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Abstract—Logistic regression has long been the gold standard
for choice modeling in the transportation field. Despite the rising
popularity of machine learning (ML), few is applied to predicting
the household vehicle transactions. To address the research
gap, this paper presents a first use case of ML application to
predicting household vehicle transaction decisions by leveraging
a newly processed national panel data set. Model performances
are reported for four ML models and the traditional multinomial
logit model (MNL). Instead of treating the gold standard and
ML models as competitors, this paper tries to use ML tools
to inform the MNL model building process. We find the two
gradient boosting based methods, CatBoost and LightGBM, are
the best performing ML models; and improving logistic models
with SHAP interpretation tools can achieve similar performance
levels to the best performing ML methods.

Index Terms—household vehicle transaction, multinomial logit,
gradient boosting, SHAP values, treeExplainer

I. INTRODUCTION

Methodologies for predicting household vehicle transaction
choices are instrumental to longer term transportation plan-
ning and creating sustainable transportation systems. Logistic
regression has long been the gold standard in choice modeling
for transportation problems [1]. These choice models are based
on random utility maximisation theory and the estimated
coefficients can straightforwardly quantify feature effects as
changes in odds ratios.

Unlike statistical models, like multinomial logit, that impose
a predetermined structure, machine learning (ML) models rely
on data-driven heuristics to arrive at their solutions. Although
ML applications to predicting household vehicle transactions
are rare, there are published studies on predicting other
travel behaviors, such as transportation mode choices, that
have shown that ML models outperform traditional statistical
models [2], [3], [4]. However the limited interpretability of
ML models have limited their wider adoption.

Rather than treating the gold standard and ML models
as competitors, opportunities exist to marry the two. Recent
advances in ”Explainable AI” [5], [6] have improved the in-
terpretability of tree-based models exploring high-dimensional
feature space. Behavior insights from the ML models, such as
individual feature importance and their interactions, have been
proposed to be incorporated into the logistic model building

process to improve its model specification and prediction
performance [7], [8].

Despite the rising body of ML literature on travel behavior
research (see review in [1]), few studies have addressed
household vehicle transactions. Predicting the dynamics of
vehicle transactions requires longitudinal data that are difficult
to collect from the life courses of individual households.
Current data collection are mostly reliant on cross-sectional
surveys with small sample sizes that limit the application of
data-driven ML models.

To address this research gap, this paper presents a first use-
case of applying ML to prediction of household vehicle trans-
action decisions by leveraging a newly processed nationally
representative panel data set. Our contribution to the travel
behavior research includes: (1) the first study documenting
the performance of various ML methods on predicting vehicle-
level transactions; (2) comparison of the performance between
ML and the logistic models with a comprehensive set of
metrics; and (3) demonstrating performance improvements in
the logistic model via SHAP interpretation tools incorporated
into the model building process. We find the two gradient
boosting based methods, CatBoost and LightGBM, are the best
performing ML models for this problem; and improving logis-
tic models with SHAP interpretation tools can achieve similar
performance levels to the best performing ML methods.

II. DATA DESCRIPTION AND PREPROCESSING

The Panel Study of Income Dynamics (PSID) [9] is the
longest-running national level longitudinal panel survey of
American families. Due to its panel structure and long history,
PSID data has become an important data source for life
course research [10], [11]. Since 1999, PSID has started to
collect individual vehicle information biennially for up to three
vehicles in each family that together covers 95% of the total
number of vehicles reported by the families. The public data
of vehicle information includes body type, model year, owned
or leased, acquisition year, manufacturer, and make. We limit
our study to the survey waves from 2003 to 2017, because
they include consistent questions about vehicle information
(vehicle attributes are summarised in Table I).



The outcome variable of interest in this study is the trans-
action decision for individual vehicles in the family’s existing
fleet, whether it is disposed without replacement (termed
as “disposed” hereafter), disposed with replacement (termed
as “replaced” hereafter), or kept in the family in the next
wave. We first create life trajectories of individual vehicles
by identifying them from wave to wave. Then the transaction
outcome, whether to dispose, replace, or keep an existing
vehicle can be determined by comparing the household fleet
status between the two adjacent waves.

The 34 input features we include are time varying attributes
processed from the longitudinal PSID data, including vehicle
attributes, household characteristics, life events and change
variables, such as marriage, change of income and employ-
ment.

TABLE I
VEHICLE-LEVEL DATA SUMMARY

Vehicle-level Summary Population By Vehicle Outcome

Mean Kept Disposed Replaced

Vehicle vintage 9.55 8.95 11.63 9.98
Years in family 6.06 6.25 6.12 5.7
Owned (leased = 0) 0.95 0.97 0.95 0.91
Vehicle body type

Car 0.54 0.52 0.59 0.55
Pickup 0.15 0.16 0.14 0.13

SUV 0.24 0.25 0.2 0.24
Van 0.07 0.07 0.07 0.08

Vehicle transaction outcome
Dispose 0.1 0 1 0

Keep 0.59 1 0 0
Replace 0.31 0 0 1

Number of Observations 69,697 40,884 7,178 21,635

III. METHODS

A. Machine Learning Models

Four machine learning models are evaluated in this study.
1) Random Forest: This algorithm [12] builds an ensemble

of decision trees, or tree predictors, which depend on randomly
and independently sampled vectors over the same distribution.
The strength, correlation and monitor error are closely fol-
lowed to track the growing features in response to the branches
splitting.

2) Catboost and LightGBM: Standard gradient boosting
methods solve over-fitting problems, but inefficiently. In an ef-
fort to make gradient tree boosting more flexible and scalable,
Chen [13] created the scalable XGBoost algorithm. XGBoost
employs a new regularization technique, instead of optimizing
the loss function, to minimize over-fitting. This tactic allows
XGBoost to be faster and more robust during tuning. Because
the majority of input features are categorical variables, we
employ the two gradient boosting based methods, CatBoost
and LightGBM, that were shown to have better performance
for categorical data [14]. Both these methods are extensions
of XGBoost. CatBoost focuses on categorical columns using
permutation techniques and target-based statistics [15]. The
light gradient boosting machine (LightGBM) further improves

standard gradient boosting methods. Microsoft developed
LightGBM by growing the decision trees leaf-wise, allowing
it to support GPU learning speed, with faster training time,
better accuracy, and for larger data [16].

3) Neural Network - Multilayer Perceptron: One of the
simplest multi-layers neural network architectures, the mul-
tilayer perceptron (MLP) [17], is a hierarchical structure of
layers containing individual artificial neurons. The power of
MLPs comes from their ability to learn patterns in the training
data and to relate them to the output. Mathematically, MLPs
are considered universal approximators, which means they
are capable of learning any mapping function. The MLP
architecture consists of an input layer, at one or more hidden
layers and an output layer. Each neuron in the hidden layer
receives input from the input layer and fires according to
the neuron’s activation function. During the forward pass, the
output of each layer is passed to the next layer and usually
the output layer consists of only one neuron. The error is
calculated based on the function to be predicted and the output
of the network. After the forward pass, the backpropagation
algorithm [18] performs a backward pass to adjust the model’s
weights and biases. This is repeated for many epochs, and it is
called training. After training the resulting model can be used
for classification and prediction.

B. Multinomial Logit Model

Multinomial logit (MNL) models are the most widely used
choice models, and are based on utility maximization theory
for predicting multi-class outcomes. The utility of the “keep”
outcome, i.e. no transaction, is fixed at 0 without any loss of
generality, while the utility function from choosing transaction
outcome j ∈ dispose, replace for vehicle n during wave t in
family i is:

Unjit = αj +X ′
ntβj + Z ′

itγj + Y eart · δj + εnjit (1)

βj is the alternative-specific coefficient vector associated with
the vehicle attributes X ′

nt, and γj is the alternative-specific
coefficient vector associated with the family level attributes
Z ′
it. We include year-specific effects Y eart · δj in our model

to account for temporal influences affecting every household
in the same year: for instance, the economic recession begin-
ning in 2008. To account for serial correlation across time
observations within families, we cluster the standard errors of
the estimates at the family level.

The Baseline MNL model uses all the input features without
interactions. Then SHAP importance and interaction scores
(explained in the next method section) are used to improve the
model specification in the Improved MNL model by selecting
variables and interaction terms.

C. SHAP Values for Feature and Interaction Selection

Recent advances in ML interpretability include algorithms
and methods that are able to consistently rank feature im-
portance and to reason about individual predictions and has
been applied to transportation research [19]. One of the



most promising methods is SHAP (SHapley Additive exPla-
nations) [20], an algorithm based on coalitional game theory
and Shapley values, that shows how individual instances are
predicted by quantifying how much each feature impacts the
prediction. In this game, the players in a coalition are replaced
by the feature values of a data instance.

Shapley values indicate features’ contribution to the final
prediction of individual instances or the entire dataset. The
SHAP implementation provides a feature importance method
that satisfies two main requirements: additive feature attribu-
tion and additive importance. Also, especially for tree-based
methods, it computes fast, consistent, and locally accurate
Shapley values in low-order polynomial time by leveraging
the internal hierarchical structure of the tree models. Shapley
values require a summation of terms over all possible feature
subsets. However, for tree-based methods this can be calcu-
lated based on each leaf in a tree. An example of a SHAP
feature importance plot is shown in Figure 2 (a).

When Shapley values are calculated, usually feature attribu-
tions are only allocated among the individual input features,
one at the time. However, similar to the idea of interaction
terms used for regression models, additional insights can be
gained by separating interaction effects between features. One
way to do this is to consider pairwise interactions and compute
a matrix of attribution values representing the impact of all
pairs of features on a given model prediction. The extension
of interaction effects can be obtained through the more modern
Shapley interaction index [5]. An example of SHAP feature
interaction importance is shown in Figure 2 (b) and (c).

D. Performance Evaluation Metrics

Ten metrics are used to comprehensively compare various
aspects of the performance of both ML and MNL models
for predicting multi-class vehicle transaction outcomes. The
outcome class-specific metrics such as Accuracy, Recall, F1,
and Specificity are first computed from the confusion matrices.
Then the multi-class overall performance metrics are derived
including:

1) Overall Accuracy for correct classification, which indi-
cates the fraction of instances that are correctly classi-
fied.

2) Average Accuracy, which is based on the sum of the
one-vs-all matrices, and represents a binary classification
task where one class is considered the positive class and
the combination of all the other classes make up the
negative class.

3) Macro-averaged metrics, which includes Macro-
precision and Macro-F1, also known as sensitivity or
the true positive rate, is calculated by taking the means
of per-class precision, recall and F1, respectively.

4) Micro-averaged metrics, which is from the sum of the
one-vs-all matrices for each class, and the sum of these
matrices will always be a symmetric matrix, so micro-
precision, -recall and -F1 will be the same.

Fig. 1. Performance metrics of four machine learning and baseline MNL
models.

Three additional overall performance metrics are computed
including:

1) Cohen’s Kappa, which can be interpreted as a compar-
ison of the overall accuracy to the expected random
chance accuracy with higher value indicating a better
classifier compared relative to a random chance classi-
fier.

2) cross-entropy, which measures the difference between
two probability distributions from the idea of entropy
in information theory to quantify the number of bits re-
quired to transmit an average event from one distribution
compared to another with lower cross-entropy as better
model performances.

3) Multi-class Log Loss, which penalizes the model for
uncertainty in correct predictions, and heavily penalizes
the model for making an incorrect prediction with lower
multi-class log loss as better model performances.



Fig. 2. (a) Feature Importance; and interaction term scores for transaction outcome classes ”replace” (b), and ”dispose” (c).

IV. RESULTS AND DISCUSSIONS

A. Performance Comparison among Machine Learning and
Baseline MNL Models

We first compare the performance among the Neural Net-
work, Random Forest, LightGBM, CatBoost, and the Baseline
MNL model. The Baseline MNL model refers to the MNL
model with linear terms of the input features. Figure 1
summarises the overall performance evaluation on three well-
known performance measures: overall accuracy, multi-class
log loss and F1. Each point on the plot represents the average
performance of a particular model over 5-fold cross-validation.
For each ML method, models were generated based on several
sets of features and therefore summarised with a boxplot. All
the experiments were run using the MLJAR framework [21].
The two gradient boosting based methods, CatBoost and Light-
GBM, are the best performing ML models and perform better
than the Baseline MNL model. More detailed performance
comparisons between the Base MNL and best ML model are
presented with ten evaluation metrics (the “Base” and “bML”
columns) in Table II. Although ML performance is better
than the Baseline MNL model both in-sample and out-of-
sample, the differences are more pronounced with in-sample
and diminish once both models are evaluated on testing data
(vehicle transaction data from a random selection of 1000
households).

B. Improving MNL via SHAP Based Variable and Interaction
Term Selection

To improve the Baseline MNL model, we use SHAP im-
portance ranking to select the top 20 features and rank their
interactions using SHAP interaction scores (Figure 2). Most
notably, 5 out of 7 top interactions involve Nveh (number
of vehicles owned), indicating that the effects of other input
features on the transaction decisions differ among households
with different fleet sizes. Accordingly, we revise the Baseline
MNL model by (1) segmenting the households by their fleet
sizes into one-vehicle families and extra-vehicle-families, and
(2) interacting input features with these household segments.
Additionally, we add the common interaction term inc 5bins :
ch income (household income levels and change of income
between time steps) present in Figure 2(b)(c). This interaction
suggests that the effect of income change depends on house-
hold income levels.

The performance of the resulting improved MNL model is
evaluated with the 10 metrics in Table II column “iMNL”.
Similar to the Baseline MNL, the improved MNL model
shows poorer performance than the ML model on in-sample
data. However, when applied to the testing data, 5 out of the
10 metrics have now indicated same or better performance
of the improved MNL model than the ML model, and the
performance differences are smaller between the improved
MNL and ML compared to between the Baseline MNL and
ML models. Furthermore, Table II suggests overall MNL
models perform more consistently between in-sample and out-
of-sample data than ML models.



TABLE II
PERFORMANCE METRICS FOR BASELINE MNL (BASE), IMPROVED MNL

(IMNL), AND BEST PERFORMING MACHINE LEARNING (BML). BEST
PERFORMING METRICS ARE INDICATED WITH BOLD FACES.

Metrics In-sample Testing Sample

Base iMNL bML Base iMNL bML

Overall Accuracy 0.61 0.62 0.72 0.61 0.62 0.62
Average Accuracy 0.74 0.74 0.81 0.74 0.75 0.75
Macro-precision 0.53 0.53 0.75 0.53 0.55 0.53
Sensitivity 0.42 0.42 0.58 0.42 0.43 0.44
Macro-F1 0.41 0.42 0.62 0.42 0.43 0.45
Micro metrics 0.61 0.62 0.72 0.61 0.62 0.62
Cohen’s Kappa 0.16 0.17 0.42 0.17 0.19 0.21
Specificity 0.71 0.72 0.79 0.72 0.72 0.73
Cross Entropy 1.59 1.57 1.44 1.58 1.58 1.47
1/(Log Loss) 1.20 1.22 1.52 1.20 1.22 1.20

V. CONCLUSION

Logistic regression has long been the gold standard for
choice modeling in the transportation field. Despite the rising
popularity of machine learning in transportation behavior
modeling and prediction, few applications exist in predicting
household vehicle transactions. To address this research gap,
this paper presents a first use-case of ML application to pre-
dicting household vehicle transactions by leveraging a newly
processed national panel data set. Model performances are
reported for four ML models and the traditional MNL model.
We find the two gradient boosting based methods, CatBoost
and LightGBM, are the best performing ML models. Overall,
MNL models perform more consistently between in-sample
and out-of-sample than ML models. The SHAP values are
useful for screening feature importance and ranking features
interactions so that the MNL models can be specified with
fewer input features and with important interaction terms.
After feature interactions learned from the SHAP tool are used
to improve the MNL model specification, the resulting MNL
model can also match (if not exceed) the performance of the
ML models as evaluated by half of the metrics used.
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