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Abstract—In high-performance computing, storage is a
shared resource and used by all users with many different
application requirements and knowledge of storage. Conse-
quently, the optimal storage configuration varies according to
the I/O behavior of each application. While system logs are
helpful resources in understanding the storage behavior, it is
non-trivial for each user to analyze the logs and adjust complex
configurations. Even for experienced users, it is difficult to
understand the full stack of I/O systems and find the optimal
configuration for the specific application. In this work, we
analyzed the I/O activities of CORI which is an HPC system
in National Energy Research Scientific Computing Center
(NERSC). The result of our analysis shows that most users do
not adjust storage configurations and use the default settings.
Also, it shows that only a few applications are executed
repeatedly in the HPC environment. Based on this result,
we have developed DCA-IO, a dynamic distributed file sys-
tem configuration adjustment algorithm, which utilizes system
log information and widely adapted rules to adjust storage
configurations automatically without any user intervention.
DCA-IO utilizes existing system logs and does not require any
modifications in code or an additional library. To demonstrate
the effectiveness of DCA-IO, we have performed experiments
using I/O kernels of the real applications in both isolated small-
sized Lustre environment and CORI. Our experimental result
shows that the use of our scheme can lead to improvements
in the performance of HPC applications by up to 75% in an
isolated environment and 50% in a real HPC environment
without user intervention.

Keywords-HPC System; Dynamic Control; System Logs;
Parallel and Distributed File System; Cloud System

I. INTRODUCTION

High-performance computing (HPC) is becoming widely
adapted to the industry due to the increasing demand for
large-scale computation and big data. HPC applications
have many different characteristics compared with tradi-
tional applications in that they utilize a large amount of
computational power. Due to such increased computation
capabilities, HPC applications often produce a significantly
large amount of data compared with traditional applica-
tions [1]. Due to a large amount of data, many HPC applica-
tions perform checkpointing which records the intermediate
data to the storage to protect data from unexpected power-
outage or scheduling. Since applications blindly wait for the
completion of I/O before starting further computation, the
performance of the application is strongly related to the I/O

performance. Thus, it is becoming increasingly important to
improve I/O performance to increase the overall utilization
of HPC system.

Since the storage architecture in the HPC environment
is inherently different from the traditional one, careful con-
siderations need to be made in order to efficiently exploit
the I/O performance in the HPC environment. For example,
instead of local file systems such as EXT4 [2] or XFS [3],
parallel and distributed file systems such as Lustre [4] and
Ceph [5] are widely used in many HPC environments to
achieve high performance, reliability, and scalability. To
utilize multiple nodes of distributed file system in parallel,
many parallel and distributed file systems provide various
configuration options so that users can specify the number
of nodes to place data in (stripe count) and the size of the
data chunk to be placed in each node (stripe size). To fully
exploit the I/O performance of parallel and distributed file
system, it is important to analyze the I/O behavior of the
application and adjust the configurations according to the
I/O behavior of the application.

In the previous studies, the researchers tried to improve
the I/O performance of applications by understanding their
I/O behaviors and adjusting distributed file system config-
urations. Yu et al. [6] characterized the I/O patterns from
the applications and proposed the optimal Lustre configura-
tions depending on the characteristics based on the result
of experiments. You et al. [7] proposed an auto-tuning
framework which models the application and ran the model
in a separate system with multiple configurations to find
the optimal configuration. Our study is in line with these
studies in finding the optimal configuration by adjusting the
configurations.

In this paper, we first present the result of analyzing the
of I/O activities in CORI which is an HPC environment
in National Energy Research Scientific Computing Center
(NERSC), Lawrence Berkley National Laboratory. Although
many previous researches [1], [8] denotes that the use of
the optimal configuration can lead to improvements in the
application performance by orders of magnitude, the result
of our analysis shows that the vast majority of users use the
default configuration.

To improve the I/O performance of applications and
overall storage utilization, we have developed DCA-IO, an
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Figure 1: Lustre file system architecture.

algorithm which dynamically configures Lustre file system
configurations. When a new application is submitted and
there is no information of I/O behavior on the submitted
application, DCA-IO utilizes statistical analysis of other
applications which previously ran on the HPC system to
minimize the modeling and training overhead. By analyzing
the previous history of applications in the same environment,
DCA-IO can adjust the configuration without the knowledge
of I/O behavior of the submitted application. After the ap-
plication is executed and the information is available, DCA-
IO utilizes the information from the previous executions
and optimizes configurations using a set of rules. Finally,
DCA-IO continues to improve the distributed file system
configurations dynamically as the application recurs multiple
times. Our experimental results show that the use of the
proposed algorithm can lead to improvements in the I/O
performance of the applications by up to 75% in an isolated
environment and 50% in CORI.

Our contributions are as follows:

• We analyzed the I/O configurations in the existing HPC
environment.

• We designed and implemented DCA-IO which can
improve the performance by utilizing existing system
logs from other application executions and dynamically
changes the distributed file system configurations.

• We demonstrated that DCA-IO can improve the I/O
performance of many scientific applications in both
small and large environment.

The rest of this paper is organized as follows: Sec-
tion II describes the background and motivation. Section III
presents the analysis result for the CORI HPC environment.
Section IV presents the design of DCA-IO. Section V shows
the experimental results. Section VI discusses the related
work. Section VIII concludes the paper.

II. BACKGROUND

A. Lustre file system

Lustre file system [4] is a parallel and distributed file
system which is used in many HPC environments including
CORI. Figure 1 shows overall architecture of Lustre file
system. Lustre is consist of two main servers.

• Metadata server (MDS) stores and serves metadata of
the file system such as file names, permission informa-
tion, and directories. Each MDS is consist of one or
more metadata targets (MDT) which are disks used to
store actual data.

• Object storage server (OSS) stores the file data on one
or more object storage targets (OST). The maximum
throughput and capacity of OSS are a sum of each
OST’s maximum throughput and capacity, respectively.

When a client creates and writes a new file, the file
can be distributed over multiple OSSes with differ-
ent sized file chunks which can be configured using
stripeCount and stripeSize parameters, respectively. By ad-
justing stripeCount, the client can improve the parallelism
since multiple OSSes can be used in a parallel manner.
By adjusting stripeSize, the data from the certain process
can be stored in a contiguous space. The performance of
applications can be improved by several order of magnitude
with ideal stripeCount and stripeSize [7].

B. Analyzing and optimizing I/O performance in HPC en-
vironment

To analyze the application behavior, many previous stud-
ies proposed system-wide tools to understand application be-
havior in the HPC environment [9], [10]. In the perspective
of I/O, Darshan I/O characterization tool which is developed
by Argonne National Laboratory is being widely used in
many HPC environments [11]. When the application com-
piles, Darshan inserts codes which intercept MPI Init() to
initialize Darshan data structures and MPI Finalize() to ter-
minate Darshan process. When the application runs, Darshan
captures I/O related function calls from HPC applications
on per-file and per-process basis in a light-weight manner.
After the application terminates, it aggregates the collected
information and writes them in a file format. Since Darshan
has negligible overhead and captures the complete record I/O
function calls, it has been used in many previous studies to
understand I/O behavior and to create an application specific
modeling [11], [12].

III. ANALYSIS

In this section, we explain the methodology to collect
information from existing Darshan logs of CORI and present
analysis result.



# exe: ./physics1 /mnt/lustre/test01.h5 80
#jobid: 21179 
#nprocs: 1

#POSIX module data
<module> <rank> … <file name> …
   POSIX       0       …   /mnt/lustre/test01.h5
total_POSIX_WRITES: 1341
total_POSIX_BYTES_WRITTEN: 13413453
total_POSIX_SIZE_WRITE_100_1K: 101
total_POSIX_SIZE_WRITE_1K_10K: 9933434
total_POSIX_SEQ_WRITES: 1341

#MPIIO module data
.
.
. 

progName userID jobID numProc numOST stripeSize seqWrite (%) requestMore1M (%)

physics1 user1 21179 1 4 1048576 100 74.3

physics1 user5 21230 8 4 1048576 100 74.3

biology1 user3 24321 16 1 1048576 35.5 43.1

biology2 user3 26341 8 16 8388608 91.1 99.8

physics1 user2 29031 64 2 8388608 84.2 34.1

physics2 user4 30231 2 1 1048576 32.1 100

Darshan log files

darshan-parser 

user1_physics1_id_21179_11-7.all

Extract Information

Integrated database 
(SQLite)

Figure 2: Overview of creating an integrated database from
Darshan logs.

Name Description
ProgName Name of the program
UserName Name of the user
RunTime Duration of the application
NumProcs Number of processes
StripeCount Number of OSTs used by the application
StripeSize Number of OSTs used by the application
NumFile Number of Files used by the application
SeqIOPct Percentage of read/write requests that are se-

quential
IOLess1K Number of read/write requests that are less than

1K
IO1Kto100K Number of read/write requests that are less than

100K
IOReadRequest Number of read requests
IOWriteRequest Number of write requests
IOBytesTotal Total bytes read/written by the application
IOTimeTotal Total read/written time used by the application
IOThroughputTotal Total read/write throughput by the application

Table I: List of information extracted from Darshan logs.

A. Collecting Darshan Logs

To find the I/O activities of HPC applications and Lustre
file system configuration that user used, we have ana-
lyzed Darshan logs from CORI over two months (October-
November 2017). In CORI, Darshan is configured as the
default I/O characterization tool and Darshan logs are stored
automatically after each application execution [13]. Since the
logs are stored in a raw file format, logs need to go through
few transformations as shown in Figure 2.

Darshan logs first need to be transformed into a human-
readable text format using the darshan-parser utility [14].
After the transformation, the text file contains information
such as program name, arguments, number of processes,
and I/O activities for each I/O module (POSIX, MPIIO, and

STDIO). Since this information is in file format and each
application execution has its own file, it can be difficult to
find the overall tendency of the applications.

To find overall I/O activities of applications, we have
implemented parser which extracts key information from the
parsed Darshan text files and builds an integrated database.
For the database engine, we have selected SQLite [15] since
it is lightweight, easy to use, and support portability. By
creating an integrated database, users can perform queries
on various key information to find out the overall tendency
of applications in the context of the whole HPC environment
rather than each application.

Table I shows the list of information which we extracted
from Darshan log and inserted to the integrated database.
While other information can be directly retrieved from Dar-
shan log, StripeCount, IOTimeTotal, and IOThroughputTotal
need to be computed. Following are the method we used to
compute that information.

• StripeCount When Darshan collects the I/O informa-
tion, it checks whether the application utilizes Lustre
file system and compiled with the Lustre module en-
abled [13]. If the lustre module is enabled, Darshan
records the LUSTRE OST ID which is the OST ID
used in that specific I/O function call. While extracting
the information, we simply track the number of OSTs
involved in I/O during the application run and record
the information to the integrated database.

• IOTimeTotal and IOThroughputTotal Since Darshan
collect the I/O duration on basis of the function call,
many previous studies have different approaches when
calculating total I/O time of an application. Wang et
al. [16] calculate I/O time by measuring the critical sec-
tion. This is because when an application uses MPIIO
module, many concurrent I/O processes can perform
the I/O functions concurrently thus accumulating all
the duration of I/O functions can be inaccurate. In this
paper, we use the approach used by Luu et al. [17].
This approach measures the I/O time per process and
uses the largest I/O time of all process. By using
IOTimeTotal, we calculated I/OThroughputTotal which
is IOBytesTotal divided by IOTimeTotal.

B. Analysis of Darshan Logs

With the integrated database from the previous section, we
have analyzed Lustre file system configuration used by users
in the HPC environment. Table II and Table III shows the
analysis result of stripe count and stripe size, respectively.
As shown in both tables, we have discovered that most users
do not adjust Lustre file system configuration, but use the
default configuration instead. Table II shows that 99.317%
of executions use the default strip count which is 1 OST
while there are 256 OSTs available in CORI. Similar to
stripe count, Table III shows that 99.948% of executions
use default stripe size which is 1048576 (1 Megabyte).



StripeCount Number of Executions Percentage
1 1275869 99.317%
2 39 0.003%

3-4 62 0.005%
5-8 269 0.021%
9-16 6850 0.533%

17-32 443 0.034%
33-64 374 0.029%
64-128 450 0.035%

129-256 287 0.022%
Total 1284643 100%

Table II: Result of analyzing stripe count.

StripeSize (Byte) Number of Executions Percentage

1048576 1283980 99.948%
4194304 1 0.000%
8388608 480 0.037%

16777216 162 0.013%
33554432 6 0.000%
50331648 4 0.000%
67108864 9 0.001%
100663296 1 0.000%

Total 1284643 100%

Table III: Result of analyzing stripe size.

This analysis shows that even at the HPC environment
where users can exploit far more OSTs compared with
the traditional computing environment, users do not adjust
Lustre file system configuration and dynamic configuration
control is needed to fully exploit the I/O capabilities of HPC
environment.

In addition, we also analyzed the number of unique appli-
cations among 1284643 runs. This is done by querying the
database on distinct application name. The result shows that
there are only 1163 unique applications which was executed
during the two-month period. Since there are 1284643 exe-
cutions during that period, it shows that the small number of
applications was executed multiple times. Thus, by utilizing
information from the previous execution, the performance
of each additional execution can improve the performance
since there is a high chance that the application will run in
the near future.

IV. DESIGN

In this section, we present DCA-IO algorithm to dynam-
ically control Lustre file system configuration. DCA-IO is
divided into two parts which are the initial execution and
the recurring execution. Initial execution refers that there
is no prior knowledge on the incoming application and the
system needs to make a blinded guess without knowing the
I/O behavior of the application. Recurring Run refers that
there are entries in the integrated database that matches the
application name. Thus, we can utilize Darshan log from the
previous execution to optimize the configurations.

PROCEDURE 1 DCA-IO algorithm for initial execution.
1: New Application Request
2: /* check the number of processes */
3: currNumProcs = current Number of Processes
4: stripeCounts[]
5: stripeSizes[]
6: records[] = SELECT * FROM database WHERE numProcs == currNumProcs
7: for item in records
8: if record.stripeCount is Unique
9: stripeCounts.add(record.stripeCount)

10: if record.stripeSize is Unique
11: stripeSizes.add(record.stripeSize)
12:
13: stripeCount, stripesize = 0
14: for item in stripeCounts
15: tempThroughput = aveThroughputOfItem
16: if tempThroughput > stripeCount
17: stripeCount = item
18: for item in stripeSizes
19: tempThroughput = aveThroughputOfItem
20: if tempThroughput > stripeSize
21: stripeSize = item
22: lfs setstripe -c stripeCount -S stripeSize
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Figure 3: Average I/O throughput per each stripe count when
the number of processes is 1.

A. Initial Execution

In case of the initial execution, there is no information of
the application since there is no Darshan log available for
the incoming application. Thus, it is impossible to make ad-
justment based on the application behavior. Instead, DCA-IO
utilizes the number of processes since user already specifies
the number of processes by requesting the resources. With
the number of processes, DCA-IO utilizes existing Darshan
logs of other applications in the same HPC environment.
Although there is no guarantee that existing Darshan logs
are related to the incoming application, since they share
same hardware which is related to the performance of
application [1], DCA-IO makes statistical guess based on
the existing Darshan logs.

Procedure 1 shows simplified algorithm for handling new
application. When the application arrives, DCA-IO first
records the number of processes provided by the user.
Then it uses the integrated database to select the entries
which have identical number of processes as the incoming
application. Then, it extracts unique stripe count from the



PROCEDURE 2 DCA-IO algorithm for recurring execu-
tion.
1: Recurring Application Request
2: /* 2nd Execution - rule-based phase*/
3: if file-per-process
4: stripeCount = 1
5: if shared file
6: stripeCount = numIOProcs
7: stripeSize = 1M
8: lfs setstripe -c stripeCount -S stripeSize
9:

10: /* 3rd and more Executions - heuristic phase */
11: if IOthroughput > previousIOthroughput
12: stripeCount = previousStripeCount * 2
13: if stripeCount > maxAvailStripeCount
14: stripeCount = maxAvailStripeCount
15: else
16: stripeCount = previousStripeCount
17:
18: if stripeCount == previousStripeCount
19: if IOthroughput > previousIOthroughput
20: stripeSize = previousStripeSize * 2
21: else
22: stripeSize = previousStripeSize
23: lfs setstripe -c stripeCount -S stripeSize

entries and calculate the average I/O throughput per unique
stripe count. Finally we set the stripe count of application as
stripe count of the highest average I/O throughput. DCA-IO
repeats identical algorithm to adjust stripe size as well.

For example, when the number of processes requested by
the incoming new application is 1, DCA-IO can refer to the
entires which used 1 processes from the integrated database.
Figure 3 shows the average I/O throughput per unique
stripe count from the integrated database. As shown in the
figure, the unique stripe count according to the integrated
database are 1, 8, 16, 32, 64, and 128. Since the average
I/O performance of 128 stripe count is the highest, the stripe
count will be set as 128. Thus, when there is no information
on the incoming application, DCA-IO can make educated
adjustment based on Darshan logs from other applications
which shares identical hardware.

B. Recurring Execution

In case of the recurring execution, Darshan logs with
identical application name exist and I/O behaviors of ap-
plication can be utilized for the configuration adjustment.
DCA-IO optimizes the configuration when the I/O behavior
is available in two phases: rule-based phase and heuristic
phase.

In the rule-based phase, DCA-IO optimizes the configura-
tion using the existing rules from many previous studies [18],
[19]. If the I/O behavior of the application is file-per-process
where each file is used by a single process, the number of
processes which can access to single file is 1. Thus, we first
start with stripe count as 1 since using multiple stripe counts
can increase the contention between multiple processes and
the overhead of communication. In case of single shared file,
where multiple process can access shared files, we set stripe
count as the number of processes participating in I/O since
multiple process can utilize high stripe count.

In both cases, DCA-IO sets the stripe size as 1M which
is the smallest possible and default configuration in Lustre
file system. This is due to two reasons. First, Darshan does
not record request sizes of the applications but the size
interval that requests belong to. Darshan classifies requests
according to the range of the request size and records the
number of requests that belong to the each interval (e.g.,
1K - 100K). Without knowing the specific request sizes of
the application, using a large stripe size can create mis-
aligned stripes in file which can decrease the performance
significantly [20], [21]. Second, Lustre suffers less from
a small stripe size than a large stripe size. According to
the previous studies [20], [22], Lustre already aggregates
small striped requests until they matches the stripe alignment
which decrease the overhead of using a small stripe size.
Thus, rather than starting from a large stripe size, DCA-IO
sets stripe size as minimum and gradually increase the size
during the heuristic phase.

In heuristic phase, DCA-IO increases the stripe count
linearly until the performance decreases or the stripe count
reaches the maximum available OSTs in the system. The
reasoning for this algorithm defers for each access pattern.
In case of file-per-process, the I/O performance of each file
is bound to the maximum performance of an OST since
the stripe count is set as 1 during the rule-base phase.
However, if the application generates a large amount of I/O
in a rapid frequency, the maximum performance of a single
OST can be insufficient to handle the I/O requests for a file.
Thus, DCA-IO tests a larger stripe count to check if the
performance of application is bound by the limited number
of stripe count. In case of shared-file, multiple process can
access the same file at a time. Thus, increasing the stripe
count beyond the number of processes can help mitigate the
bottleneck.

In case of stripe size, our proposed algorithm increases
the stripe size only and only if stripe count is identical to
the previous run. This is to isolate impact of the stripe size
from the varying stripe count. Then, DCA-IO increase the
stripe size until the performance decreases since the large
stripe size can be beneficial to the applications which issues
a large sized requests. Thus, by increasing both the stripe
count and the stripe size, DCA-IO covers majority of con-
figuration spaces and dynamically improves the performance
of application.

V. EVALUATION

A. Local Environment

1) Experimental Setup: For evaluation, we used 6 nodes
Lustre setup with Intel i7-4790 (3.6 GHz) with 4 physical
cores, 8 cores with hyper-threading, and 8 GiB of memory.
We used 1 node for client, 1 node for MDS, and 4 nodes
for OSSes. For storage devices, we used 850 pro developed
by Samsung. Each node has two SSDs, 1 for OS and 1
for Lustre file system. For network adapters, we used two
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Figure 4: FIO Sequential Write performance.
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Figure 5: FIO Random Write performance.

Intel 2P X520 10G network adapters per node. Since two
10G network adapter can support bandwidth up to 2.5 GB,
the I/O performance from the client is bottlenecked by the
storage devices, not the network. We compared the perfor-
mance of default which is the default parameter provided by
Lustre, TAPP-IO which is the rule-based algorithm from the
previous study [18], and DCA-IO. All experimental results
are the average value of five runs.

2) FIO: For microbenchmark, we ran FIO bench-
mark [23] performing sequential and random writes. FIO
benchmark creates a separate file for each process and uses
POSIX I/O module. We configured FIO benchmark to issue
8 GiB write operations using 1 through 8 threads, 1 MiB
request size, and buffered I/O.

In case of sequential writes, as shown in Figure 4, DCA-
IO improves the performance by up to 75% compared with
both default and TAPP-IO. The performance of default and
TAPP-IO is identical because TAPP-IO uses the default
configuration in case of file-per-process. The performance
improvement is greater when the number of processes is
small because both default and TAPP-IO sets stripe count
as 1 (i.e., 1 OSS). Since FIO issues a large amount of I/O re-
quests, the I/O performance is bottlenecked by the maximum
I/O performance of single OSS. Thus, by increasing the
stripe count, DCA-IO can improve the performance beyond
the maximum performance of single OSS. In case of a large
number of processes, all four OSSes are used even with
stripe count as 1 because each process creates a file which
is allocated in different OSSes. Thus, the performance of
FIO already reaches the maximum performance of all OSSes
using both default and TAPP-IO.

In case of random writes, as shown in Figure 5, DCA-
IO improves the performance by 56% compared with both

default and TAPP-IO. Similar with sequential writes, the
performance improvement is more visible at the low number
of processes due to the identical reason. However, since
random writes inherently have lower performance compared
with sequential writes, the performance improvement is
smaller compared with that of sequential writes.

3) PIOK: For macrobenchmark, we used Parallel I/O
Kernel (PIOK) [24] developed by NERSC. PIOK is a
collection of I/O kernels from three HPC applications which
are VPIC, GCRM, and VORPAL. Thus, VPCI-IO, GCRM-
IO, and VORPAL-IO do not perform any computation tasks
but only issues I/O operations for synthetic data structures.
PIOK is implemented to utilize both HDF5 file format [25]
and H5Part data interface [26]. We have configured each
benchmark to use collective I/O where each process calls
collective I/O functions to aggregate multiple I/O requests
into collective I/O requests.

In case of VPIC-IO, as shown in Figure 6, DCA-IO
improves the performance by up to 70% and 45% compared
with default and TAPP-IO, respectively. Similar with the
result from FIO benchmark, the performance gains from the
small number of processes is due to the increased number
of stripe counts. Since TAPP-IO uses the same number of
stripe count as the number of processes, the performance
at the low number of processes is bound to the limited
number of OSSes. In case of the high number of processes,
the performance of DCA-IO is higher than that of TAPP-
IO due to the stripe alignment. Since DCA-IO gradually
increases the stripe size from 1M, it can find optimal
stripe size without causing stripe misalignment. Note that
in case of the second run in 1, 2, and 4 processes, the
performance of DCA-IO decreases from the first run. This is
since DCA-IO uses rule-based configuration adjustment, the
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Figure 6: VPIC-IO performance.
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Figure 7: GCRM-IO performance.
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Figure 8: VORPAL-IO performance.

adjusted configurations can be not optimal compared with
the adjusted configurations from initial execution. However,
the performance becomes similar or increases beyond that
of the first run due to the second heuristic phase of DCA-IO.

In case of GCRM-IO and VORPAL-IO, as shown in
Figure 7 and Figure 8, DCA-IO improves the performance
by up to 58% and 52% compared with default, and 48% and
51% compared with TAPP-IO, respectively. Similar to the
VPIC-IO, the performance of DCA-IO is significantly better
compared with that of TAPP-IO due to the effect of stripe
count. Also, due to the stripe misalignment, the performance
of TAPP-IO is lower compared with DCA-IO.

B. CORI

To verify the effectiveness of DCA-IO in complex and
large environment, we have conducted the experiment in
CORI.

1) Experimental Setup: For evaluation, we used 1, 4, 16,
and 64 computation nodes from CORI. Each compute node
is equipped with two 16-core Intel Haswell CPUs (2.3 GHz)
and 128GB memory. For storage, Lustre file system of CORI
has 6 MDSes and 256 OSTs. Both compute node and Lustre
node are connected with Infiniband. For a benchmark, we
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Figure 9: VPIC-IO performance in CORI using independent-
I/O.

have only used VPIC-IO from PIOK [24] since the other
two workload shows similar I/O behavior. To widen the
application behavior, we have used an independent I/O and
collective I/O mode. Experimental results are the average



0

5000

10000

15000

20000

25000

32 128 512 2048

TAPPIO DCA-IO

T
hr

ou
gh

p
ut

 (
M

B
/s

)

Number of Processes

VORPAL-IO with Collective IO

Figure 10: VPIC-IO performance in CORI using collective-
I/O.

value of five runs.
2) VPIC-IO: In case of VPIC-IO in CORI, as shown in

Figure 9 and Figure 10, DCA-IO improves the performance
by up to 37% in independent I/O and 50% in collective I/O
compared with TAPP-IO. Compared with the result from
small-sized Lustre setup, the performance improvement on
CORI is less. This is due to the two main reasons. First,
since the experiments in CORI already have a high number
of processes, the TAPP-IO which sets the stripe count as
same as the number of processes already utilizes a sufficient
number of OSSes. Second, since many users share the same
HPC environment, there can be many interferences from
I/O activities from other users. Due to the other users,
our application cannot utilize the full bandwidth of the
network. Since the benefits from DCA-IO is more visible
when the I/O performance of applications is higher than
the maximum performance of used OSSes, the potential
performance improvement can be overshadowed by various
resource contention in complex HPC environment. However,
DCA-IO can improve performance in different I/O behaviors
such as independent and collective I/O mode. Thus, we
verified that DCA-IO can be beneficial in small isolated
environments as well as large production scale environments.

VI. RELATED WORK

A. Testing-based adjustment

There have been several studies on improving application
performance by modeling I/O behaviors of applications. Yu
et al. [6] classified applications into few categories based
on the I/O behavior. Then, they found the optimal configu-
ration setting for each distinct I/O behavior by performing
extensive testing. Finally, they used optimal configuration
from the testing for each I/O behavior category. You et al.
[7] proposed a mathematical model based on the queuing
theory. Then, they performed experiments for each model

in a separate environment to find the optimal configuration.
H5Evolve [27] utilized a genetic algorithm to search the best
configuration. H5Evolve simplified multiple configurations
into simplified and computable space. Then, it used the
genetic algorithm to find the best configuration from the
configuration space. Our study is in line with these studies
in terms of investigating the I/O behaviors of applications
and optimizing the performance based on the I/O behaviors.
In contrast, DCA-IO does not require any testing on various
configurations prior to the application run.

B. History-based adjustment

There have been several studies on improving I/O per-
formance of applications by utilizing the previous history
of applications. Gainaru et al. [28] stored I/O behaviors
for each application execution and used the history of each
application during scheduling to minimize the interference
between the applications. Behzrd et al. [29] extracted I/O
patterns from applications and found optimal configurations
for each pattern. Then, they store the optimal configuration
for each pattern into a database and used the optimal con-
figuration based on the I/O pattern. Our study is in line with
these researches in terms of optimizing the configurations
based on the previous executions. In contrast, DCA-IO can
improve the performance when there is no information on
the I/O behavior by utilizing existing system logs in the
identical HPC environment.

C. Rule-based adjustment

There have been studies on selecting configurations based
on a set of rules. Among many studies, TAPP-IO [18] is the
most related to our research in that they optimized Lustre file
system settings. TAPP-IO [18] proposed a set of rules based
on the number of files and the number of processes. They
evaluated their rule-based algorithm in large HPC environ-
ment and verified that a rule-based configuration adjustment
scheme can improve the performance in many complex HPC
environment. Our study is in line with this research in terms
of optimizing the configurations based on the set of rules.
In contrast, DCA-IO dynamically improves the performance
based on the previous runs since the optimal rules may vary
according to the I/O behavior of the application.

VII. CONCLUSION

In this paper, we propose a dynamic distributed file system
configuration adjustment scheme called DCA-IO to improve
the I/O performance of applications in the HPC environment.
To do this, we first analyzed I/O behaviors of applications
executed in CORI. The analysis result shows that only a
limited number of programs are executed extensively and
most of executions used default Lustre file system config-
uration. To improve the I/O performance of applications
by adjusting Lustre file system configuration, we developed
DCA-IO which uses existing system logs from the same



HPC environment and gradually improves the performance
by using rules and history of the program executions. Finally,
we have evaluated DCA-IO using FIO and PIOK benchmark
in a small scale and large scale HPC environment using
Lustre file system. The result of our evaluation that use of
DCA-IO can improve the performance by up to 75% and
50%, in a small scale and large scale HPC environment,
respectively.
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