phase alignment. In both cases, Logistic Regression is
slightly behind all of the other methods, and Neural Net-
works perform quite poorly, due to insufficient data samples.

Figure 7: Diagram of Final Stacking Classifier

With the meta-features, the prediction accuracy for Ran-
dom Forest, SVM, and FSVM are all similar, as seen in Table 1.
Gradient Boosting and Logistic Regression also attain compa-
rable accuracies. Again, the Neural Network has significantly
lower classification accuracy than all other methods. Com-
pared to the phase magnitude feature sets, the meta-features
have higher classification accuracy and lower variance.

To better understand the model performance, we examine
the classification model performance by PD type. Table 2
represents the results of this analysis. We can see that SVM,
FSVM, and Random Forest are fairly strong classifiers overall.
However, Logistic Regression performs better in classifying
only corona PDs. We also look at the precision of the classi-
fications to understand the errors, which showed that void
PDs tend to be misclassified as floating PDs.

Stacking
Due to the unique strengths of the various models, we com-
bine them into an ensemble using stacking. We try several
parameter variations of the stacking classifier, but our selec-
tion is based on the observation that Logistic Regression has
much better corona classification scores, and Random Forest
and Gradient Boosting have more consistent floating classi-
fication scores. The parameters are the classifiers to stack,
the model to stack with (meta-classifier), whether to use
the model probabilities as features, and whether to include
the original features in the stacked model. The classifiers
that we consider are Gradient Boosting (GB), SVM, Logistic
Regression (LR), and Random Forest (RF).
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Table 1: Prediction Accuracy ± Standard Deviation of Classification Models and Various Features

Classification Method Feature Set
Phase Magnitude Aligned Phase Magnitude Meta Features

Random Forest 0.9593 ± 0.019 0.9699 ± 0.018 0.9923 ± 0.008
Gradient Boosting 0.9475 ± 0.024 0.9320 ± 0.026 0.9807 ± 0.015
Logistic Regression 0.9195 ± 0.021 0.9404 ± 0.020 0.9855 ± 0.012
Neural Networks 0.6171 ± 0.213 0.5566 ± 0.274 0.2588 ± 0.047

SVM 0.9435 ± 0.018 0.9673 ± 0.016 0.9942 ± 0.005
Fuzzy SVM (FSVM) 0.9418 ± 0.018 0.9686 ± 0.016 0.9907 ± 0.009

Table 2: Prediction Accuracy ± Standard Deviation by PD Type

Classification Method PD Type TotalCorona Floating Particle Void
SVM 0.9915 ± 0.014 1 ± 0 0.9954 ± 0.014 0.9789 ± 0.042 0.9923 ± 0.010

Logistic Regression 0.9997 ± 0.002 0.9882 ± 0.024 0.9680 ± 0.035 0.9809 ± 0.024 0.9847 ± 0.011
Random Forest 0.9905 ± 0.014 1 ± 0 0.9954 ± 0.012 0.9832 ± 0.035 0.9931 ± 0.009

Gradient Boosting 0.9672 ± 0.030 1 ± 0 0.9862 ± 0.024 0.9785 ± 0.035 0.9838 ± 0.012
Fuzzy SVM (FSVM) 0.9859 ± 0.023 1 ± 0 0.9943 ± 0.017 0.9712 ± 0.029 0.9893 ± 0.011
Best Stacking Model 0.9985 ± 0.007 1 ± 0 0.9984 ± 0.008 0.9836 ± 0.021 0.9961 ± 0.005

We observe that Random Forest is a better meta-classifier
than Logistic Regression. Compared to the stacking model
with Logistic Regression, using Random Forest as the meta-
classifier results in higher total accuracy as well as accuracy
for each PD type. The variance for all of the accuracies are
also significantly lower.

Compared to the meta-classifier features, the selection of
first level classifiers has a much larger impact on the clas-
sifier accuracy. By examining the relative strengths of each
classifier and testing various combinations, we settle on a
stacking model using 2 SVMs, Logistic Regression, and Ran-
dom Forest, which provides the best results. This classifier
is shown in Figure 7. Although it does not achieve the max-
imum corona accuracy of Logistic Regression, it offers the
best total accuracy. This model outperforms any single classi-
fication model in terms of prediction accuracy. It also reduces
the variance of the total accuracy by half and obtains the
best variance for each PD type.

5 CONCLUSION
The goal of this project is to classify partial discharge (PD)
events as corona, floating, particle, or void PDs, to gain an
understanding of the location of failure. In order to accom-
plish this, we define two feature sets based on the PD data.
These feature sets are the aligned phase magnitude and the 3
meta-features - total magnitude, maximum magnitude, and
the length of the longest empty band.
Using phase magnitude, we achieved a 94% prediction

accuracywith a variety of models. In order to address some of

the outlier samples, we use phase alignment, which improved
prediction accuracy to 97%. With the meta-features, we have
a more informative feature set, and we attain an even better
prediction accuracy of 99% with most classification models.
We show that different models perform better on certain

PD types. For instance, Logistic Regression outperforms all
other models in classifying corona PDs. We combine the
strengths of each model in a stacking classifier, resulting in
an ensemble that outperforms any single model and current
methods in terms of prediction accuracy and variance.
As a result of our work, we determine a comprehensi-

ble feature set that can be used to accurately classify PD
events. We also present a stacking ensemble strategy that
outperforms existing classification methods.

In future work, we plan to test our methods on additional
data sets and benchmark our performance more thoroughly
against various classification methods. This data-driven so-
lution will be integrated into an IoT-based cloud, as part
of a transformer asset performance management solution,
enabling diagnosis of all transformers sold in real time to pre-
dict accidents and increase operational efficiency. With data
from a large number of various types of partial discharge
patterns, we expect that this system can provide fast and
accurate diagnosis by machine learning techniques.
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