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Abstract. Large community of high-energy physicists share their data all
around world making it necessary to ship a large number of files over wide-
area networks. Regional disk caches such as the Southern California Petabyte
Scale Cache have been deployed to reduce the data access latency. We observe
that about 94% of the requested data volume were served from this cache, with-
out remote transfers, between Sep. 2022 and July 2023. In this paper, we show
the predictability of the resource utilization by exploring the trends of recent
cache usage. The time series based prediction is made with a machine learning
approach and the prediction errors are small relative to the variation in the input
data. This work would help understanding the characteristics of the resource
utilization and plan for additional deployments of caches in the future.

1 Introduction

There has been a significant increase in data volume from various large scientific projects,
such as the Large Hadron Collider (LHC) experiments. The High Energy Physics (HEP)
community share their data generated from LHC with a world-wide community of users,
which requires an increasingly larger volume of data to be transferred over the wide-area
network. By 2028, the community expects the data volume to increase by thirty fold [1]. We
observe that a significant portion of the popular datasets are shared among users in the same
geographical region [1], which suggests that regional data storage caches could reduce data
access latency by holding popular datasets closer to user analyses [2–9]. In-network cache
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or regional data caching mechanism [6–9] has been deployed in Southern California for the
US CMS, one of the LHC experiment. The caching approach improves overall application
performance by decreasing data access latency and increasing data access throughput. It
also reduces traffic over the wide-area network by decreasing the number of repeated data
transfers [10–12].

In this work, we examine the trends in data volume and cache utilization from the South-
ern California Petabyte Scale Cache (SoCal Cache) [6], which includes 23 federated caching
nodes with approximately 2PB of total storage. From the trends, we also explored how much
a machine learning model could predict the resource usage patterns. Our study shows that the
number of data requests, cache hit rate, cache miss rate and so on could be reliably predicted
a day ahead of time. This information could be used for short-term resource planning, such
as network bandwidth reservation when heavy network traffic is expected the next day.

2 Background

Historically CMS analysis users would send their computing jobs to the sites where their
input data was available. With the introduction of the Any Data, Anytime, Anywhere (AAA)
service [13], also known as the "CMS Data Federation", certain jobs were allowed to read
their data remotely. These jobs typically read a small percentage of the files they analyze and
do so on stream mode, interleaving reading and processing, which allows them to tolerate
some level of latency. Under this model of operation, computing resources and input data are
no longer required to be in the same site, which makes the model more flexible at the cost of
increased latency.

In order to hide the latency introduced by the remote reads, caches were added in the
computing model. The technology used was born out of the XRootd framework, and com-
monly referred as XCache. XCaches were designed to deal with big files, big namespaces,
and partial file reads. The Southern California Petabyte Scale Cache (SoCal Cache) is one of
the pioneering ones. What makes SoCal Cache even more special is that it stretches over three
different geographic zones: San Diego, Pasadena and Sunnyvale in California and serves two
different CMS sites: UCSD and Caltech. Currently one server with 348TB of disk is ded-
icated to NANOAOD files, whilst the remaining CMS files could be cached on 22 servers
with 1.6PB of disk. Table 1 shows the distribution of data servers.

Table 1: SoCal Cache distribution of data servers

location # of servers
total disk

space (TB) data format

Pasadena (Caltech) 1 348 NANO
Pasadena (Caltech) 9 1327 MINI
San Diego (UCSD) 12 275 MINI
Sunnyvale (ESnet) 1 41 MINI

CMS organizes its data in a number of different data formats. The most common data
formats used in analysis are AOD, MINIAOD and NANOAOD. Typically each file has the
same number of events. Each MINIAOD file is much smaller than an AOD file, and similarly,
a NANOAOD file is smaller than a MINIAOD file, as shown in Table 2 [14, 15]. Smaller data
formats contain less details, and are not suitable for all analysis scenarios. It is nevertheless
estimated that 50% of the analysis can be carried out using NANOAOD data [14]. Most
analyses are conducted with MINIAOD files and NANOAOD files, and very occasionally,
some users would access AOD files.



Table 2: Kilobytes per event on different CMS data formats
data format kb per event

AOD 400-500
MINIAOD 40-50

NANOAOD 1-2

Table 3: Summary of data access from June 2020 to July 2023. About 68.6% of file requested
are satisfied by this cache, and 62.8% bytes requested are in the cache.

# of
accesses

cache hit
size (TB)

cache miss
size (TB)

number of
cache hits

number of
cache misses

Total 27,315,865 19,877.91 11,771.45 18,736,392 8,579,473
Daily 23,629 17.20 10.18 16,207 7,421

Table 4: Summary of data access from September 2022 to July 2023. About 85.5% of the
files requested and 94.0% of the bytes requested are cache hits.

# of
accesses

cache hit
size (TB)

cache miss
size (TB)

number of
cache hits

number of
cache misses

Total 5,889,264 10,824.09 690.75 5,038,749 850,515
Daily 18,233 33.41 2.14 15,599 2,633

2.1 Monitoring

All cache servers are configured to send monitoring data via the default mechanism pro-
vided by the XRootD framework to a service called "The Shoveler". The Shoveler resides
in UCSD, close and well-connected to the cache servers, and its function is to convert the
unreliable UDP data into TCP and to transfer the data into a centralized RabbitMQ message
bus operated by OSG. The data is later consumed by "The Collector", a home-made piece of
software designed and operated by OSG, that assembles the different bits of data into fully-
comprehensible access records and translates them into a json format. The json bits are then
pushed into a StompMQ message bus managed by CERN and finally into an Elastic Search
database. Every certain time these records are moved to a long-term storage based on HDFS
from which we obtain the data for the analysis presented in this work.

3 Cache utilization trends

Monitoring information collected from June 2020 to July 2023 in our study is stored in 8.8GB
and 21,782 files. Table 3 shows the basic statistics about the data accesses during the study
period. "Cache hit" represents when a data access request could be satisfied with a file in the
cache, whereas "cache miss" means that a data transfer from a remote storage site is needed
as the requested data file is not in the cache. About 68.6% of the 27 million data requests
and 62.8% of the total 31PB data volume are cache hits. In recent 11 months from Sep. 2022
to July 2023, Table 4 shows that 85.5% of the requests and 94% of the requested bytes are
cache hits.

Figure 1 shows the daily rates of cache hits (in blue) and cache misses (in orange). Fig-
ure 1a shows the rates based on the data request counts, and Figure 1b shows the proportion
of the data volume. Figure 2 shows more information about the number of data requests and
volume of requested data. Figure 2a shows the daily number of file requests, separating into
cache hits (in blue) that could be satisfied with files in the cache and cache misses (in orange)
that require wide-area data transfers. Figure 2b shows the daily volume of data requests.



(a) Daily proportion of cache hit counts and cache miss counts. With 27.3 million total accesses, there
are 18.73 million cache hits and 8.58 million cache misses. Overall, 68.6% of the total accesses has
been satisfied by the cache.

(b) Daily proportion of cache hit volume and cache miss volume. With 31.65PB of total bytes requested,
there are 19.88PB served from the cache and 11.77PB from remote storage sites. Overall, 62.8% of the
total traffic volume has been saved from the cache.

Figure 1: Daily proportion of cache hits (in blue) and cache misses (in orange) from June
2020 to July 2023.

(a) Daily counts of cache hits and cache misses. On an average day, there are 23,629 file requests, with
16,207 cache hits and 7,421 cache misses. The number accesses went over 100,000 on some days.

(b) Daily volume of cache hits and cache misses. On an average day, the total volume of files requested
is 27.38TB with 17.20TB of cache hits and 10.18TB cache misses. The data volume went over 200TB
on some days.

Figure 2: Daily accesses of cache hits (in blue) and cache misses (in orange) from June 2020
to July 2023.

One noticeable pattern is shown between Oct. 2021 and Feb. 2022 in Figures 1b and 2b
where cache miss is the dominant majority. This particular usage pattern [12, 16] is caused
by a small number of users requesting larger AOD files that are not used very often. Since
each AOD file is much larger than others, storing one of them in a disk cache could cause
many smaller files (that are used more frequently) to be evicted. These large files are not
accessed frequently, we could see the cache hit rate returns later. Between June 2023 and
July 2023, the majority of requested data volume is cache hits. The cache hits ratio dominates
approximately the same as from Sep. 2022 to July 2023, but the last two months have much
higher data volume than the other periods.



4 Modeling the cache utilization

Our study on the cache utilization characterizes the trends of cache and network resource
usage, next we’d like to see how additional caching nodes can be provisioned in the future.
We built machine learning models with Long Short-Term Memory (LSTM) architecture [17,
18] for cache utilization trends for daily and hourly records. The results from the LSTM
model [11, 12] are shown in Figures 3 and 4. Our model includes 5 features such as access
counts, cache hit counts, cache miss counts, cache hit size and cache miss size. Our daily
model has 608 records in the training set and 153 records in the testing set, over the study
period from July 2021 to July 2023. The training data comes from the first 80% of the study
period, and the testing data comes from the last 20%. Our hourly model has 6,412 records
in the training dataset and 1,603 records in the testing dataset, over the study period from
Sep. 2022 to July 2023. The daily model covers a longer period because the number of
records are relatively smaller in a given period than the number of hourly records. In the
remaining of this section, we mainly discuss the prediction of the data volume for the cache
hits and misses.

Table 5 shows the root-mean-square error (RMSE) of both the daily and hourly models
for the data volume. The column labeled “standard deviation” is the standard deviation of
the input data values. It provides a reference to determine how large the errors of predictions
are. The relative ratio of testing RMSE and standard deviation are about 1σ, indicating the
predictions are accurate enough for the models to be used in the resource provisioning.

Figures 3 and 4 show LSTM model results for the daily and hourly cache utilization in
data volume. In these cases, we see the predictions in cache misses are closer to the actual
values than the predictions for cache hits. The daily cache misses shows that the relative
error in the testing dataset is 0.098, much less than others, where we observe stable usage
trends. Figures 3a and 4a show significant number of spikes during the months of June and
July of 2023 where we observe higher rates of cache hits. Large fluctuations are generally
hard to predict. To demonstrate that this is true, we next study the predictions on the moving
averages.

(a) (b)

Figure 3: Daily cache utilization from July 2021 to July 2023: (a) Daily volume of cache hits
(b) Daily volume of cache misses

(a) (b)

Figure 4: Hourly cache utilization from Sep. 2022 to July 2023: (a) Hourly volume of cache
hits (b) Hourly volume of cache misses



Table 5: RMSE of daily/hourly LSTM model results for cache utilization. The relative pre-
diction errors against the standard deviations are around 1.

Training
RMSE

Testing
RMSE

standard
deviation

Daily volume of cache hits 7.16 31.07 29.08
Hourly volume of cache hits 0.23 1.86 1.80

Daily volume of cache misses 6.91 2.26 22.93
Hourly volume of cache misses 0.09 0.42 0.36

Figures 5 and 6 show the 7-day moving average of the daily and hourly volumes of cache
hits and cache misses respectively for the same study period from Sep. 2022 to July 2023.
We clearly see that the prediction results based on the moving-averages, shown in Figures 5
and 6, match better than the results based on the original time series data in Figures 3 and
4. Additionally, the hourly model in Figures 5b and 6b follow the 7-day moving averaged
trends more closely than the daily models in Figure 5a and 6a during the same modeling
period. The most likely reason might be there are more training data records for the hourly
time series.

When the 7-day moving averaged daily model has more data records by extending the
modeling periods from July 2021 to July 2023, both cache hits and cache misses follow the
trends more closely in Figure 7a and Figure 7b than Figure 5a and Figure 6a respectively.

(a) (b)

Figure 5: 7-day moving average of the cache hits from Sep. 2022 to July 2023: (a) Daily
volume of cache hits (b) Hourly volume of cache hits

(a) (b)

Figure 6: 7-day moving average of the cache misses from Sep. 2022 to July 2023: (a) Daily
volume of cache misses (b) Hourly volume of cache misses

(a) (b)

Figure 7: 7-day moving average of the daily cache hits and daily cache misses from July 2021
to July 2023: (a) Daily volume of cache hits (b) Daily volume of cache misses



5 Discussion
From studying the logs from Southern California Petabyte Scale Cache, we observe a couple
challenging issues. The first one is about the caching policy. As shown in Figures 1b and 2b,
cache misses are high for some periods due to the cache pollution from accesses to a number
of large files. These large files are used rarely and could displace a large number of smaller
files due to their sizes. Adopting a separate caching policy for these larger files might improve
effectiveness of the caching system. The second is about the monitoring. Figure 1 and 2 show
some empty slots in the time periods where no data records are collected. During these time
periods, the monitoring system appears to have stopped collecting information. Improving
stability of the monitoring system would provide better information about the caching system
and contribute to an early detection of the misbehavior or provide information for predicting
cache system behavior.

Figures 3a and 4a show significant number of spikes for cache usage especially during
the months of June and July in 2023. It would be important to understand the impact of
these usage spikes in the longer term, especially for provisioning for deployment of future
in-network caches. So far, we have only explored smoothing these spikes through moving
averages as shown in Figures 5, 6 and 7. We would be interested in further study of these
spikes.

6 Conclusion
SoCal Cache served on average about 62.8% of the requested data volume from its storage
cache without remote transfers between June 2020 and July 2023, whereas the cache in re-
cent 11 months from Sep. 2022 to July 2023 hits 94% of the requested data volume. The
daily average volume of cache hits is about 17.2TB from June 2020 to July 2023 and about
33.4TB between Sep. 2022 and July 2023. We also explored the models for the cache uti-
lization trends with a machine learning method known as LSTM, where the prediction errors
(measured as RMSE) are small relative to the standard deviation of the input data.

This work shows the effectiveness of the caching system in decreasing data access latency,
reducing wide-area network traffic, and consequently improving overall application perfor-
mance. This work also helps understanding the characteristics of the resource utilization
such as cache and network, and demonstrating the predictability of the resource utilization.
We plan to study other caches currently under deployment to gain better understanding of
the caching system, and explore longer-term predictability of the resource utilization and
provisioning.
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