

Multidimensional Compression With Pattern Matching

Introduction

Scientific data is usually collected to a greater degree of precision than is significant. Can we take advantage of this feature to reduce storage? We are working on a dictionary-based compression algorithm that finds statistically similar 1-dimensional data blocks. Here, we consider multidimensional similarity based compression methods as measured by peak signal-to-noise ratios (PSNR) and runtime over different compression levels.

Similarity Measures

• Data points within partitioned time series are assumed to have the statistical property of exchangeability

•Kolmogorov-Smirnov (KS) statistical similarity test can then be performed

Figure 1: Schematic of a dictionary-based data compression algorithm known as IDEALEM (Implementation of Dynamic Extensible Adaptive Locally Exchangeable Measures)

- The KS test is not multidimensional
- •We propose alternative similarity measures: **Dynamic Time Warp** (DTW) and Minimum Jump Cost (MJC) • Consider two time series **x** and **y**

 $\mathbf{x} = (4, 4, 3, 2, 4, 0)$ $\mathbf{y} = (7, 5, 6, 4, 3, 4)$


```
A(\mathbf{x},\mathbf{y}) =
```


Figure 3: Visualization of a DTW distance measurement

Olivia Del Guercio¹, Rafael Orozco², Alexander Sim³, John Wu³ ¹Scripps College,²Bucknell University, ³Lawrence Berkeley National Laboratory

Research Question

How well can multidimensional similarity based compression work on scientific data?

Dynamic Time Warp

•DTW performs nonlinear "warping" on the sequences where differences in time are not penalized

•For time series of length n, it is necessary to do n² computations

 $d_{\mathrm{DTW}}(\mathbf{x},\mathbf{y}) = D_{M,N}$ $D_{i,j} = d_{\text{Euc}}(x_i, y_i) + \min\{D_{i,j-1}, D_{i-1,j}, D_{i-1,j-1}\}$

$\begin{bmatrix} 3 \\ 3 \\ 4 \\ 5 \\ 3 \end{bmatrix}$	1 1 2 3 1	$2 \\ 2 \\ 3 \\ 4 \\ 2$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 2 \\ 0 \end{array}$	$1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 2 \\ 0 \end{array}$	$D(\mathbf{x}, \mathbf{y}) =$	$ \begin{bmatrix} 3 \\ 6 \\ 10 \\ 15 \\ 18 \end{bmatrix} $	- 4 - 4 - 4 - 6 - 9 - 10	$ \begin{array}{r} - 6 \\ 6 \\ 7 \\ 10 \\ 11 \end{array} $	$ \begin{array}{c} 6 \\ 6 \\ 7 \\ 12 \\ 10 \end{array} $	7 7 6 7 8	7 7 7 8 7	
$\begin{vmatrix} 0\\3\\7 \end{vmatrix}$	$\frac{1}{5}$	2 6		$\frac{1}{3}$	$\begin{vmatrix} 2\\0\\4 \end{vmatrix}$		18 25	10 15	11 16	10 14	8 11	7 11	>

 $d_{\mathrm{DTW}} = D_{6,6}$

= 11

Minimum Jump Cost

•MJC works by accumulating the cost of jumping forward from one time series data point to the nearest data point in the other time series $d_{MJC} = \sum c_{\min}^{(i)}$ $c_{\min}^{(i)} = \min\{c_{t_x}^{t_y i}, c_{t_x}^{t_y+1}, c_{t_x}^{t_y+2}, \ldots\}$

Figure 4: MJC for the first data point (left). Total jumps (right).

• Instead of calculating all n² distance values of between **x** and **y**, only the distance between points of index greater than the recursive starting point are calculated

• Expected to reduce runtime

MJC has lower error at larger dictionary size

Table 1: Dictionary size comparison for 100 CR

SCRIPPS

THE WOMEN'S COLLE

computationally expensive