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Abstract—Large data analysis problems often involve a large
number of variables, and the corresponding analysis algorithms
may examine all variable combinations to find the optimal
solution. For example, to model the time required to complete a
scientific workflow, we need to consider the impact of dozens of
parameters. To reduce the model building time and reduce the
likelihood of overfitting, we look to variable selection methods
to identify the critical variables for the performance model.
In this work, we create a combination of variable selection
and performance prediction methods that is as effective as the
exhaustive search approach when the exhaustive search could be
completed in a reasonable amount of time. To handle the cases
where the exhaustive search is too time consuming, we develop the
parallelized variable selection algorithm. Additionally, we develop
a parallel grouping mechanism that further reduces the variable
selection time by 70%.

As a case study, we exercise the variable selection technique
with the performance measurement data from the Palomar
Transient Factory (PTF) workflow. The application scientists have
determined that about 50 variables and parameters are important
to the performance of the workflows. Our tests show that the
Sequential Backward Selection algorithm is able to approximate
the optimal subset relatively quickly. By reducing the number of
variables used to build the model from 50 to 4, we are able to
maintain the prediction quality while reducing the model building
time by a factor of 6. Using the parallelization and grouping
techniques we developed in this work, the variable selection
process was reduced from over 18 hours to 15 minutes while
ending up with the same variable subset.

I. INTRODUCTION

Science, including high-energy physics, cosmology, and
biology, is increasingly reliant on large complex distributed
workflows to create and analyze vast amounts of data [1],
[2]. As both the computer hardware and the data processing
software are becoming more complex, it is more challenging
to understand the performance characteristics and to anticipate
the resource requirements. The key part of this challenge
is that there are too many variables that affect the overall
performance, which increase the time needed to build a
performance model, and make it easy to overfit the model.
To handle this high-dimensional data, we explore a set of
variable selection techniques to find an optimal subset of
variables. These techniques eliminate variables that are not
essential to the prediction model, thereby reducing the time
needed to establish a performance model and improving the
effectiveness of the model. As opposed to dimension reduction
methods such as principal component analysis (PCA), variable

selection preserves the meaning of variables, which is essential
in understanding the effects of various parameters.

Variable selection has been an active research topic in
pattern detection, machine learning, and statistics for many
decades [3]–[5]. It has been shown to be effective both
in theory and in practice for improving learning efficiency,
increasing predictive accuracy, and reducing the complexity
of prediction models on high-dimensional data. Because the
computational complexities of model construction algorithms
are high-order polynomial functions of the number of vari-
ables or even exponential functions, reducing the number of
variables used can significantly reduce the model construction
time. The presence of a large number of variables also makes
it easy to overfit the models and introduce noise to the
resulting predictions; therefore, removing these noisy variables
can improve the overall prediction accuracy and simplify the
models.

We use the Palomar Transient Factory (PTF) application
as a case study, which processes large amounts of astronomy
observations through a lengthy processing pipeline [6]. The
PTF is a comprehensive transient detection system, which
collects observations from survey cameras and reduces the
data in real time through the National Energy Research
Scientific Computing Center (NERSC) machines. This work
was originally motivated by scientists’ need to understand
the occasional slowdowns in the data processing pipeline.
Additionally, the scientists are also interested in understanding
future resource requirements as the cameras produce higher
resolution images at a faster rate. The scientists have instru-
mented their workflow to record the execution time of each
stage of the workflow along with dozens of variables about
the data objects being processed. Our prediction task is to use
these variables plus the execution time of the first few steps of
the pipeline to forecast the overall execution time of the entire
workflow. This way we can understand the performance of the
workflow without having to go through the entire pipeline.
While we experimented primarily on the PTF dataset, we
also applied our methods to TCP connection measurements
data collected from ESNet data transfer nodes to validate the
general applicability of our experiments.

Different tools and algorithms are available for our predic-
tion task. However, the effective methods require many, if not
all, possible combinations of variables involved, which makes
the computational cost increase exponentially with the number



of variables involved. In this work, we initially considered
using a machine learning method known as Random Forest [7],
[8], because it is known to be effective on large data sets
and can be easily parallelized. However, building prediction
models with a large number of variables can be very time
consuming even when parallelized across multiple nodes.

The key goal of this work is to efficiently find a variable
subset that can be used for accurate performance prediction. To
better handle the large volume of data, we have experimented
with several variable selection techniques to reduce execution
time and remove noisy variables, as well as parallelization to
improve the performance of variable selection.

Two classes of variable selection methods are generally
used: filter and wrapper methods [4], [5]. Filter methods look
at the inherent properties of the variables to determine impor-
tant variables, while wrapper methods train models to perform
selection. In this work, we choose to use Sequential Backward
Selection, a wrapper approach that eliminates the least relevant
variable at each iteration [5]. It is easy to understand and runs
very quickly. Though there are cases where it might not find
the optimal solutions, it is able to handle multi-collinearity
slightly better than other sequential methods [9]. In our tests, it
found the optimal variables identified by an exhaustive search
through every possible variable combination.

We parallelized sequential selection methods to utilize a
high performance computing platform. The implementation of
parallel Sequential Backward Selection and the performance
prediction model was based on our performance analysis tool
(PATHA) [10] using Apache Spark

TM
as the back-end. By

distributing computation to multiple compute nodes, many
subsets were able to be selected and tested in parallel, im-
proving the runtime of the selection process by a factor of 20
compared to the serial sequential selection. This parallelization
improvement was maximized by the number of nodes utilized.

To improve the quality of the variables selected, we follow
a strategy that includes variables highly correlated with the
label but not inter-correlated with each other [11]. Specifically,
we investigated methodologies to utilize variable correlations
to handle large variable sets more efficiently. Using this
idea as an inspiration, we developed a method to handle
inter-correlated (potentially redundant) variables in order to
improve the selection process while keeping the correlated
(relevant) variables for performance prediction. Essentially, we
developed a method to quickly eliminate redundant variables
in parallel, significantly reducing the number of models to
build as well as the size of the models. This filter method
is combined with a wrapper selection technique, grouping
variables by correlation and then using a prediction model
to select the best variable in a group. This grouping step was
parallelized by testing correlation groups simultaneously. This
optimization reduced the selection time of the parallelized Se-
quential Backward Selection (SBS) by almost 70% compared
to SBS without correlation preprocessing. While we gained
significant improvement to SBS through parallelization, this
preprocessing improved the serial runtime of SBS. The number
of nodes selected for the parallelization maximized the runtime

improvement of the correlation grouping.
An important quality measure of a variable selection proce-

dure is the consistency of the subset selected. In other words,
the selected variable subsets are expected to be similar across
repeated experiments using the same data. This implies that
variables are selected by their importance in the data, rather
than variance in the selection process. High variance from
the performance prediction model can result in inconsistent
subset selection as our selection process is tightly coupled
with the prediction model. To improve the consistency of the
variable selection procedure, we needed to select a prediction
model that maintains a consistent view of the importance of
the variables. Among the models that we tested, we selected
Gradient Boosting [12] because it has the lowest prediction
variance with the PTF workflow measurement data.

In summary, the key contributions of our work are as
follows:
• Studying the interaction of variable selection methods and

prediction methods to select a good combination for the
performance prediction task;

• Developing parallel Sequential Backward Selection
method and improving its performance with correlation-
based grouping;

• Integrating the variable selection mechanism into the
performance analysis tool, PATHA [10];

• Evaluating our method on the the performance data from
the PTF workflow [6].

The rest of the paper is organized as follows: Sec. II presents
related work. Sec. III demonstrates the design and implemen-
tation of our variable selection mechanism. Sec. IV presents
experimental evaluations and Sec. V presents discussion. The
conclusion and future work are in Sec. VI.

II. RELATED WORKS

Our overall goal of simplifying performance models to
reduce modeling overhead is similar to that of Snavely et
al. [13] and Susukita et al. [14]. Susukita et al. [14] presented a
performance prediction method combining performance mod-
eling with macro-level simulations to reduce computation
time. Similarly, Snavely et al. [13] presented a framework for
performance modeling that reduces the number of parameters
contributing to the model. This method allows an analysis
of relevant parameters and reduces the computation time of
creating the model. Our work also seeks to efficiently create
performance models. However, unlike the work of Susukita et
al. [14], our method is purely based on prediction modeling
without simulations. In addition, we utilized a generalized
method to determine relevant variables, unlike the work of
Snavely et al. [13], which selected factors specifically for mod-
eling large HPC systems. We used variable selection methods
in conjunction with parallelization techniques to achieve the
same goal of more efficient performance modeling.

Several researchers have discussed ideas about parallelized
variable selection and correlation-based variable selection.
Yu and Liu [5] proposed a filter based selection method of
identifying relevant features based on symmetric uncertainty



and selecting the predominant (non-redundant) features. Our
method is similar in that it breaks the selection process into
two steps to handle relevance and redundancy separately. How-
ever, we combine filter based preprocessing with a wrapper
method, resulting in a variable set that is more tuned to the
prediction model. We select features by training prediction
models rather than based on the inherent properties of the
variables. While this is more computationally expensive, the
runtime can be offset by our parallelization approach. We also
use a grouping approach similar to Lo et al. [3] and Song et
al. [15] by grouping and selecting from correlated variables.
However, unlike Song et al., we use Breadth First Search
to group variables rather than a Minimum Spanning Tree
[15]. In addition, we integrate this correlation-based group-
ing approach with Sequential Backward Selection to further
reduce the variable set. Sequential Backward Selection was
determined to be a relatively fast variable selection method,
which was able to identify the key variables in the PTF data.
As a result, we decided to use this method to handle the
variables that were left after correlation grouping. Also, unlike
Lo et al., we use Sequential Backward Selection with (non-
linear) Gradient Boosting rather than linear regression [3]
to process the variables after the correlation grouping step.
Moreover, their focus was on modeling thermal error while
our focus is on predicting the execution times of the PTF
pipeline from the selected variables.

The idea of parallelized variable selection methods has also
been explored by several researchers. The works of Zhao et
al. [16] and Lopez et al. [17] introduced improved methods
that utilize parallelization within the variable selection frame-
work. Zhao et al. [16] explored a closed form solution to
Sequential Forward Selection that could be solved iteratively
on multiple worker nodes. We used Sequential Backward
Selection as our selection method and selected variables empir-
ically by training and testing prediction models using machine
learning mechanisms. Lopez et al. [17] proposed using paral-
lelized Scatter Search to select variables. On the other hand,
our method implements parallelization in an existing selection
method. Our method is similar to that of Zhou et al. [18] in
the sense that we parallelize testing variable subsets. However,
their approach did not define a subset scoring function, which
we have defined as the Root Mean Squared Error (RMSE) of
the prediction model.

Our work is inspired by ideas from previous research and
combines them into a selection framework that shows good
results for performance modeling using data from the PTF
application pipeline. In future work, we will adopt more
optimized methods presented in some of the related works.

III. METHODS

The goal of our performance model is to predict the exe-
cution time of the Palomar Transient Factory (PTF) analysis
pipeline steps. By using variable selection, we find a reduced
set of variables from the original variable set that contains
most if not all of the information of the full variable set.

The advantages of using the selected subset for performance
analysis are:
• Building simpler and more interpretable performance

models from the fewer variables.
• Reducing computation and execution time for building

performance models.
• Removing noisy variables having high variance or irrele-

vant information, which can improve the accuracy of the
performance models.

In order to build a variable selection framework, we ex-
plored possible methods that can be applicable to the scientific
applications. We used data from the PTF application as a
case study. It is a wide-field automated survey that records
images of transient objects in the sky [6]. Images from these
cameras are sent to the supercomputing center for processing
through an image subtraction data analysis pipeline. Each job
consists of 10 tasks, and each task consists of 38 pipeline
processing steps. Their execution times are measured and
stored. We divided the 38 steps of the pipeline into two
groups: 1) the first 16 pipeline steps, that are quickly executed,
for conducting initialization and pre-processing and 2) the
remaining 22 pipeline steps. The execution of the first group
provides useful information, such as sky conditions and image
conditions, which are suspected to affect the performance of
the second group. These features, along with the execution
time of the first group of steps, make up the 50 variables with
which we build our prediction model. We then predict the
execution time of the second group, which takes up most of
the overall execution and computation time.

In our initial exploration of the PTF workflow measurement
data, we found out that many variables are inter-correlated. By
plotting the correlation matrix of the variables in Figure 1, we
confirmed that many variables are highly correlated, if not
exactly correlated (either positively or negatively). Based on
this information, we considered methods to most effectively
handle the redundant data.

We tested a couple of machine learning methods to achieve
the most consistent variable selection. Initially, we used Ran-
dom Forest for the performance prediction. However, after ob-
serving high variability in the prediction results, we considered
an alternative machine learning method, Gradient Boosting
Regression. To compare these two methods, we built multiple
models using the same data and examined the variance in
the predictions for each method. We used implementations of
these methods from the Python scikit-learn library [19]. For
Random Forest, we used 100 trees, and for Gradient Boosting,
we had 300 iterations. These parameters were points where
the model stopped improving significantly. The parameters
were also bounded by reasonable computation time. Based on
these consistency results, we selected Gradient Boosting as our
prediction model since we require consistent variable selection
results and the lower prediction error could be achieved after
the variables are selected.

After data exploration and model selection, we established
a testing baseline using exhaustive variable selection, which
identifies the optimal subset, and tested several standard



Fig. 1. Correlations between variables

statistical and machine learning variable selection methods,
including Recursive Feature Elimination, Univariate F-Test,
and Gini Feature Importance. We were only able to run
exhaustive selection on smaller variable sets or for smaller
subsets for the exponential computation time of the selection
to finish within reasonable time. Even with parallelization, we
were unable to run the full exhaustive selection on 50 variables
in reasonable time.

We ran our tests using two data sets, a training set to build
models and a test set to perform variable selection. These data
sets were fixed to maximize consistency across tests. We used
the performance data collected from Mar. 1, 2016 to Apr. 31,
2016 (PDT) as our training set and the measurements from
May 1, 2016 to May 31, 2016 (PDT) as the test set.

As a greedy selection approach, we implemented Sequential
Backward Selection (SBS), which starts with the full set of
variables and removes one variable at each iteration. For
each variable in the variable set, we created a reduced set
without that variable, and trained Gradient Boosting prediction
models on the training data using the variable subsets. We then
used the models to predict on the test set and measured the
prediction accuracy using Root Mean Squared Error (RMSE).
We selected the subset with the best prediction accuracy to
determine the best variable to remove. Apache Spark was used
to parallelize subset testing at each iteration. We used 3 nodes
on the HPC system, with each node having 24 CPU cores. This
allowed us to designate one core for each variable, so we could
test all subsets simultaneously, maximizing the improvement
of parallelization.

As shown in Figure 2, we combined multiple methods to
efficiently select variables that can accurately predict perfor-
mance. We wanted to take advantage of multiple correlated
variables to further improve the performance of the standard
SBS. Since redundant variables do not contribute to the
prediction accuracy, we integrated correlation-based grouping

Correlation 
Grouping

Original Variable Set

Selected Variable Set (VS)

 Select a 
reduced 

variable set 
with the best 

prediction error 
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\Prediction 
model

...

Fig. 2. The overview of variable selection process

into the SBS to eliminate them quickly. We grouped variables
that were correlated with each other beyond a certain threshold
by searching through variables using Breadth First Search, so
any two variables with correlation coefficient above the cor-
relation threshold would be grouped together. This correlation
threshold was determined experimentally to be 0.8, based on
the maximum improvement in runtime in our experiments.
Once the variables were grouped, we trained a prediction
model for each group and selected the single best variable
from the group, based on the Gini Importance of each variable
in the model, which is derived from improvement in RMSE.
This correlation grouping step was also parallelized across the
correlation groups. For this parallelization, the number of cores
utilized was equal to the number of correlation groups, which
was bounded by the number of variables in the set, so we
also used 3 nodes of 24 cores each. Each core processed one
correlation group, selecting the best variable in the group. The
variables selected from each group were then reduced using
the SBS. This method handled redundant variables quickly in
parallel and improved the serial runtime of SBS by reducing
the number of iterations of selection and reducing the size of
models built at each iteration. Figures 3 and 4 break down
the parallelization processes for correlation grouping and SBS
respectively.

In order to evaluate whether there exists overfitting or
generalization errors in the variable selection, we split our
1-month data from May 1, 2016 to May 31, 2016 (PDT) into
two equally sized, randomly selected sets, a validation set and



Fig. 3. Parallelization of correlation groups

Fig. 4. Parallelization of one iteration of SBS

a test set. The validation set was used to test the prediction
models in order to select the variable subset with the lowest
prediction error and determine which variable to remove. After
determining a subset of variables using variable selection,
we tested those variables by building a prediction model on
the test set using the selected variables and comparing the
prediction results to the results of the prediction model within
the variable selection mechanism.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The experiments were conducted on the Lawrencium HPC
system at Lawrence Berkeley National Laboratory (LBNL).
We used 56 nodes, and each node contains two 12-core Intel R©

Xeon R© E5-2670 CPUs and 64GB memory. We used the mea-
surement logs of the PTF application collected on the NERSC
Cori Cray XC40 supercomputer from Mar. 1, 2016 to May.
31, 2016 (PDT). The comparison of different machine learning
and variable selection methods as well as the implementation
of parallel Sequential Backward Selection and the performance
prediction model were based on our performance analysis tool
(PATHA) [10] using Apache Spark

TM
as the back-end.

B. Variable Selection

The variable selection procedure is tightly coupled with the
choice of model for performance analysis, and the selected
variables can be easily applicable to general performance
analysis, except for the case of using all the variables for strict
evaluation. Nevertheless, it is important to evaluate whether
the selected variables include representative and essential in-
formation that can produce performance analysis with quality
comparable to that of the full variable set. In addition, it is
important to produce consistent selection without losing key
variables in the selection process as the process is iterative with
multiple steps. In this sense, the selection of the performance
model can impact the quality of the selected set since the
error from the performance model can degrade the selection
process by removing key elements due to the high variance or
low accuracy from the overestimated error of the model.

In our experiment, we focused on the performance predic-
tion of the execution time of the PTF analysis pipeline steps.
As explained in Sec. III, we divided the 38 pipeline steps into
two groups: 1) the first 16 steps 2) and the remaining 22 steps.
We predict the execution time of the second group using 50
variables, including the execution time of the quickly executed
first group. In the 3-month data, the execution time of the first
group took 8.9% out of entire execution: 16.5 seconds for the
first group and 158.1 seconds for the second group on average.

The first step of our analysis was to select a model for
performance prediction that can make predictions with low
variance and high accuracy. Figure 5 shows that Gradient
Boosting is a better model than Random Forest for our pur-
poses despite the higher bias. While Random Forest showed
better accuracy that Gradient Boosting, it had significantly
higher variance, which led to inconsistent subset selection.
In order for useful variable selection, we require consistent



improvement in prediction accuracy as variables are removed,
which is not seen with the Random Forest model. On the
other hand, Gradient Boosting showed consistent reduction of
prediction error by removing noisy or redundant variables until
selecting the final 4 variables.
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We investigated and compared Recursive Feature Elimina-
tion (RFE), Univariate F-Test (Univariate), and Gini Feature
Importance (Importance) as methods of selecting variables.
They are compared with the prediction error from the selected
variables using sequential selection. Figure 6 shows the results
of these tests compared to the optimal subset that was created
by exhaustive search with all the possible combinations of
variables. None of the existing implementations of the meth-
ods approximated exhaustive variable selection very closely,
and there was no consistent improvement as the subset was
reduced. However, Figure 6 also shows that both Sequential
Forward Selection (SFS) and Sequential Backward Selection
(SBS) perform significantly better and more consistently than
the other methods. Parallelizing SBS across 50 workers re-
sulted in a significant runtime improvement from about 18
hours (65020 seconds) to less than an hour (2727 seconds). For
this experiment, we used a smaller set of 20 variables selected
with the domain knowledge from the scientists, accounting for
the higher level of prediction error than in the other figures.

Figure 7 examines SBS more carefully on a smaller 10-
variable set where we could easily run exhaustive selection.
The graph shows that for all subset sizes, SBS got the same
prediction error as the optimal subset. We were unable to test
exhaustive selection on the full 50-variable dataset due to the
exponential time cost. The prediction error was slightly higher
than that of SBS on the 50-variable set due to the random
selection of the 10 variables. However, the smaller variable set
tests demonstrated that the performance of SBS was similar
to the exhaustive selection.

Figure 8 shows the results of testing SBS with the full vari-
able set. Due to the exponential computation time, exhaustive
selection could not be completed on the full variable set, only
on the large and small subsets, where less computation is re-
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quired. However, there is a very visible trend as variables were
removed from the variable set. Through variable selection,
noisy variables were removed from the subset, improving the
prediction accuracy. Redundant variables were also removed,
although they do not have a significant impact on the error.

The decreases in error in Figure 8 represent noisy variables
that are removed while the flat segments represent that redun-
dant variables are removed from the selection. We observed the
optimal subset size of this dataset to be about 4, which shows
the minimal error from the smallest subset. After the optimal
subset was selected, the error grew rapidly due to the key
variables being removed from the set, and thus there was not
enough information in the data to make an accurate prediction.
Despite some deviation in the sequence of selected variables,
SBS converges to the same optimal subset as the exhaustive
selection, as shown in Table I.

Figure 9 illustrates the rapid decrease in the training time
relative to the loss in the prediction accuracy. When the size
of the subset was reduced by the variable selection, little
or no loss in the prediction accuracy was shown until the
subset reached extremely small sizes. However, the training
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TABLE I
VARIABLE SUBSETS SELECTED BY EXHAUSTIVE SELECTION AND SBS

Variables Optimal the SBS
1 {44} {44}
2 {27, 47} {27, 44}
3 {0, 27, 44} {0, 27, 44}
4 {0, 27, 44, 47} {0, 27, 44, 47}

time was decreased significantly as the number of variables
was decreased. For the Gradient Boosting model, the training
time decreased almost linearly to the subset size. While the
time required to train a prediction model on the full 50
variables was about 90 seconds, the model training time with
the selected 4 variables was about 15 seconds. These results
show the achievement of our primary goal of reducing the
model training time without losing the accuracy.
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Fig. 9. Trends in prediction error and training time relative to subset size

C. Correlation Grouping

As scientific data can have inter-correlated variables, we in-
vestigated methods of using correlation to improve the variable
selection process. We evaluated the correlation-based feature
selection (CFS) [11] with Pearson and Spearman correlations.
Figure 10 shows that CFS did not perform well on this dataset,

specifically in the large spike near the middle. The poor
performance of CFS can be attributed to the high level of
correlation between variables, which is a detrimental factor in
CFS. We tested CFS with multiple correlation metrics with
similar results. In addition, CFS used an indirect heuristic
which contributed to the higher prediction error.
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From the previous experiments, we determined that SBS
could achieve similar results to the optimal subset from the
exhaustive selection, and be improved with parallelization.
In order to improve the serial runtime of SBS, we investi-
gated methods to use inter-correlated variables. We developed
correlation-based grouping that pre-processes the variables by
grouping variables correlated beyond a certain threshold and
selecting a single variable from each group. Our experiments
showed that this method still returned results comparable to
SBS, as the variables selected using this method were the
same as those selected by SBS. Figure 11 shows the selection
process for both methods. The changes in error follow similar
patterns, with the plot for correlation grouping being more
condensed. For this dataset, correlation grouping removed
roughly half of the iterations, which is significant since the
earlier iterations are much more computationally expensive to
train prediction models on with larger variable subsets.

To evaluate the runtime improvement of correlation group-
ing, we conducted the variable selection down to 1 variable
using different thresholds of variable correlation for grouping.
As shown in Figure 12, at the correlation threshold of 0.8, the
grouped SBS took only 888 seconds to run as opposed to 2727
seconds for the regular SBS. This represented a 70% runtime
improvement at no cost to the selection as the prediction
accuracy from the correlation grouping was similar to that of
SBS. While we achieved results comparable to the SBS even
at the correlation threshold of 0.5, the time improvement was
most significant at the threshold of 0.8.

As described in Sec. III, we divided our data to check
for overfitting in the selected subset. The training error in
Figure 13 is the RMSE of the predictions using the validation
set. The test error in Figure 13 is the result of using the
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selected subset on the test set. For this test, we checked
the training error of the variable subset at each iteration and
used the same subset with different data to check the test
error by building and predicting with a separate prediction
model built from the test data. While this does not check for
overfitting by the prediction model, it checks for overfitting
by the variable selection mechanism, which is what we are
concerned about. Although the error slightly varies between
the two sets due to the random sampling, Figure 13 shows
that the trends of variable selection are the same. This implies
that the improvement of removing a variable is consistent
between the two data sets, showing that the selected variables
were not overfit to the training data. The removed variable
at each iteration has the same effect on the performance
model regardless of the data that the model is trained on,
demonstrating the generalizability of the selected subset.

V. DISCUSSION

Based on our evaluation results, it is evident that a subset of
variables can be identified to improve the prediction model by
reducing the model construction time and increasing prediction
accuracy. Unlike certain dimensionality reduction techniques
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Fig. 13. Trends in training and test error relative to subset size

like PCA, the variables selected by variable selection keep
their original meaning, allowing us to investigate the impact
of specific variables on the model. Since the variable selection
process is closely associated with the model construction
process, we have to explore a number of different combina-
tions before we finally settle on a combination that can give
consistent answers.

Once we identified Sequential Backward Selection (SBS)
as the viable selection method, we considered options to
utilize high performance computing to perform selection more
quickly. Although Sequential Forward Selection (SFS) also
performed relatively well compared to existing methods, it
did not properly handle correlated variables compared with
SBS. Since SFS builds up a variable set by adding variables
instead of removing variables, it can end up selecting multiple
redundant (inter-correlated) variables.

The sequential selection process is iterative, thus we could
not parallelize the selection process across the subset sizes,
i.e. the variable selection of subset size n is dependent on the
selection of subset size n − 1, so we cannot independently
parallelize the selection of subset size n and that of n − 1.
Therefore, we parallelized the selection process across the
subsets at each iteration, using CPU cores equal to the size
of the initial variable set size. This decision also maximized
the uniformity of each parallelized job since each job trains a
model with the same number of variables. Nevertheless, there
exists some imbalance in the execution time of each job, even
with the same size variable subset, known as the straggler
problem, i.e. the entire selection finishes when the longest job
finishes. In addition, due to the removal of variables at each
iteration, an increasing number of CPU cores became unused
after each selection. In our experiments, with relatively small
variable size (around 50), this imbalance showed little impact.
We will leave the straggler problem and imbalanced resource
usage for future work with experiments on larger variable sets
with more limited resources.

The following is a breakdown of the runtime improvements
on SBS. Building a gradient boosting model takes O(kn) time
where k is the number of iterations and n is the number



of variables. SBS runs in O(kn3) time for n iterations and
n models at each iteration. Parallelizing SBS reduces this
runtime to O(kn2) since we parallelize the n models at
each iteration. Correlation grouping runs in several steps -
calculating the correlation matrix, grouping the correlated
variables, and selecting the relevant variables. The correlation
matrix can be calculated in O(n2) time or O(n) time in
parallel. Grouping variables takes O(1) time in the best case of
1 cluster and O(n2) time in the worst case of n clusters. Lastly,
selecting the relevant variables takes O(n̂) time where n̂ is the
size of the largest correlation group. After the preprocessing,
n′ variables are remaining, so parallelized SBS takes O(kn′2)
time. O(kn) >> O(n2) due to the number of iterations
required for Gradient Boosting. In our experiments, the run-
time of the preprocessing steps was insignificant compared
to the actual selection process. For grouped SBS, O(kn′2)
is the dominant runtime term in our PTF test case, and
n′ << n due to the number of correlation groups, representing
a significant reduction in the number of variables, so grouped
SBS shows significant runtime improvement. In general, we
want to balance n′ and n̂ to balance runtime and grouping
accuracy.

The performance of grouped SBS is then dependent on the
size of the largest cluster, preferring multiple medium sized
clusters. If there are many small clusters with one large cluster,
the parallelized cores would not be utilized efficiently, and the
large cluster could cause a loss in accuracy by eliminating
relevant variables. However, if there are only small clusters, the
grouping step would not have a large impact on performance
improvement. Without a fair number of clusters, the size of the
preferred subset would not be able to be specified due to too
few remaining variables after the grouping step. All of these
trade-offs can be balanced by the selection of the correlation
threshold. In our experiments, with the correlation threshold
of 0.8 and the highly correlated dataset, this method was able
to remove many redundant variables without eliminating any
of the desired variables. Especially since training models on
larger variable sets is more computationally expensive, this
initial reduction offers a significant performance improvement
for the entire variable selection process. In short, our method
of combining correlation grouping and SBS was able to speed
up SBS at little cost.

Our variable selection method can be generally applica-
ble to datasets from other applications. SBS, which is the
variable selection procedure at the core of our method, is
applicable to all sorts of data, and our parallelization and
pre-processing techniques are generally applicable as well
although the amount of improvement will vary. Our tests to
check for overfitting demonstrate that optimizing the training
model within the variable selection mechanism optimizes the
prediction model built using the final variable subset. Since the
variables are selected based on their importance to the data,
this variable selection method can be combined with various
prediction models to suit the dataset being tested.

In order to validate this claim, we applied our method to a
different dataset, consisting of TCP connection measurements

collected from ESNet data transfer nodes. These measure-
ments include 65 variables such as transfer size, duration,
and retransmitted size. We used the throughput (transfer size
divided by duration) as the target variable of the prediction
model. From our preliminary results, the variable selection
was able to select transfer size and duration in the selected
subset. By removing these variables strongly coupled with the
throughput, we were also able to select packet size that is
strongly correlated with the transfer size. Compared with the
PTF dataset, proportionally more variables are correlated with
each other. Due to this difference, keeping only one variable
from the correlated variable set made prediction result less
accurate. While the initial result is promising, we plan to
improve the correlation-based selection when the number of
correlated variables is large.

VI. CONCLUSION

Many large data analysis tasks involve a large number of
parameters, i.e., high-dimensional data, and variable selection
methods are effective in reducing the number of variables
needed for these analysis tasks. In this work, we considered
how variable selection techniques can be employed to reduce
the model building time in a prediction task. More specifically,
we studied building a performance prediction model for an
astronomy workflow from the PTF project. We showed that
reducing the number of variables also reduced the model
training time and even slightly reduced the prediction error.
We observed that the optimal subset size of this dataset for
the performance model was quite small, indicating that a
handful of variables are critical to the performance prediction
task, while the remaining variables are either disruptive or
redundant. Sequential Backward Selection (SBS) was shown
to be an effective variable selection method as it found a subset
comparable to exhaustive selection in significantly shorter
time. Although there were some ordering differences from the
exhaustive selection due to the single direction nature of the
sequential selection, this drawback did not have a significant
impact in our experiment. Overall, we observe that SBS is
a highly effective variable selection method that is easy to
parallelize.

We have developed a framework to quickly select variables
from the PTF analysis pipeline measurement data to optimize
the prediction accuracy. Due to the high levels of correlation
among variables in the dataset, certain variable selection
methods performed poorly. However, our correlation-based
grouping method was able to further improve the performance
of SBS on the PTF measurement data. By clustering correlated
variables, we reduce the number of iterations of the sequential
selection and condense the computationally expensive models
into much simpler computations. The performance of our
method is more efficient with the existence of inter-correlation
among variables, and was applicable to the PTF measurement
data due to the high levels of correlation among the variables.
In this experiment, it was able to identify the same subset
as the SBS in just one-third of the computation time. Since
we worked with a parallelized version of a generic variable



selection method, these improvements should be applicable to
other application datasets, although more improvement would
be seen in correlated data.

By taking advantage of high performance computing re-
sources and variable correlations, we were able to select
a variable subset that can result in accurate performance
prediction within significantly shorter computation time than
that of available implemented methods. Future work includes
further testing on other datasets to evaluate the applicability
of our framework, better quantifying the improvement from
the parallelization and optimization, and understanding the
effects of variable correlations. We will also look into further
optimizing both the grouping and selection steps of our
framework.

In summary, with our improvement in the variable selection
process for the PTF application, we are able to reduce the
number of variables in the prediction model from 50 to
4, reducing model building time by a factor of 6 while
maintaining the accuracy of the prediction model. Moreover,
by parallelizing SBS and clustering correlated variables, we
reduce the time needed to identify the optimal subset from
over 18 hours to 15 minutes. Both the prediction model and
variable selection improvements came at minimal cost to the
model prediction quality.
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